summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Simulator-arm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/Simulator-arm.cpp')
-rw-r--r--js/src/jit/arm/Simulator-arm.cpp5472
1 files changed, 5472 insertions, 0 deletions
diff --git a/js/src/jit/arm/Simulator-arm.cpp b/js/src/jit/arm/Simulator-arm.cpp
new file mode 100644
index 0000000000..2afd6cb0de
--- /dev/null
+++ b/js/src/jit/arm/Simulator-arm.cpp
@@ -0,0 +1,5472 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "jit/arm/Simulator-arm.h"
+
+#include "mozilla/Casting.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/EndianUtils.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/Likely.h"
+#include "mozilla/MathAlgorithms.h"
+
+#include "jit/arm/Assembler-arm.h"
+#include "jit/arm/disasm/Constants-arm.h"
+#include "jit/AtomicOperations.h"
+#include "js/UniquePtr.h"
+#include "js/Utility.h"
+#include "threading/LockGuard.h"
+#include "vm/JSContext.h"
+#include "vm/Runtime.h"
+#include "vm/SharedMem.h"
+#include "wasm/WasmInstance.h"
+#include "wasm/WasmSignalHandlers.h"
+
+extern "C" {
+
+MOZ_EXPORT int64_t __aeabi_idivmod(int x, int y) {
+ // Run-time ABI for the ARM architecture specifies that for |INT_MIN / -1|
+ // "an implementation is (sic) may return any convenient value, possibly the
+ // original numerator."
+ //
+ // |INT_MIN / -1| traps on x86, which isn't listed as an allowed behavior in
+ // the ARM docs, so instead follow LLVM and return the numerator. (And zero
+ // for the remainder.)
+
+ if (x == INT32_MIN && y == -1) {
+ return uint32_t(x);
+ }
+
+ uint32_t lo = uint32_t(x / y);
+ uint32_t hi = uint32_t(x % y);
+ return (int64_t(hi) << 32) | lo;
+}
+
+MOZ_EXPORT int64_t __aeabi_uidivmod(int x, int y) {
+ uint32_t lo = uint32_t(x) / uint32_t(y);
+ uint32_t hi = uint32_t(x) % uint32_t(y);
+ return (int64_t(hi) << 32) | lo;
+}
+}
+
+namespace js {
+namespace jit {
+
+// For decoding load-exclusive and store-exclusive instructions.
+namespace excl {
+
+// Bit positions.
+enum {
+ ExclusiveOpHi = 24, // Hi bit of opcode field
+ ExclusiveOpLo = 23, // Lo bit of opcode field
+ ExclusiveSizeHi = 22, // Hi bit of operand size field
+ ExclusiveSizeLo = 21, // Lo bit of operand size field
+ ExclusiveLoad = 20 // Bit indicating load
+};
+
+// Opcode bits for exclusive instructions.
+enum { ExclusiveOpcode = 3 };
+
+// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo).
+enum {
+ ExclusiveWord = 0,
+ ExclusiveDouble = 1,
+ ExclusiveByte = 2,
+ ExclusiveHalf = 3
+};
+
+} // namespace excl
+
+// Load/store multiple addressing mode.
+enum BlockAddrMode {
+ // Alias modes for comparison when writeback does not matter.
+ da_x = (0 | 0 | 0) << 21, // Decrement after.
+ ia_x = (0 | 4 | 0) << 21, // Increment after.
+ db_x = (8 | 0 | 0) << 21, // Decrement before.
+ ib_x = (8 | 4 | 0) << 21, // Increment before.
+};
+
+// Type of VFP register. Determines register encoding.
+enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 };
+
+enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
+
+// Supervisor Call (svc) specific support.
+
+// Special Software Interrupt codes when used in the presence of the ARM
+// simulator.
+// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
+// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
+enum SoftwareInterruptCodes {
+ kCallRtRedirected = 0x10, // Transition to C code.
+ kBreakpoint = 0x20, // Breakpoint.
+ kStopCode = 1 << 23 // Stop.
+};
+
+const uint32_t kStopCodeMask = kStopCode - 1;
+const uint32_t kMaxStopCode = kStopCode - 1;
+
+// -----------------------------------------------------------------------------
+// Instruction abstraction.
+
+// The class Instruction enables access to individual fields defined in the ARM
+// architecture instruction set encoding as described in figure A3-1.
+// Note that the Assembler uses typedef int32_t Instr.
+//
+// Example: Test whether the instruction at ptr does set the condition code
+// bits.
+//
+// bool InstructionSetsConditionCodes(byte* ptr) {
+// Instruction* instr = Instruction::At(ptr);
+// int type = instr->TypeValue();
+// return ((type == 0) || (type == 1)) && instr->hasS();
+// }
+//
+class SimInstruction {
+ public:
+ enum { kInstrSize = 4, kPCReadOffset = 8 };
+
+ // Get the raw instruction bits.
+ inline Instr instructionBits() const {
+ return *reinterpret_cast<const Instr*>(this);
+ }
+
+ // Set the raw instruction bits to value.
+ inline void setInstructionBits(Instr value) {
+ *reinterpret_cast<Instr*>(this) = value;
+ }
+
+ // Read one particular bit out of the instruction bits.
+ inline int bit(int nr) const { return (instructionBits() >> nr) & 1; }
+
+ // Read a bit field's value out of the instruction bits.
+ inline int bits(int hi, int lo) const {
+ return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1);
+ }
+
+ // Read a bit field out of the instruction bits.
+ inline int bitField(int hi, int lo) const {
+ return instructionBits() & (((2 << (hi - lo)) - 1) << lo);
+ }
+
+ // Accessors for the different named fields used in the ARM encoding.
+ // The naming of these accessor corresponds to figure A3-1.
+ //
+ // Two kind of accessors are declared:
+ // - <Name>Field() will return the raw field, i.e. the field's bits at their
+ // original place in the instruction encoding.
+ // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
+ // 0xC0810002 conditionField(instr) will return 0xC0000000.
+ // - <Name>Value() will return the field value, shifted back to bit 0.
+ // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
+ // 0xC0810002 conditionField(instr) will return 0xC.
+
+ // Generally applicable fields
+ inline Assembler::ARMCondition conditionField() const {
+ return static_cast<Assembler::ARMCondition>(bitField(31, 28));
+ }
+ inline int typeValue() const { return bits(27, 25); }
+ inline int specialValue() const { return bits(27, 23); }
+
+ inline int rnValue() const { return bits(19, 16); }
+ inline int rdValue() const { return bits(15, 12); }
+
+ inline int coprocessorValue() const { return bits(11, 8); }
+
+ // Support for VFP.
+ // Vn(19-16) | Vd(15-12) | Vm(3-0)
+ inline int vnValue() const { return bits(19, 16); }
+ inline int vmValue() const { return bits(3, 0); }
+ inline int vdValue() const { return bits(15, 12); }
+ inline int nValue() const { return bit(7); }
+ inline int mValue() const { return bit(5); }
+ inline int dValue() const { return bit(22); }
+ inline int rtValue() const { return bits(15, 12); }
+ inline int pValue() const { return bit(24); }
+ inline int uValue() const { return bit(23); }
+ inline int opc1Value() const { return (bit(23) << 2) | bits(21, 20); }
+ inline int opc2Value() const { return bits(19, 16); }
+ inline int opc3Value() const { return bits(7, 6); }
+ inline int szValue() const { return bit(8); }
+ inline int VLValue() const { return bit(20); }
+ inline int VCValue() const { return bit(8); }
+ inline int VAValue() const { return bits(23, 21); }
+ inline int VBValue() const { return bits(6, 5); }
+ inline int VFPNRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 16, 7);
+ }
+ inline int VFPMRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 0, 5);
+ }
+ inline int VFPDRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 12, 22);
+ }
+
+ // Fields used in Data processing instructions.
+ inline int opcodeValue() const { return static_cast<ALUOp>(bits(24, 21)); }
+ inline ALUOp opcodeField() const {
+ return static_cast<ALUOp>(bitField(24, 21));
+ }
+ inline int sValue() const { return bit(20); }
+
+ // With register.
+ inline int rmValue() const { return bits(3, 0); }
+ inline ShiftType shifttypeValue() const {
+ return static_cast<ShiftType>(bits(6, 5));
+ }
+ inline int rsValue() const { return bits(11, 8); }
+ inline int shiftAmountValue() const { return bits(11, 7); }
+
+ // With immediate.
+ inline int rotateValue() const { return bits(11, 8); }
+ inline int immed8Value() const { return bits(7, 0); }
+ inline int immed4Value() const { return bits(19, 16); }
+ inline int immedMovwMovtValue() const {
+ return immed4Value() << 12 | offset12Value();
+ }
+
+ // Fields used in Load/Store instructions.
+ inline int PUValue() const { return bits(24, 23); }
+ inline int PUField() const { return bitField(24, 23); }
+ inline int bValue() const { return bit(22); }
+ inline int wValue() const { return bit(21); }
+ inline int lValue() const { return bit(20); }
+
+ // With register uses same fields as Data processing instructions above with
+ // immediate.
+ inline int offset12Value() const { return bits(11, 0); }
+
+ // Multiple.
+ inline int rlistValue() const { return bits(15, 0); }
+
+ // Extra loads and stores.
+ inline int signValue() const { return bit(6); }
+ inline int hValue() const { return bit(5); }
+ inline int immedHValue() const { return bits(11, 8); }
+ inline int immedLValue() const { return bits(3, 0); }
+
+ // Fields used in Branch instructions.
+ inline int linkValue() const { return bit(24); }
+ inline int sImmed24Value() const { return ((instructionBits() << 8) >> 8); }
+
+ // Fields used in Software interrupt instructions.
+ inline SoftwareInterruptCodes svcValue() const {
+ return static_cast<SoftwareInterruptCodes>(bits(23, 0));
+ }
+
+ // Test for special encodings of type 0 instructions (extra loads and
+ // stores, as well as multiplications).
+ inline bool isSpecialType0() const { return (bit(7) == 1) && (bit(4) == 1); }
+
+ // Test for miscellaneous instructions encodings of type 0 instructions.
+ inline bool isMiscType0() const {
+ return bit(24) == 1 && bit(23) == 0 && bit(20) == 0 && (bit(7) == 0);
+ }
+
+ // Test for a nop instruction, which falls under type 1.
+ inline bool isNopType1() const { return bits(24, 0) == 0x0120F000; }
+
+ // Test for a nop instruction, which falls under type 1.
+ inline bool isCsdbType1() const { return bits(24, 0) == 0x0120F014; }
+
+ // Test for a stop instruction.
+ inline bool isStop() const {
+ return typeValue() == 7 && bit(24) == 1 && svcValue() >= kStopCode;
+ }
+
+ // Test for a udf instruction, which falls under type 3.
+ inline bool isUDF() const {
+ return (instructionBits() & 0xfff000f0) == 0xe7f000f0;
+ }
+
+ // Special accessors that test for existence of a value.
+ inline bool hasS() const { return sValue() == 1; }
+ inline bool hasB() const { return bValue() == 1; }
+ inline bool hasW() const { return wValue() == 1; }
+ inline bool hasL() const { return lValue() == 1; }
+ inline bool hasU() const { return uValue() == 1; }
+ inline bool hasSign() const { return signValue() == 1; }
+ inline bool hasH() const { return hValue() == 1; }
+ inline bool hasLink() const { return linkValue() == 1; }
+
+ // Decoding the double immediate in the vmov instruction.
+ double doubleImmedVmov() const;
+ // Decoding the float32 immediate in the vmov.f32 instruction.
+ float float32ImmedVmov() const;
+
+ private:
+ // Join split register codes, depending on single or double precision.
+ // four_bit is the position of the least-significant bit of the four
+ // bit specifier. one_bit is the position of the additional single bit
+ // specifier.
+ inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
+ if (pre == kSinglePrecision) {
+ return (bits(four_bit + 3, four_bit) << 1) | bit(one_bit);
+ }
+ return (bit(one_bit) << 4) | bits(four_bit + 3, four_bit);
+ }
+
+ SimInstruction() = delete;
+ SimInstruction(const SimInstruction& other) = delete;
+ void operator=(const SimInstruction& other) = delete;
+};
+
+double SimInstruction::doubleImmedVmov() const {
+ // Reconstruct a double from the immediate encoded in the vmov instruction.
+ //
+ // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
+ // double: [aBbbbbbb,bbcdefgh,00000000,00000000,
+ // 00000000,00000000,00000000,00000000]
+ //
+ // where B = ~b. Only the high 16 bits are affected.
+ uint64_t high16;
+ high16 = (bits(17, 16) << 4) | bits(3, 0); // xxxxxxxx,xxcdefgh.
+ high16 |= (0xff * bit(18)) << 6; // xxbbbbbb,bbxxxxxx.
+ high16 |= (bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx.
+ high16 |= bit(19) << 15; // axxxxxxx,xxxxxxxx.
+
+ uint64_t imm = high16 << 48;
+ return mozilla::BitwiseCast<double>(imm);
+}
+
+float SimInstruction::float32ImmedVmov() const {
+ // Reconstruct a float32 from the immediate encoded in the vmov instruction.
+ //
+ // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
+ // float32: [aBbbbbbc, defgh000, 00000000, 00000000]
+ //
+ // where B = ~b. Only the high 16 bits are affected.
+ uint32_t imm;
+ imm = (bits(17, 16) << 23) | (bits(3, 0) << 19); // xxxxxxxc,defgh000.0.0
+ imm |= (0x1f * bit(18)) << 25; // xxbbbbbx,xxxxxxxx.0.0
+ imm |= (bit(18) ^ 1) << 30; // xBxxxxxx,xxxxxxxx.0.0
+ imm |= bit(19) << 31; // axxxxxxx,xxxxxxxx.0.0
+
+ return mozilla::BitwiseCast<float>(imm);
+}
+
+class CachePage {
+ public:
+ static const int LINE_VALID = 0;
+ static const int LINE_INVALID = 1;
+ static const int kPageShift = 12;
+ static const int kPageSize = 1 << kPageShift;
+ static const int kPageMask = kPageSize - 1;
+ static const int kLineShift = 2; // The cache line is only 4 bytes right now.
+ static const int kLineLength = 1 << kLineShift;
+ static const int kLineMask = kLineLength - 1;
+
+ CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
+ char* validityByte(int offset) {
+ return &validity_map_[offset >> kLineShift];
+ }
+ char* cachedData(int offset) { return &data_[offset]; }
+
+ private:
+ char data_[kPageSize]; // The cached data.
+ static const int kValidityMapSize = kPageSize >> kLineShift;
+ char validity_map_[kValidityMapSize]; // One byte per line.
+};
+
+// Protects the icache() and redirection() properties of the
+// Simulator.
+class AutoLockSimulatorCache : public LockGuard<Mutex> {
+ using Base = LockGuard<Mutex>;
+
+ public:
+ explicit AutoLockSimulatorCache()
+ : Base(SimulatorProcess::singleton_->cacheLock_) {}
+};
+
+mozilla::Atomic<size_t, mozilla::ReleaseAcquire>
+ SimulatorProcess::ICacheCheckingDisableCount(
+ 1); // Checking is disabled by default.
+SimulatorProcess* SimulatorProcess::singleton_ = nullptr;
+
+int64_t Simulator::StopSimAt = -1L;
+
+Simulator* Simulator::Create() {
+ auto sim = MakeUnique<Simulator>();
+ if (!sim) {
+ return nullptr;
+ }
+
+ if (!sim->init()) {
+ return nullptr;
+ }
+
+ char* stopAtStr = getenv("ARM_SIM_STOP_AT");
+ int64_t stopAt;
+ if (stopAtStr && sscanf(stopAtStr, "%lld", &stopAt) == 1) {
+ fprintf(stderr, "\nStopping simulation at icount %lld\n", stopAt);
+ Simulator::StopSimAt = stopAt;
+ }
+
+ return sim.release();
+}
+
+void Simulator::Destroy(Simulator* sim) { js_delete(sim); }
+
+void Simulator::disassemble(SimInstruction* instr, size_t n) {
+#ifdef JS_DISASM_ARM
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
+ while (n-- > 0) {
+ dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr));
+ fprintf(stderr, " 0x%08x %s\n", uint32_t(instr), buffer.start());
+ instr = reinterpret_cast<SimInstruction*>(
+ reinterpret_cast<uint8_t*>(instr) + 4);
+ }
+#endif
+}
+
+void Simulator::disasm(SimInstruction* instr) { disassemble(instr, 1); }
+
+void Simulator::disasm(SimInstruction* instr, size_t n) {
+ disassemble(instr, n);
+}
+
+void Simulator::disasm(SimInstruction* instr, size_t m, size_t n) {
+ disassemble(reinterpret_cast<SimInstruction*>(
+ reinterpret_cast<uint8_t*>(instr) - m * 4),
+ n);
+}
+
+// The ArmDebugger class is used by the simulator while debugging simulated ARM
+// code.
+class ArmDebugger {
+ public:
+ explicit ArmDebugger(Simulator* sim) : sim_(sim) {}
+
+ void stop(SimInstruction* instr);
+ void debug();
+
+ private:
+ static const Instr kBreakpointInstr =
+ (Assembler::AL | (7 * (1 << 25)) | (1 * (1 << 24)) | kBreakpoint);
+ static const Instr kNopInstr = (Assembler::AL | (13 * (1 << 21)));
+
+ Simulator* sim_;
+
+ int32_t getRegisterValue(int regnum);
+ double getRegisterPairDoubleValue(int regnum);
+ void getVFPDoubleRegisterValue(int regnum, double* value);
+ bool getValue(const char* desc, int32_t* value);
+ bool getVFPDoubleValue(const char* desc, double* value);
+
+ // Set or delete a breakpoint. Returns true if successful.
+ bool setBreakpoint(SimInstruction* breakpc);
+ bool deleteBreakpoint(SimInstruction* breakpc);
+
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and
+ // execution to skip past breakpoints when run from the debugger.
+ void undoBreakpoints();
+ void redoBreakpoints();
+};
+
+void ArmDebugger::stop(SimInstruction* instr) {
+ // Get the stop code.
+ uint32_t code = instr->svcValue() & kStopCodeMask;
+ // Retrieve the encoded address, which comes just after this stop.
+ char* msg =
+ *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize);
+ // Update this stop description.
+ if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
+ sim_->watched_stops_[code].desc = msg;
+ }
+ // Print the stop message and code if it is not the default code.
+ if (code != kMaxStopCode) {
+ printf("Simulator hit stop %u: %s\n", code, msg);
+ } else {
+ printf("Simulator hit %s\n", msg);
+ }
+ sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize);
+ debug();
+}
+
+int32_t ArmDebugger::getRegisterValue(int regnum) {
+ if (regnum == Registers::pc) {
+ return sim_->get_pc();
+ }
+ return sim_->get_register(regnum);
+}
+
+double ArmDebugger::getRegisterPairDoubleValue(int regnum) {
+ return sim_->get_double_from_register_pair(regnum);
+}
+
+void ArmDebugger::getVFPDoubleRegisterValue(int regnum, double* out) {
+ sim_->get_double_from_d_register(regnum, out);
+}
+
+bool ArmDebugger::getValue(const char* desc, int32_t* value) {
+ Register reg = Register::FromName(desc);
+ if (reg != InvalidReg) {
+ *value = getRegisterValue(reg.code());
+ return true;
+ }
+ if (strncmp(desc, "0x", 2) == 0) {
+ return sscanf(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
+ }
+ return sscanf(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
+}
+
+bool ArmDebugger::getVFPDoubleValue(const char* desc, double* value) {
+ FloatRegister reg = FloatRegister::FromCode(FloatRegister::FromName(desc));
+ if (reg.isInvalid()) {
+ return false;
+ }
+
+ if (reg.isSingle()) {
+ float fval;
+ sim_->get_float_from_s_register(reg.id(), &fval);
+ *value = fval;
+ return true;
+ }
+
+ sim_->get_double_from_d_register(reg.id(), value);
+ return true;
+}
+
+bool ArmDebugger::setBreakpoint(SimInstruction* breakpc) {
+ // Check if a breakpoint can be set. If not return without any side-effects.
+ if (sim_->break_pc_) {
+ return false;
+ }
+
+ // Set the breakpoint.
+ sim_->break_pc_ = breakpc;
+ sim_->break_instr_ = breakpc->instructionBits();
+ // Not setting the breakpoint instruction in the code itself. It will be set
+ // when the debugger shell continues.
+ return true;
+}
+
+bool ArmDebugger::deleteBreakpoint(SimInstruction* breakpc) {
+ if (sim_->break_pc_ != nullptr) {
+ sim_->break_pc_->setInstructionBits(sim_->break_instr_);
+ }
+
+ sim_->break_pc_ = nullptr;
+ sim_->break_instr_ = 0;
+ return true;
+}
+
+void ArmDebugger::undoBreakpoints() {
+ if (sim_->break_pc_) {
+ sim_->break_pc_->setInstructionBits(sim_->break_instr_);
+ }
+}
+
+void ArmDebugger::redoBreakpoints() {
+ if (sim_->break_pc_) {
+ sim_->break_pc_->setInstructionBits(kBreakpointInstr);
+ }
+}
+
+static char* ReadLine(const char* prompt) {
+ UniqueChars result;
+ char line_buf[256];
+ int offset = 0;
+ bool keep_going = true;
+ fprintf(stdout, "%s", prompt);
+ fflush(stdout);
+ while (keep_going) {
+ if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) {
+ // fgets got an error. Just give up.
+ return nullptr;
+ }
+ int len = strlen(line_buf);
+ if (len > 0 && line_buf[len - 1] == '\n') {
+ // Since we read a new line we are done reading the line. This will
+ // exit the loop after copying this buffer into the result.
+ keep_going = false;
+ }
+ if (!result) {
+ // Allocate the initial result and make room for the terminating
+ // '\0'.
+ result.reset(js_pod_malloc<char>(len + 1));
+ if (!result) {
+ return nullptr;
+ }
+ } else {
+ // Allocate a new result with enough room for the new addition.
+ int new_len = offset + len + 1;
+ char* new_result = js_pod_malloc<char>(new_len);
+ if (!new_result) {
+ return nullptr;
+ }
+ // Copy the existing input into the new array and set the new
+ // array as the result.
+ memcpy(new_result, result.get(), offset * sizeof(char));
+ result.reset(new_result);
+ }
+ // Copy the newly read line into the result.
+ memcpy(result.get() + offset, line_buf, len * sizeof(char));
+ offset += len;
+ }
+
+ MOZ_ASSERT(result);
+ result[offset] = '\0';
+ return result.release();
+}
+
+void ArmDebugger::debug() {
+ intptr_t last_pc = -1;
+ bool done = false;
+
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+ char cmd[COMMAND_SIZE + 1];
+ char arg1[ARG_SIZE + 1];
+ char arg2[ARG_SIZE + 1];
+ char* argv[3] = {cmd, arg1, arg2};
+
+ // Make sure to have a proper terminating character if reaching the limit.
+ cmd[COMMAND_SIZE] = 0;
+ arg1[ARG_SIZE] = 0;
+ arg2[ARG_SIZE] = 0;
+
+ // Undo all set breakpoints while running in the debugger shell. This will
+ // make them invisible to all commands.
+ undoBreakpoints();
+
+#ifndef JS_DISASM_ARM
+ static bool disasm_warning_printed = false;
+ if (!disasm_warning_printed) {
+ printf(
+ " No ARM disassembler present. Enable JS_DISASM_ARM in "
+ "configure.in.");
+ disasm_warning_printed = true;
+ }
+#endif
+
+ while (!done && !sim_->has_bad_pc()) {
+ if (last_pc != sim_->get_pc()) {
+#ifdef JS_DISASM_ARM
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
+ dasm.InstructionDecode(buffer,
+ reinterpret_cast<uint8_t*>(sim_->get_pc()));
+ printf(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
+#endif
+ last_pc = sim_->get_pc();
+ }
+ char* line = ReadLine("sim> ");
+ if (line == nullptr) {
+ break;
+ } else {
+ char* last_input = sim_->lastDebuggerInput();
+ if (strcmp(line, "\n") == 0 && last_input != nullptr) {
+ line = last_input;
+ } else {
+ // Ownership is transferred to sim_;
+ sim_->setLastDebuggerInput(line);
+ }
+
+ // Use sscanf to parse the individual parts of the command line. At the
+ // moment no command expects more than two parameters.
+ int argc = sscanf(line,
+ "%" XSTR(COMMAND_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s",
+ cmd, arg1, arg2);
+ if (argc < 0) {
+ continue;
+ } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+ sim_->instructionDecode(
+ reinterpret_cast<SimInstruction*>(sim_->get_pc()));
+ sim_->icount_++;
+ } else if ((strcmp(cmd, "skip") == 0)) {
+ sim_->set_pc(sim_->get_pc() + 4);
+ sim_->icount_++;
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
+ // Execute the one instruction we broke at with breakpoints
+ // disabled.
+ sim_->instructionDecode(
+ reinterpret_cast<SimInstruction*>(sim_->get_pc()));
+ sim_->icount_++;
+ // Leave the debugger shell.
+ done = true;
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
+ if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
+ int32_t value;
+ double dvalue;
+ if (strcmp(arg1, "all") == 0) {
+ for (uint32_t i = 0; i < Registers::Total; i++) {
+ value = getRegisterValue(i);
+ printf("%3s: 0x%08x %10d", Registers::GetName(i), value, value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = getRegisterPairDoubleValue(i);
+ printf(" (%.16g)\n", dvalue);
+ } else {
+ printf("\n");
+ }
+ }
+ for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) {
+ getVFPDoubleRegisterValue(i, &dvalue);
+ uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue);
+ printf("%3s: %.16g 0x%08x %08x\n",
+ FloatRegister::FromCode(i).name(), dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ }
+ } else {
+ if (getValue(arg1, &value)) {
+ printf("%s: 0x%08x %d \n", arg1, value, value);
+ } else if (getVFPDoubleValue(arg1, &dvalue)) {
+ uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue);
+ printf("%s: %.16g 0x%08x %08x\n", arg1, dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ } else {
+ printf("%s unrecognized\n", arg1);
+ }
+ }
+ } else {
+ printf("print <register>\n");
+ }
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ int32_t* cur = nullptr;
+ int32_t* end = nullptr;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
+ } else { // "mem"
+ int32_t value;
+ if (!getValue(arg1, &value)) {
+ printf("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<int32_t*>(value);
+ next_arg++;
+ }
+
+ int32_t words;
+ if (argc == next_arg) {
+ words = 10;
+ } else {
+ if (!getValue(argv[next_arg], &words)) {
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ printf(" %p: 0x%08x %10d", cur, *cur, *cur);
+ printf("\n");
+ cur++;
+ }
+ } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
+#ifdef JS_DISASM_ARM
+ uint8_t* prev = nullptr;
+ uint8_t* cur = nullptr;
+ uint8_t* end = nullptr;
+
+ if (argc == 1) {
+ cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
+ end = cur + (10 * SimInstruction::kInstrSize);
+ } else if (argc == 2) {
+ Register reg = Register::FromName(arg1);
+ if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) {
+ // The argument is an address or a register name.
+ int32_t value;
+ if (getValue(arg1, &value)) {
+ cur = reinterpret_cast<uint8_t*>(value);
+ // Disassemble 10 instructions at <arg1>.
+ end = cur + (10 * SimInstruction::kInstrSize);
+ }
+ } else {
+ // The argument is the number of instructions.
+ int32_t value;
+ if (getValue(arg1, &value)) {
+ cur = reinterpret_cast<uint8_t*>(sim_->get_pc());
+ // Disassemble <arg1> instructions.
+ end = cur + (value * SimInstruction::kInstrSize);
+ }
+ }
+ } else {
+ int32_t value1;
+ int32_t value2;
+ if (getValue(arg1, &value1) && getValue(arg2, &value2)) {
+ cur = reinterpret_cast<uint8_t*>(value1);
+ end = cur + (value2 * SimInstruction::kInstrSize);
+ }
+ }
+ while (cur < end) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
+
+ prev = cur;
+ cur += dasm.InstructionDecode(buffer, cur);
+ printf(" 0x%08x %s\n", reinterpret_cast<uint32_t>(prev),
+ buffer.start());
+ }
+#endif
+ } else if (strcmp(cmd, "gdb") == 0) {
+ printf("relinquishing control to gdb\n");
+#ifdef _MSC_VER
+ __debugbreak();
+#else
+ asm("int $3");
+#endif
+ printf("regaining control from gdb\n");
+ } else if (strcmp(cmd, "break") == 0) {
+ if (argc == 2) {
+ int32_t value;
+ if (getValue(arg1, &value)) {
+ if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) {
+ printf("setting breakpoint failed\n");
+ }
+ } else {
+ printf("%s unrecognized\n", arg1);
+ }
+ } else {
+ printf("break <address>\n");
+ }
+ } else if (strcmp(cmd, "del") == 0) {
+ if (!deleteBreakpoint(nullptr)) {
+ printf("deleting breakpoint failed\n");
+ }
+ } else if (strcmp(cmd, "flags") == 0) {
+ printf("N flag: %d; ", sim_->n_flag_);
+ printf("Z flag: %d; ", sim_->z_flag_);
+ printf("C flag: %d; ", sim_->c_flag_);
+ printf("V flag: %d\n", sim_->v_flag_);
+ printf("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
+ printf("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
+ printf("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
+ printf("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
+ printf("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
+ } else if (strcmp(cmd, "stop") == 0) {
+ int32_t value;
+ intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize;
+ SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc);
+ SimInstruction* msg_address = reinterpret_cast<SimInstruction*>(
+ stop_pc + SimInstruction::kInstrSize);
+ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
+ // Remove the current stop.
+ if (sim_->isStopInstruction(stop_instr)) {
+ stop_instr->setInstructionBits(kNopInstr);
+ msg_address->setInstructionBits(kNopInstr);
+ } else {
+ printf("Not at debugger stop.\n");
+ }
+ } else if (argc == 3) {
+ // Print information about all/the specified breakpoint(s).
+ if (strcmp(arg1, "info") == 0) {
+ if (strcmp(arg2, "all") == 0) {
+ printf("Stop information:\n");
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->printStopInfo(i);
+ }
+ } else if (getValue(arg2, &value)) {
+ sim_->printStopInfo(value);
+ } else {
+ printf("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "enable") == 0) {
+ // Enable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->enableStop(i);
+ }
+ } else if (getValue(arg2, &value)) {
+ sim_->enableStop(value);
+ } else {
+ printf("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "disable") == 0) {
+ // Disable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->disableStop(i);
+ }
+ } else if (getValue(arg2, &value)) {
+ sim_->disableStop(value);
+ } else {
+ printf("Unrecognized argument.\n");
+ }
+ }
+ } else {
+ printf("Wrong usage. Use help command for more information.\n");
+ }
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
+ printf("cont\n");
+ printf(" continue execution (alias 'c')\n");
+ printf("skip\n");
+ printf(" skip one instruction (set pc to next instruction)\n");
+ printf("stepi\n");
+ printf(" step one instruction (alias 'si')\n");
+ printf("print <register>\n");
+ printf(" print register content (alias 'p')\n");
+ printf(" use register name 'all' to print all registers\n");
+ printf(" add argument 'fp' to print register pair double values\n");
+ printf("flags\n");
+ printf(" print flags\n");
+ printf("stack [<words>]\n");
+ printf(" dump stack content, default dump 10 words)\n");
+ printf("mem <address> [<words>]\n");
+ printf(" dump memory content, default dump 10 words)\n");
+ printf("disasm [<instructions>]\n");
+ printf("disasm [<address/register>]\n");
+ printf("disasm [[<address/register>] <instructions>]\n");
+ printf(" disassemble code, default is 10 instructions\n");
+ printf(" from pc (alias 'di')\n");
+ printf("gdb\n");
+ printf(" enter gdb\n");
+ printf("break <address>\n");
+ printf(" set a break point on the address\n");
+ printf("del\n");
+ printf(" delete the breakpoint\n");
+ printf("stop feature:\n");
+ printf(" Description:\n");
+ printf(" Stops are debug instructions inserted by\n");
+ printf(" the Assembler::stop() function.\n");
+ printf(" When hitting a stop, the Simulator will\n");
+ printf(" stop and and give control to the ArmDebugger.\n");
+ printf(" The first %d stop codes are watched:\n",
+ Simulator::kNumOfWatchedStops);
+ printf(" - They can be enabled / disabled: the Simulator\n");
+ printf(" will / won't stop when hitting them.\n");
+ printf(" - The Simulator keeps track of how many times they \n");
+ printf(" are met. (See the info command.) Going over a\n");
+ printf(" disabled stop still increases its counter. \n");
+ printf(" Commands:\n");
+ printf(" stop info all/<code> : print infos about number <code>\n");
+ printf(" or all stop(s).\n");
+ printf(" stop enable/disable all/<code> : enables / disables\n");
+ printf(" all or number <code> stop(s)\n");
+ printf(" stop unstop\n");
+ printf(" ignore the stop instruction at the current location\n");
+ printf(" from now on\n");
+ } else {
+ printf("Unknown command: %s\n", cmd);
+ }
+ }
+ }
+
+ // Add all the breakpoints back to stop execution and enter the debugger
+ // shell when hit.
+ redoBreakpoints();
+
+#undef COMMAND_SIZE
+#undef ARG_SIZE
+
+#undef STR
+#undef XSTR
+}
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+ intptr_t start_page = (start & ~CachePage::kPageMask);
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+ return start_page == end_page;
+}
+
+static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache,
+ void* page) {
+ SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page);
+ if (p) {
+ return p->value();
+ }
+
+ AutoEnterOOMUnsafeRegion oomUnsafe;
+ CachePage* new_page = js_new<CachePage>();
+ if (!new_page || !i_cache.add(p, page, new_page)) {
+ oomUnsafe.crash("Simulator CachePage");
+ }
+
+ return new_page;
+}
+
+// Flush from start up to and not including start + size.
+static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache,
+ intptr_t start, int size) {
+ MOZ_ASSERT(size <= CachePage::kPageSize);
+ MOZ_ASSERT(AllOnOnePage(start, size - 1));
+ MOZ_ASSERT((start & CachePage::kLineMask) == 0);
+ MOZ_ASSERT((size & CachePage::kLineMask) == 0);
+
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+ int offset = (start & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePageLocked(i_cache, page);
+ char* valid_bytemap = cache_page->validityByte(offset);
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache,
+ void* start_addr, size_t size) {
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+ int intra_line = (start & CachePage::kLineMask);
+ start -= intra_line;
+ size += intra_line;
+ size = ((size - 1) | CachePage::kLineMask) + 1;
+ int offset = (start & CachePage::kPageMask);
+ while (!AllOnOnePage(start, size - 1)) {
+ int bytes_to_flush = CachePage::kPageSize - offset;
+ FlushOnePageLocked(i_cache, start, bytes_to_flush);
+ start += bytes_to_flush;
+ size -= bytes_to_flush;
+ MOZ_ASSERT((start & CachePage::kPageMask) == 0);
+ offset = 0;
+ }
+ if (size != 0) {
+ FlushOnePageLocked(i_cache, start, size);
+ }
+}
+
+/* static */
+void SimulatorProcess::checkICacheLocked(SimInstruction* instr) {
+ intptr_t address = reinterpret_cast<intptr_t>(instr);
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+ int offset = (address & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePageLocked(icache(), page);
+ char* cache_valid_byte = cache_page->validityByte(offset);
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+ char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask);
+
+ if (cache_hit) {
+ // Check that the data in memory matches the contents of the I-cache.
+ mozilla::DebugOnly<int> cmpret =
+ memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset),
+ SimInstruction::kInstrSize);
+ MOZ_ASSERT(cmpret == 0);
+ } else {
+ // Cache miss. Load memory into the cache.
+ memcpy(cached_line, line, CachePage::kLineLength);
+ *cache_valid_byte = CachePage::LINE_VALID;
+ }
+}
+
+HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) {
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(l)) >> 2;
+}
+
+bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) {
+ MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0);
+ MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0);
+ return k == l;
+}
+
+void Simulator::setLastDebuggerInput(char* input) {
+ js_free(lastDebuggerInput_);
+ lastDebuggerInput_ = input;
+}
+
+/* static */
+void SimulatorProcess::FlushICache(void* start_addr, size_t size) {
+ JitSpewCont(JitSpew_CacheFlush, "[%p %zx]", start_addr, size);
+ if (!ICacheCheckingDisableCount) {
+ AutoLockSimulatorCache als;
+ js::jit::FlushICacheLocked(icache(), start_addr, size);
+ }
+}
+
+Simulator::Simulator() {
+ // Set up simulator support first. Some of this information is needed to
+ // setup the architecture state.
+
+ // Note, allocation and anything that depends on allocated memory is
+ // deferred until init(), in order to handle OOM properly.
+
+ stack_ = nullptr;
+ stackLimit_ = 0;
+ pc_modified_ = false;
+ icount_ = 0L;
+ break_pc_ = nullptr;
+ break_instr_ = 0;
+ single_stepping_ = false;
+ single_step_callback_ = nullptr;
+ single_step_callback_arg_ = nullptr;
+ skipCalleeSavedRegsCheck = false;
+
+ // Set up architecture state.
+ // All registers are initialized to zero to start with.
+ for (int i = 0; i < num_registers; i++) {
+ registers_[i] = 0;
+ }
+
+ n_flag_ = false;
+ z_flag_ = false;
+ c_flag_ = false;
+ v_flag_ = false;
+
+ for (int i = 0; i < num_d_registers * 2; i++) {
+ vfp_registers_[i] = 0;
+ }
+
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = false;
+ v_flag_FPSCR_ = false;
+ FPSCR_rounding_mode_ = SimRZ;
+ FPSCR_default_NaN_mode_ = true;
+
+ inv_op_vfp_flag_ = false;
+ div_zero_vfp_flag_ = false;
+ overflow_vfp_flag_ = false;
+ underflow_vfp_flag_ = false;
+ inexact_vfp_flag_ = false;
+
+ // The lr and pc are initialized to a known bad value that will cause an
+ // access violation if the simulator ever tries to execute it.
+ registers_[pc] = bad_lr;
+ registers_[lr] = bad_lr;
+
+ lastDebuggerInput_ = nullptr;
+
+ exclusiveMonitorHeld_ = false;
+ exclusiveMonitor_ = 0;
+}
+
+bool Simulator::init() {
+ // Allocate 2MB for the stack. Note that we will only use 1MB, see below.
+ static const size_t stackSize = 2 * 1024 * 1024;
+ stack_ = js_pod_malloc<char>(stackSize);
+ if (!stack_) {
+ return false;
+ }
+
+ // Leave a safety margin of 1MB to prevent overrunning the stack when
+ // pushing values (total stack size is 2MB).
+ stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024;
+
+ // The sp is initialized to point to the bottom (high address) of the
+ // allocated stack area. To be safe in potential stack underflows we leave
+ // some buffer below.
+ registers_[sp] = reinterpret_cast<int32_t>(stack_) + stackSize - 64;
+
+ return true;
+}
+
+// When the generated code calls a VM function (masm.callWithABI) we need to
+// call that function instead of trying to execute it with the simulator
+// (because it's x86 code instead of arm code). We do that by redirecting the VM
+// call to a svc (Supervisor Call) instruction that is handled by the
+// simulator. We write the original destination of the jump just at a known
+// offset from the svc instruction so the simulator knows what to call.
+class Redirection {
+ friend class SimulatorProcess;
+
+ // sim's lock must already be held.
+ Redirection(void* nativeFunction, ABIFunctionType type)
+ : nativeFunction_(nativeFunction),
+ swiInstruction_(Assembler::AL | (0xf * (1 << 24)) | kCallRtRedirected),
+ type_(type),
+ next_(nullptr) {
+ next_ = SimulatorProcess::redirection();
+ if (!SimulatorProcess::ICacheCheckingDisableCount) {
+ FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(),
+ SimInstruction::kInstrSize);
+ }
+ SimulatorProcess::setRedirection(this);
+ }
+
+ public:
+ void* addressOfSwiInstruction() { return &swiInstruction_; }
+ void* nativeFunction() const { return nativeFunction_; }
+ ABIFunctionType type() const { return type_; }
+
+ static Redirection* Get(void* nativeFunction, ABIFunctionType type) {
+ AutoLockSimulatorCache als;
+
+ Redirection* current = SimulatorProcess::redirection();
+ for (; current != nullptr; current = current->next_) {
+ if (current->nativeFunction_ == nativeFunction) {
+ MOZ_ASSERT(current->type() == type);
+ return current;
+ }
+ }
+
+ // Note: we can't use js_new here because the constructor is private.
+ AutoEnterOOMUnsafeRegion oomUnsafe;
+ Redirection* redir = js_pod_malloc<Redirection>(1);
+ if (!redir) {
+ oomUnsafe.crash("Simulator redirection");
+ }
+ new (redir) Redirection(nativeFunction, type);
+ return redir;
+ }
+
+ static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) {
+ uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction);
+ uint8_t* addrOfRedirection =
+ addrOfSwi - offsetof(Redirection, swiInstruction_);
+ return reinterpret_cast<Redirection*>(addrOfRedirection);
+ }
+
+ private:
+ void* nativeFunction_;
+ uint32_t swiInstruction_;
+ ABIFunctionType type_;
+ Redirection* next_;
+};
+
+Simulator::~Simulator() { js_free(stack_); }
+
+SimulatorProcess::SimulatorProcess()
+ : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) {
+ if (getenv("ARM_SIM_ICACHE_CHECKS")) {
+ ICacheCheckingDisableCount = 0;
+ }
+}
+
+SimulatorProcess::~SimulatorProcess() {
+ Redirection* r = redirection_;
+ while (r) {
+ Redirection* next = r->next_;
+ js_delete(r);
+ r = next;
+ }
+}
+
+/* static */
+void* Simulator::RedirectNativeFunction(void* nativeFunction,
+ ABIFunctionType type) {
+ Redirection* redirection = Redirection::Get(nativeFunction, type);
+ return redirection->addressOfSwiInstruction();
+}
+
+// Sets the register in the architecture state. It will also deal with updating
+// Simulator internal state for special registers such as PC.
+void Simulator::set_register(int reg, int32_t value) {
+ MOZ_ASSERT(reg >= 0 && reg < num_registers);
+ if (reg == pc) {
+ pc_modified_ = true;
+ }
+ registers_[reg] = value;
+}
+
+// Get the register from the architecture state. This function does handle the
+// special case of accessing the PC register.
+int32_t Simulator::get_register(int reg) const {
+ MOZ_ASSERT(reg >= 0 && reg < num_registers);
+ // Work around GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= num_registers) return 0;
+ return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0);
+}
+
+double Simulator::get_double_from_register_pair(int reg) {
+ MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0);
+
+ // Read the bits from the unsigned integer register_[] array into the double
+ // precision floating point value and return it.
+ double dm_val = 0.0;
+ char buffer[2 * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
+ memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
+ return dm_val;
+}
+
+void Simulator::set_register_pair_from_double(int reg, double* value) {
+ MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0);
+ memcpy(registers_ + reg, value, sizeof(*value));
+}
+
+void Simulator::set_dw_register(int dreg, const int* dbl) {
+ MOZ_ASSERT(dreg >= 0 && dreg < num_d_registers);
+ registers_[dreg] = dbl[0];
+ registers_[dreg + 1] = dbl[1];
+}
+
+void Simulator::get_d_register(int dreg, uint64_t* value) {
+ MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
+ memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
+}
+
+void Simulator::set_d_register(int dreg, const uint64_t* value) {
+ MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
+ memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
+}
+
+void Simulator::get_d_register(int dreg, uint32_t* value) {
+ MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
+ memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
+}
+
+void Simulator::set_d_register(int dreg, const uint32_t* value) {
+ MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys));
+ memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
+}
+
+void Simulator::get_q_register(int qreg, uint64_t* value) {
+ MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
+ memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2);
+}
+
+void Simulator::set_q_register(int qreg, const uint64_t* value) {
+ MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
+ memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2);
+}
+
+void Simulator::get_q_register(int qreg, uint32_t* value) {
+ MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers);
+ memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4);
+}
+
+void Simulator::set_q_register(int qreg, const uint32_t* value) {
+ MOZ_ASSERT((qreg >= 0) && (qreg < num_q_registers));
+ memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4);
+}
+
+void Simulator::set_pc(int32_t value) {
+ pc_modified_ = true;
+ registers_[pc] = value;
+}
+
+bool Simulator::has_bad_pc() const {
+ return registers_[pc] == bad_lr || registers_[pc] == end_sim_pc;
+}
+
+// Raw access to the PC register without the special adjustment when reading.
+int32_t Simulator::get_pc() const { return registers_[pc]; }
+
+void Simulator::set_s_register(int sreg, unsigned int value) {
+ MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers);
+ vfp_registers_[sreg] = value;
+}
+
+unsigned Simulator::get_s_register(int sreg) const {
+ MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers);
+ return vfp_registers_[sreg];
+}
+
+template <class InputType, int register_size>
+void Simulator::setVFPRegister(int reg_index, const InputType& value) {
+ MOZ_ASSERT(reg_index >= 0);
+ MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers);
+ MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys));
+
+ char buffer[register_size * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0]));
+ memcpy(&vfp_registers_[reg_index * register_size], buffer,
+ register_size * sizeof(vfp_registers_[0]));
+}
+
+template <class ReturnType, int register_size>
+void Simulator::getFromVFPRegister(int reg_index, ReturnType* out) {
+ MOZ_ASSERT(reg_index >= 0);
+ MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers);
+ MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys));
+
+ char buffer[register_size * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &vfp_registers_[register_size * reg_index],
+ register_size * sizeof(vfp_registers_[0]));
+ memcpy(out, buffer, register_size * sizeof(vfp_registers_[0]));
+}
+
+// These forced-instantiations are for jsapi-tests. Evidently, nothing
+// requires these to be instantiated.
+template void Simulator::getFromVFPRegister<double, 2>(int reg_index,
+ double* out);
+template void Simulator::getFromVFPRegister<float, 1>(int reg_index,
+ float* out);
+template void Simulator::setVFPRegister<double, 2>(int reg_index,
+ const double& value);
+template void Simulator::setVFPRegister<float, 1>(int reg_index,
+ const float& value);
+
+void Simulator::getFpArgs(double* x, double* y, int32_t* z) {
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, x);
+ get_double_from_d_register(1, y);
+ *z = get_register(0);
+ } else {
+ *x = get_double_from_register_pair(0);
+ *y = get_double_from_register_pair(2);
+ *z = get_register(2);
+ }
+}
+
+void Simulator::getFpFromStack(int32_t* stack, double* x) {
+ MOZ_ASSERT(stack && x);
+ char buffer[2 * sizeof(stack[0])];
+ memcpy(buffer, stack, 2 * sizeof(stack[0]));
+ memcpy(x, buffer, 2 * sizeof(stack[0]));
+}
+
+void Simulator::setCallResultDouble(double result) {
+ // The return value is either in r0/r1 or d0.
+ if (UseHardFpABI()) {
+ char buffer[2 * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to d0.
+ memcpy(vfp_registers_, buffer, sizeof(buffer));
+ } else {
+ char buffer[2 * sizeof(registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to r0 and r1.
+ memcpy(registers_, buffer, sizeof(buffer));
+ }
+}
+
+void Simulator::setCallResultFloat(float result) {
+ if (UseHardFpABI()) {
+ char buffer[sizeof(registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to s0.
+ memcpy(vfp_registers_, buffer, sizeof(buffer));
+ } else {
+ char buffer[sizeof(registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to r0.
+ memcpy(registers_, buffer, sizeof(buffer));
+ }
+}
+
+void Simulator::setCallResult(int64_t res) {
+ set_register(r0, static_cast<int32_t>(res));
+ set_register(r1, static_cast<int32_t>(res >> 32));
+}
+
+void Simulator::exclusiveMonitorSet(uint64_t value) {
+ exclusiveMonitor_ = value;
+ exclusiveMonitorHeld_ = true;
+}
+
+uint64_t Simulator::exclusiveMonitorGetAndClear(bool* held) {
+ *held = exclusiveMonitorHeld_;
+ exclusiveMonitorHeld_ = false;
+ return *held ? exclusiveMonitor_ : 0;
+}
+
+void Simulator::exclusiveMonitorClear() { exclusiveMonitorHeld_ = false; }
+
+JS::ProfilingFrameIterator::RegisterState Simulator::registerState() {
+ wasm::RegisterState state;
+ state.pc = (void*)get_pc();
+ state.fp = (void*)get_register(fp);
+ state.sp = (void*)get_register(sp);
+ state.lr = (void*)get_register(lr);
+ return state;
+}
+
+uint64_t Simulator::readQ(int32_t addr, SimInstruction* instr,
+ UnalignedPolicy f) {
+ if (handleWasmSegFault(addr, 8)) {
+ return UINT64_MAX;
+ }
+
+ if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
+ uint64_t* ptr = reinterpret_cast<uint64_t*>(addr);
+ return *ptr;
+ }
+
+ // See the comments below in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ uint64_t value;
+ memcpy(&value, ptr, sizeof(value));
+ return value;
+ }
+
+ printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+void Simulator::writeQ(int32_t addr, uint64_t value, SimInstruction* instr,
+ UnalignedPolicy f) {
+ if (handleWasmSegFault(addr, 8)) {
+ return;
+ }
+
+ if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
+ uint64_t* ptr = reinterpret_cast<uint64_t*>(addr);
+ *ptr = value;
+ return;
+ }
+
+ // See the comments below in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ memcpy(ptr, &value, sizeof(value));
+ return;
+ }
+
+ printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+int Simulator::readW(int32_t addr, SimInstruction* instr, UnalignedPolicy f) {
+ if (handleWasmSegFault(addr, 4)) {
+ return -1;
+ }
+
+ if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ return *ptr;
+ }
+
+ // In WebAssembly, we want unaligned accesses to either raise a signal or
+ // do the right thing. Making this simulator properly emulate the behavior
+ // of raising a signal is complex, so as a special-case, when in wasm code,
+ // we just do the right thing.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ int value;
+ memcpy(&value, ptr, sizeof(value));
+ return value;
+ }
+
+ printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+void Simulator::writeW(int32_t addr, int value, SimInstruction* instr,
+ UnalignedPolicy f) {
+ if (handleWasmSegFault(addr, 4)) {
+ return;
+ }
+
+ if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) {
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ *ptr = value;
+ return;
+ }
+
+ // See the comments above in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ memcpy(ptr, &value, sizeof(value));
+ return;
+ }
+
+ printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+// For the time being, define Relaxed operations in terms of SeqCst
+// operations - we don't yet need Relaxed operations anywhere else in
+// the system, and the distinction is not important to the simulation
+// at the level where we're operating.
+
+template <typename T>
+static T loadRelaxed(SharedMem<T*> addr) {
+ return AtomicOperations::loadSeqCst(addr);
+}
+
+template <typename T>
+static T compareExchangeRelaxed(SharedMem<T*> addr, T oldval, T newval) {
+ return AtomicOperations::compareExchangeSeqCst(addr, oldval, newval);
+}
+
+int Simulator::readExW(int32_t addr, SimInstruction* instr) {
+ if (addr & 3) {
+ MOZ_CRASH("Unaligned exclusive read");
+ }
+
+ if (handleWasmSegFault(addr, 4)) {
+ return -1;
+ }
+
+ SharedMem<int32_t*> ptr =
+ SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
+ int32_t value = loadRelaxed(ptr);
+ exclusiveMonitorSet(value);
+ return value;
+}
+
+int32_t Simulator::writeExW(int32_t addr, int value, SimInstruction* instr) {
+ if (addr & 3) {
+ MOZ_CRASH("Unaligned exclusive write");
+ }
+
+ if (handleWasmSegFault(addr, 4)) {
+ return -1;
+ }
+
+ SharedMem<int32_t*> ptr =
+ SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr));
+ bool held;
+ int32_t expected = int32_t(exclusiveMonitorGetAndClear(&held));
+ if (!held) {
+ return 1;
+ }
+ int32_t old = compareExchangeRelaxed(ptr, expected, int32_t(value));
+ return old != expected;
+}
+
+uint16_t Simulator::readHU(int32_t addr, SimInstruction* instr) {
+ if (handleWasmSegFault(addr, 2)) {
+ return UINT16_MAX;
+ }
+
+ // The regexp engine emits unaligned loads, so we don't check for them here
+ // like most of the other methods do.
+ if ((addr & 1) == 0 || !HasAlignmentFault()) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ return *ptr;
+ }
+
+ // See comments above in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ uint16_t value;
+ memcpy(&value, ptr, sizeof(value));
+ return value;
+ }
+
+ printf("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+ return 0;
+}
+
+int16_t Simulator::readH(int32_t addr, SimInstruction* instr) {
+ if (handleWasmSegFault(addr, 2)) {
+ return -1;
+ }
+
+ if ((addr & 1) == 0 || !HasAlignmentFault()) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ return *ptr;
+ }
+
+ // See comments above in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ int16_t value;
+ memcpy(&value, ptr, sizeof(value));
+ return value;
+ }
+
+ printf("Unaligned signed halfword read at 0x%08x\n", addr);
+ MOZ_CRASH();
+ return 0;
+}
+
+void Simulator::writeH(int32_t addr, uint16_t value, SimInstruction* instr) {
+ if (handleWasmSegFault(addr, 2)) {
+ return;
+ }
+
+ if ((addr & 1) == 0 || !HasAlignmentFault()) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ *ptr = value;
+ return;
+ }
+
+ // See the comments above in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ memcpy(ptr, &value, sizeof(value));
+ return;
+ }
+
+ printf("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+void Simulator::writeH(int32_t addr, int16_t value, SimInstruction* instr) {
+ if (handleWasmSegFault(addr, 2)) {
+ return;
+ }
+
+ if ((addr & 1) == 0 || !HasAlignmentFault()) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ *ptr = value;
+ return;
+ }
+
+ // See the comments above in readW.
+ if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) {
+ char* ptr = reinterpret_cast<char*>(addr);
+ memcpy(ptr, &value, sizeof(value));
+ return;
+ }
+
+ printf("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
+ MOZ_CRASH();
+}
+
+uint16_t Simulator::readExHU(int32_t addr, SimInstruction* instr) {
+ if (addr & 1) {
+ MOZ_CRASH("Unaligned exclusive read");
+ }
+
+ if (handleWasmSegFault(addr, 2)) {
+ return UINT16_MAX;
+ }
+
+ SharedMem<uint16_t*> ptr =
+ SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr));
+ uint16_t value = loadRelaxed(ptr);
+ exclusiveMonitorSet(value);
+ return value;
+}
+
+int32_t Simulator::writeExH(int32_t addr, uint16_t value,
+ SimInstruction* instr) {
+ if (addr & 1) {
+ MOZ_CRASH("Unaligned exclusive write");
+ }
+
+ if (handleWasmSegFault(addr, 2)) {
+ return -1;
+ }
+
+ SharedMem<uint16_t*> ptr =
+ SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr));
+ bool held;
+ uint16_t expected = uint16_t(exclusiveMonitorGetAndClear(&held));
+ if (!held) {
+ return 1;
+ }
+ uint16_t old = compareExchangeRelaxed(ptr, expected, value);
+ return old != expected;
+}
+
+uint8_t Simulator::readBU(int32_t addr) {
+ if (handleWasmSegFault(addr, 1)) {
+ return UINT8_MAX;
+ }
+
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ return *ptr;
+}
+
+uint8_t Simulator::readExBU(int32_t addr) {
+ if (handleWasmSegFault(addr, 1)) {
+ return UINT8_MAX;
+ }
+
+ SharedMem<uint8_t*> ptr =
+ SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr));
+ uint8_t value = loadRelaxed(ptr);
+ exclusiveMonitorSet(value);
+ return value;
+}
+
+int32_t Simulator::writeExB(int32_t addr, uint8_t value) {
+ if (handleWasmSegFault(addr, 1)) {
+ return -1;
+ }
+
+ SharedMem<uint8_t*> ptr =
+ SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr));
+ bool held;
+ uint8_t expected = uint8_t(exclusiveMonitorGetAndClear(&held));
+ if (!held) {
+ return 1;
+ }
+ uint8_t old = compareExchangeRelaxed(ptr, expected, value);
+ return old != expected;
+}
+
+int8_t Simulator::readB(int32_t addr) {
+ if (handleWasmSegFault(addr, 1)) {
+ return -1;
+ }
+
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::writeB(int32_t addr, uint8_t value) {
+ if (handleWasmSegFault(addr, 1)) {
+ return;
+ }
+
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ *ptr = value;
+}
+
+void Simulator::writeB(int32_t addr, int8_t value) {
+ if (handleWasmSegFault(addr, 1)) {
+ return;
+ }
+
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ *ptr = value;
+}
+
+int32_t* Simulator::readDW(int32_t addr) {
+ if (handleWasmSegFault(addr, 8)) {
+ return nullptr;
+ }
+
+ if ((addr & 3) == 0) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ return ptr;
+ }
+
+ printf("Unaligned read at 0x%08x\n", addr);
+ MOZ_CRASH();
+}
+
+void Simulator::writeDW(int32_t addr, int32_t value1, int32_t value2) {
+ if (handleWasmSegFault(addr, 8)) {
+ return;
+ }
+
+ if ((addr & 3) == 0) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ *ptr++ = value1;
+ *ptr = value2;
+ return;
+ }
+
+ printf("Unaligned write at 0x%08x\n", addr);
+ MOZ_CRASH();
+}
+
+int32_t Simulator::readExDW(int32_t addr, int32_t* hibits) {
+ if (addr & 3) {
+ MOZ_CRASH("Unaligned exclusive read");
+ }
+
+ if (handleWasmSegFault(addr, 8)) {
+ return -1;
+ }
+
+ SharedMem<uint64_t*> ptr =
+ SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr));
+ // The spec says that the low part of value shall be read from addr and
+ // the high part shall be read from addr+4. On a little-endian system
+ // where we read a 64-bit quadword the low part of the value will be in
+ // the low part of the quadword, and the high part of the value in the
+ // high part of the quadword.
+ uint64_t value = loadRelaxed(ptr);
+ exclusiveMonitorSet(value);
+ *hibits = int32_t(value >> 32);
+ return int32_t(value);
+}
+
+int32_t Simulator::writeExDW(int32_t addr, int32_t value1, int32_t value2) {
+ if (addr & 3) {
+ MOZ_CRASH("Unaligned exclusive write");
+ }
+
+ if (handleWasmSegFault(addr, 8)) {
+ return -1;
+ }
+
+ SharedMem<uint64_t*> ptr =
+ SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr));
+ // The spec says that value1 shall be stored at addr and value2 at
+ // addr+4. On a little-endian system that means constructing a 64-bit
+ // value where value1 is in the low half of a 64-bit quadword and value2
+ // is in the high half of the quadword.
+ uint64_t value = (uint64_t(value2) << 32) | uint32_t(value1);
+ bool held;
+ uint64_t expected = exclusiveMonitorGetAndClear(&held);
+ if (!held) {
+ return 1;
+ }
+ uint64_t old = compareExchangeRelaxed(ptr, expected, value);
+ return old != expected;
+}
+
+uintptr_t Simulator::stackLimit() const { return stackLimit_; }
+
+uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; }
+
+bool Simulator::overRecursed(uintptr_t newsp) const {
+ if (newsp == 0) {
+ newsp = get_register(sp);
+ }
+ return newsp <= stackLimit();
+}
+
+bool Simulator::overRecursedWithExtra(uint32_t extra) const {
+ uintptr_t newsp = get_register(sp) - extra;
+ return newsp <= stackLimit();
+}
+
+// Checks if the current instruction should be executed based on its condition
+// bits.
+bool Simulator::conditionallyExecute(SimInstruction* instr) {
+ switch (instr->conditionField()) {
+ case Assembler::EQ:
+ return z_flag_;
+ case Assembler::NE:
+ return !z_flag_;
+ case Assembler::CS:
+ return c_flag_;
+ case Assembler::CC:
+ return !c_flag_;
+ case Assembler::MI:
+ return n_flag_;
+ case Assembler::PL:
+ return !n_flag_;
+ case Assembler::VS:
+ return v_flag_;
+ case Assembler::VC:
+ return !v_flag_;
+ case Assembler::HI:
+ return c_flag_ && !z_flag_;
+ case Assembler::LS:
+ return !c_flag_ || z_flag_;
+ case Assembler::GE:
+ return n_flag_ == v_flag_;
+ case Assembler::LT:
+ return n_flag_ != v_flag_;
+ case Assembler::GT:
+ return !z_flag_ && (n_flag_ == v_flag_);
+ case Assembler::LE:
+ return z_flag_ || (n_flag_ != v_flag_);
+ case Assembler::AL:
+ return true;
+ default:
+ MOZ_CRASH();
+ }
+ return false;
+}
+
+// Calculate and set the Negative and Zero flags.
+void Simulator::setNZFlags(int32_t val) {
+ n_flag_ = (val < 0);
+ z_flag_ = (val == 0);
+}
+
+// Set the Carry flag.
+void Simulator::setCFlag(bool val) { c_flag_ = val; }
+
+// Set the oVerflow flag.
+void Simulator::setVFlag(bool val) { v_flag_ = val; }
+
+// Calculate C flag value for additions.
+bool Simulator::carryFrom(int32_t left, int32_t right, int32_t carry) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+ uint32_t urest = 0xffffffffU - uleft;
+ return (uright > urest) ||
+ (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
+}
+
+// Calculate C flag value for subtractions.
+bool Simulator::borrowFrom(int32_t left, int32_t right) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+ return (uright > uleft);
+}
+
+// Calculate V flag value for additions and subtractions.
+bool Simulator::overflowFrom(int32_t alu_out, int32_t left, int32_t right,
+ bool addition) {
+ bool overflow;
+ if (addition) {
+ // Operands have the same sign.
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
+ // And operands and result have different sign.
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ } else {
+ // Operands have different signs.
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
+ // And first operand and result have different signs.
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ }
+ return overflow;
+}
+
+// Support for VFP comparisons.
+void Simulator::compute_FPSCR_Flags(double val1, double val2) {
+ if (std::isnan(val1) || std::isnan(val2)) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = true;
+ // All non-NaN cases.
+ } else if (val1 == val2) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = true;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ } else if (val1 < val2) {
+ n_flag_FPSCR_ = true;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = false;
+ v_flag_FPSCR_ = false;
+ } else {
+ // Case when (val1 > val2).
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ }
+}
+
+void Simulator::copy_FPSCR_to_APSR() {
+ n_flag_ = n_flag_FPSCR_;
+ z_flag_ = z_flag_FPSCR_;
+ c_flag_ = c_flag_FPSCR_;
+ v_flag_ = v_flag_FPSCR_;
+}
+
+// Addressing Mode 1 - Data-processing operands:
+// Get the value based on the shifter_operand with register.
+int32_t Simulator::getShiftRm(SimInstruction* instr, bool* carry_out) {
+ ShiftType shift = instr->shifttypeValue();
+ int shift_amount = instr->shiftAmountValue();
+ int32_t result = get_register(instr->rmValue());
+ if (instr->bit(4) == 0) {
+ // By immediate.
+ if (shift == ROR && shift_amount == 0) {
+ MOZ_CRASH("NYI");
+ return result;
+ }
+ if ((shift == LSR || shift == ASR) && shift_amount == 0) {
+ shift_amount = 32;
+ }
+ switch (shift) {
+ case ASR: {
+ if (shift_amount == 0) {
+ if (result < 0) {
+ result = 0xffffffff;
+ *carry_out = true;
+ } else {
+ result = 0;
+ *carry_out = false;
+ }
+ } else {
+ result >>= (shift_amount - 1);
+ *carry_out = (result & 1) == 1;
+ result >>= 1;
+ }
+ break;
+ }
+
+ case LSL: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ result <<= (shift_amount - 1);
+ *carry_out = (result < 0);
+ result <<= 1;
+ }
+ break;
+ }
+
+ case LSR: {
+ if (shift_amount == 0) {
+ result = 0;
+ *carry_out = c_flag_;
+ } else {
+ uint32_t uresult = static_cast<uint32_t>(result);
+ uresult >>= (shift_amount - 1);
+ *carry_out = (uresult & 1) == 1;
+ uresult >>= 1;
+ result = static_cast<int32_t>(uresult);
+ }
+ break;
+ }
+
+ case ROR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
+ uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
+ result = right | left;
+ *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
+ }
+ break;
+ }
+
+ default:
+ MOZ_CRASH();
+ }
+ } else {
+ // By register.
+ int rs = instr->rsValue();
+ shift_amount = get_register(rs) & 0xff;
+ switch (shift) {
+ case ASR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ result >>= (shift_amount - 1);
+ *carry_out = (result & 1) == 1;
+ result >>= 1;
+ } else {
+ MOZ_ASSERT(shift_amount >= 32);
+ if (result < 0) {
+ *carry_out = true;
+ result = 0xffffffff;
+ } else {
+ *carry_out = false;
+ result = 0;
+ }
+ }
+ break;
+ }
+
+ case LSL: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ result <<= (shift_amount - 1);
+ *carry_out = (result < 0);
+ result <<= 1;
+ } else if (shift_amount == 32) {
+ *carry_out = (result & 1) == 1;
+ result = 0;
+ } else {
+ MOZ_ASSERT(shift_amount > 32);
+ *carry_out = false;
+ result = 0;
+ }
+ break;
+ }
+
+ case LSR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ uint32_t uresult = static_cast<uint32_t>(result);
+ uresult >>= (shift_amount - 1);
+ *carry_out = (uresult & 1) == 1;
+ uresult >>= 1;
+ result = static_cast<int32_t>(uresult);
+ } else if (shift_amount == 32) {
+ *carry_out = (result < 0);
+ result = 0;
+ } else {
+ *carry_out = false;
+ result = 0;
+ }
+ break;
+ }
+
+ case ROR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
+ uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
+ result = right | left;
+ *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
+ }
+ break;
+ }
+
+ default:
+ MOZ_CRASH();
+ }
+ }
+ return result;
+}
+
+// Addressing Mode 1 - Data-processing operands:
+// Get the value based on the shifter_operand with immediate.
+int32_t Simulator::getImm(SimInstruction* instr, bool* carry_out) {
+ int rotate = instr->rotateValue() * 2;
+ int immed8 = instr->immed8Value();
+ int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
+ *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
+ return imm;
+}
+
+int32_t Simulator::processPU(SimInstruction* instr, int num_regs, int reg_size,
+ intptr_t* start_address, intptr_t* end_address) {
+ int rn = instr->rnValue();
+ int32_t rn_val = get_register(rn);
+ switch (instr->PUField()) {
+ case da_x:
+ MOZ_CRASH();
+ break;
+ case ia_x:
+ *start_address = rn_val;
+ *end_address = rn_val + (num_regs * reg_size) - reg_size;
+ rn_val = rn_val + (num_regs * reg_size);
+ break;
+ case db_x:
+ *start_address = rn_val - (num_regs * reg_size);
+ *end_address = rn_val - reg_size;
+ rn_val = *start_address;
+ break;
+ case ib_x:
+ *start_address = rn_val + reg_size;
+ *end_address = rn_val + (num_regs * reg_size);
+ rn_val = *end_address;
+ break;
+ default:
+ MOZ_CRASH();
+ }
+ return rn_val;
+}
+
+// Addressing Mode 4 - Load and Store Multiple
+void Simulator::handleRList(SimInstruction* instr, bool load) {
+ int rlist = instr->rlistValue();
+ int num_regs = mozilla::CountPopulation32(rlist);
+
+ intptr_t start_address = 0;
+ intptr_t end_address = 0;
+ int32_t rn_val =
+ processPU(instr, num_regs, sizeof(void*), &start_address, &end_address);
+ intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
+
+ // Catch null pointers a little earlier.
+ MOZ_ASSERT(start_address > 8191 || start_address < 0);
+
+ int reg = 0;
+ while (rlist != 0) {
+ if ((rlist & 1) != 0) {
+ if (load) {
+ set_register(reg, *address);
+ } else {
+ *address = get_register(reg);
+ }
+ address += 1;
+ }
+ reg++;
+ rlist >>= 1;
+ }
+ MOZ_ASSERT(end_address == ((intptr_t)address) - 4);
+ if (instr->hasW()) {
+ set_register(instr->rnValue(), rn_val);
+ }
+}
+
+// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
+void Simulator::handleVList(SimInstruction* instr) {
+ VFPRegPrecision precision =
+ (instr->szValue() == 0) ? kSinglePrecision : kDoublePrecision;
+ int operand_size = (precision == kSinglePrecision) ? 4 : 8;
+ bool load = (instr->VLValue() == 0x1);
+
+ int vd;
+ int num_regs;
+ vd = instr->VFPDRegValue(precision);
+ if (precision == kSinglePrecision) {
+ num_regs = instr->immed8Value();
+ } else {
+ num_regs = instr->immed8Value() / 2;
+ }
+
+ intptr_t start_address = 0;
+ intptr_t end_address = 0;
+ int32_t rn_val =
+ processPU(instr, num_regs, operand_size, &start_address, &end_address);
+
+ intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
+ for (int reg = vd; reg < vd + num_regs; reg++) {
+ if (precision == kSinglePrecision) {
+ if (load) {
+ set_s_register_from_sinteger(
+ reg, readW(reinterpret_cast<int32_t>(address), instr));
+ } else {
+ writeW(reinterpret_cast<int32_t>(address),
+ get_sinteger_from_s_register(reg), instr);
+ }
+ address += 1;
+ } else {
+ if (load) {
+ int32_t data[] = {readW(reinterpret_cast<int32_t>(address), instr),
+ readW(reinterpret_cast<int32_t>(address + 1), instr)};
+ double d;
+ memcpy(&d, data, 8);
+ set_d_register_from_double(reg, d);
+ } else {
+ int32_t data[2];
+ double d;
+ get_double_from_d_register(reg, &d);
+ memcpy(data, &d, 8);
+ writeW(reinterpret_cast<int32_t>(address), data[0], instr);
+ writeW(reinterpret_cast<int32_t>(address + 1), data[1], instr);
+ }
+ address += 2;
+ }
+ }
+ MOZ_ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
+ if (instr->hasW()) {
+ set_register(instr->rnValue(), rn_val);
+ }
+}
+
+// Note: With the code below we assume that all runtime calls return a 64 bits
+// result. If they don't, the r1 result register contains a bogus value, which
+// is fine because it is caller-saved.
+typedef int64_t (*Prototype_General0)();
+typedef int64_t (*Prototype_General1)(int32_t arg0);
+typedef int64_t (*Prototype_General2)(int32_t arg0, int32_t arg1);
+typedef int64_t (*Prototype_General3)(int32_t arg0, int32_t arg1, int32_t arg2);
+typedef int64_t (*Prototype_General4)(int32_t arg0, int32_t arg1, int32_t arg2,
+ int32_t arg3);
+typedef int64_t (*Prototype_General5)(int32_t arg0, int32_t arg1, int32_t arg2,
+ int32_t arg3, int32_t arg4);
+typedef int64_t (*Prototype_General6)(int32_t arg0, int32_t arg1, int32_t arg2,
+ int32_t arg3, int32_t arg4, int32_t arg5);
+typedef int64_t (*Prototype_General7)(int32_t arg0, int32_t arg1, int32_t arg2,
+ int32_t arg3, int32_t arg4, int32_t arg5,
+ int32_t arg6);
+typedef int64_t (*Prototype_General8)(int32_t arg0, int32_t arg1, int32_t arg2,
+ int32_t arg3, int32_t arg4, int32_t arg5,
+ int32_t arg6, int32_t arg7);
+typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int32_t arg0,
+ int32_t arg1,
+ int32_t arg2,
+ int64_t arg3);
+typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int32_t arg0,
+ int32_t arg1,
+ int64_t arg2,
+ int64_t arg3);
+
+typedef double (*Prototype_Double_None)();
+typedef double (*Prototype_Double_Double)(double arg0);
+typedef double (*Prototype_Double_Int)(int32_t arg0);
+typedef double (*Prototype_Double_IntInt)(int32_t arg0, int32_t arg1);
+typedef int32_t (*Prototype_Int_Double)(double arg0);
+typedef int64_t (*Prototype_Int64_Double)(double arg0);
+typedef int32_t (*Prototype_Int_DoubleIntInt)(double arg0, int32_t arg1,
+ int32_t arg2);
+typedef int32_t (*Prototype_Int_IntDoubleIntInt)(int32_t arg0, double arg1,
+ int32_t arg2, int32_t arg3);
+
+typedef int32_t (*Prototype_Int_Float32)(float arg0);
+typedef float (*Prototype_Float32_Float32)(float arg0);
+typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1);
+typedef float (*Prototype_Float32_IntInt)(int arg0, int arg1);
+
+typedef double (*Prototype_Double_DoubleInt)(double arg0, int32_t arg1);
+typedef double (*Prototype_Double_IntDouble)(int32_t arg0, double arg1);
+typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1);
+typedef int32_t (*Prototype_Int_IntDouble)(int32_t arg0, double arg1);
+typedef int32_t (*Prototype_Int_DoubleInt)(double arg0, int32_t arg1);
+
+typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1,
+ double arg2);
+typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0,
+ double arg1,
+ double arg2,
+ double arg3);
+
+typedef int32_t (*Prototype_Int32_General)(int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32)(int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int32_t, int32_t,
+ int32_t, int32_t,
+ int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)(
+ int32_t, int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32General)(
+ int32_t, int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General)(
+ int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (
+ *Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General)(
+ int32_t, int32_t, float, float, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (
+ *Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General)(
+ int32_t, int32_t, float, float, float, float, int32_t, int32_t, int32_t,
+ int32_t, int32_t);
+typedef int32_t (
+ *Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General)(
+ int32_t, int32_t, float, float, int32_t, float, float, int32_t, float,
+ int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)(
+ int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64)(int32_t, int32_t,
+ int32_t, int64_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int32_t, int32_t,
+ int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64)(int32_t, int32_t,
+ int64_t, int64_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int32_t, int32_t,
+ int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)(
+ int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralGeneral)(int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralGeneralGeneral)(int32_t, int32_t,
+ int32_t);
+typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int32_t, int32_t,
+ int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32)(int32_t, int64_t,
+ int32_t, int32_t,
+ int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int32)(int32_t, int64_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64)(int32_t, int64_t,
+ int32_t, int64_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64General)(
+ int32_t, int64_t, int32_t, int64_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64)(int32_t, int64_t,
+ int64_t, int64_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int32_t, int64_t,
+ int64_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64General)(
+ int32_t, int64_t, int64_t, int64_t, int32_t);
+typedef int32_t (*Prototype_General_GeneralInt32)(int32_t, int32_t);
+typedef int32_t (*Prototype_General_GeneralInt32Int32)(int32_t, int32_t,
+ int32_t);
+typedef int32_t (*Prototype_General_GeneralInt32General)(int32_t, int32_t,
+ int32_t);
+typedef int32_t (*Prototype_General_GeneralInt32Int32GeneralInt32)(
+ int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralGeneralInt32General)(int32_t, int32_t,
+ int32_t, int32_t);
+typedef int32_t (*Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32)(
+ int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t);
+typedef int64_t (*Prototype_Int64_General)(int32_t);
+typedef int64_t (*Prototype_Int64_GeneralInt64)(int32_t, int64_t);
+
+// Fill the volatile registers with scratch values.
+//
+// Some of the ABI calls assume that the float registers are not scratched,
+// even though the ABI defines them as volatile - a performance
+// optimization. These are all calls passing operands in integer registers,
+// so for now the simulator does not scratch any float registers for these
+// calls. Should try to narrow it further in future.
+//
+void Simulator::scratchVolatileRegisters(bool scratchFloat) {
+ int32_t scratch_value = 0xa5a5a5a5 ^ uint32_t(icount_);
+ set_register(r0, scratch_value);
+ set_register(r1, scratch_value);
+ set_register(r2, scratch_value);
+ set_register(r3, scratch_value);
+ set_register(r12, scratch_value); // Intra-Procedure-call scratch register.
+ set_register(r14, scratch_value); // Link register.
+
+ if (scratchFloat) {
+ uint64_t scratch_value_d =
+ 0x5a5a5a5a5a5a5a5aLU ^ uint64_t(icount_) ^ (uint64_t(icount_) << 30);
+ for (uint32_t i = d0; i < d8; i++) {
+ set_d_register(i, &scratch_value_d);
+ }
+ for (uint32_t i = d16; i < FloatRegisters::TotalPhys; i++) {
+ set_d_register(i, &scratch_value_d);
+ }
+ }
+}
+
+static int64_t MakeInt64(int32_t first, int32_t second) {
+ // Little-endian order.
+ return ((int64_t)second << 32) | (uint32_t)first;
+}
+
+// Software interrupt instructions are used by the simulator to call into C++.
+void Simulator::softwareInterrupt(SimInstruction* instr) {
+ int svc = instr->svcValue();
+ switch (svc) {
+ case kCallRtRedirected: {
+ Redirection* redirection = Redirection::FromSwiInstruction(instr);
+ int32_t arg0 = get_register(r0);
+ int32_t arg1 = get_register(r1);
+ int32_t arg2 = get_register(r2);
+ int32_t arg3 = get_register(r3);
+ int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
+ int32_t arg4 = stack_pointer[0];
+ int32_t arg5 = stack_pointer[1];
+ int32_t arg6 = stack_pointer[2];
+ int32_t arg7 = stack_pointer[3];
+ int32_t arg8 = stack_pointer[4];
+ int32_t arg9 = stack_pointer[5];
+ int32_t arg10 = stack_pointer[6];
+ int32_t arg11 = stack_pointer[7];
+ int32_t arg12 = stack_pointer[8];
+ int32_t arg13 = stack_pointer[9];
+
+ int32_t saved_lr = get_register(lr);
+ intptr_t external =
+ reinterpret_cast<intptr_t>(redirection->nativeFunction());
+
+ bool stack_aligned = (get_register(sp) & (ABIStackAlignment - 1)) == 0;
+ if (!stack_aligned) {
+ fprintf(stderr, "Runtime call with unaligned stack!\n");
+ MOZ_CRASH();
+ }
+
+ if (single_stepping_) {
+ single_step_callback_(single_step_callback_arg_, this, nullptr);
+ }
+
+ switch (redirection->type()) {
+ case Args_General0: {
+ Prototype_General0 target =
+ reinterpret_cast<Prototype_General0>(external);
+ int64_t result = target();
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General1: {
+ Prototype_General1 target =
+ reinterpret_cast<Prototype_General1>(external);
+ int64_t result = target(arg0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General2: {
+ Prototype_General2 target =
+ reinterpret_cast<Prototype_General2>(external);
+ int64_t result = target(arg0, arg1);
+ // The ARM backend makes calls to __aeabi_idivmod and
+ // __aeabi_uidivmod assuming that the float registers are
+ // non-volatile as a performance optimization, so the float
+ // registers must not be scratch when calling these.
+ bool scratchFloat =
+ target != __aeabi_idivmod && target != __aeabi_uidivmod;
+ scratchVolatileRegisters(/* scratchFloat = */ scratchFloat);
+ setCallResult(result);
+ break;
+ }
+ case Args_General3: {
+ Prototype_General3 target =
+ reinterpret_cast<Prototype_General3>(external);
+ int64_t result = target(arg0, arg1, arg2);
+ scratchVolatileRegisters(/* scratchFloat = true*/);
+ setCallResult(result);
+ break;
+ }
+ case Args_General4: {
+ Prototype_General4 target =
+ reinterpret_cast<Prototype_General4>(external);
+ int64_t result = target(arg0, arg1, arg2, arg3);
+ scratchVolatileRegisters(/* scratchFloat = true*/);
+ setCallResult(result);
+ break;
+ }
+ case Args_General5: {
+ Prototype_General5 target =
+ reinterpret_cast<Prototype_General5>(external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General6: {
+ Prototype_General6 target =
+ reinterpret_cast<Prototype_General6>(external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General7: {
+ Prototype_General7 target =
+ reinterpret_cast<Prototype_General7>(external);
+ int32_t arg6 = stack_pointer[2];
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General8: {
+ Prototype_General8 target =
+ reinterpret_cast<Prototype_General8>(external);
+ int32_t arg6 = stack_pointer[2];
+ int32_t arg7 = stack_pointer[3];
+ int64_t result =
+ target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int_GeneralGeneralGeneralInt64: {
+ Prototype_GeneralGeneralGeneralInt64 target =
+ reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(external);
+ // The int64 arg is not split across register and stack
+ int64_t result = target(arg0, arg1, arg2, MakeInt64(arg4, arg5));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int_GeneralGeneralInt64Int64: {
+ Prototype_GeneralGeneralInt64Int64 target =
+ reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(external);
+ int64_t result =
+ target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int64_Double: {
+ double dval0, dval1;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ Prototype_Int64_Double target =
+ reinterpret_cast<Prototype_Int64_Double>(external);
+ int64_t result = target(dval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Double_None: {
+ Prototype_Double_None target =
+ reinterpret_cast<Prototype_Double_None>(external);
+ double dresult = target();
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Int_Double: {
+ double dval0, dval1;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ Prototype_Int_Double target =
+ reinterpret_cast<Prototype_Int_Double>(external);
+ int32_t res = target(dval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, res);
+ break;
+ }
+ case Args_Int_Float32: {
+ float fval0;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(0, &fval0);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg0);
+ }
+ auto target = reinterpret_cast<Prototype_Int_Float32>(external);
+ int32_t res = target(fval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, res);
+ break;
+ }
+ case Args_Double_Double: {
+ double dval0, dval1;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ Prototype_Double_Double target =
+ reinterpret_cast<Prototype_Double_Double>(external);
+ double dresult = target(dval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Float32_Float32: {
+ float fval0;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(0, &fval0);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg0);
+ }
+ Prototype_Float32_Float32 target =
+ reinterpret_cast<Prototype_Float32_Float32>(external);
+ float fresult = target(fval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultFloat(fresult);
+ break;
+ }
+ case Args_Float32_Float32Float32: {
+ float fval0, fval1;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(0, &fval0);
+ get_float_from_s_register(1, &fval1);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg0);
+ fval1 = mozilla::BitwiseCast<float>(arg1);
+ }
+ Prototype_Float32_Float32Float32 target =
+ reinterpret_cast<Prototype_Float32_Float32Float32>(external);
+ float fresult = target(fval0, fval1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultFloat(fresult);
+ break;
+ }
+ case Args_Float32_IntInt: {
+ Prototype_Float32_IntInt target =
+ reinterpret_cast<Prototype_Float32_IntInt>(external);
+ float fresult = target(arg0, arg1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultFloat(fresult);
+ break;
+ }
+ case Args_Double_Int: {
+ Prototype_Double_Int target =
+ reinterpret_cast<Prototype_Double_Int>(external);
+ double dresult = target(arg0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Double_IntInt: {
+ Prototype_Double_IntInt target =
+ reinterpret_cast<Prototype_Double_IntInt>(external);
+ double dresult = target(arg0, arg1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Double_DoubleInt: {
+ double dval0, dval1;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ Prototype_Double_DoubleInt target =
+ reinterpret_cast<Prototype_Double_DoubleInt>(external);
+ double dresult = target(dval0, ival);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Double_DoubleDouble: {
+ double dval0, dval1;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ Prototype_Double_DoubleDouble target =
+ reinterpret_cast<Prototype_Double_DoubleDouble>(external);
+ double dresult = target(dval0, dval1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Double_IntDouble: {
+ int32_t ival = get_register(0);
+ double dval0;
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, &dval0);
+ } else {
+ dval0 = get_double_from_register_pair(2);
+ }
+ Prototype_Double_IntDouble target =
+ reinterpret_cast<Prototype_Double_IntDouble>(external);
+ double dresult = target(ival, dval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Int_IntDouble: {
+ int32_t ival = get_register(0);
+ double dval0;
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, &dval0);
+ } else {
+ dval0 = get_double_from_register_pair(2);
+ }
+ Prototype_Int_IntDouble target =
+ reinterpret_cast<Prototype_Int_IntDouble>(external);
+ int32_t result = target(ival, dval0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, result);
+ break;
+ }
+ case Args_Int_DoubleInt: {
+ double dval;
+ int32_t result;
+ Prototype_Int_DoubleInt target =
+ reinterpret_cast<Prototype_Int_DoubleInt>(external);
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, &dval);
+ result = target(dval, arg0);
+ } else {
+ dval = get_double_from_register_pair(0);
+ result = target(dval, arg2);
+ }
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, result);
+ break;
+ }
+ case Args_Int_DoubleIntInt: {
+ double dval;
+ int32_t result;
+ Prototype_Int_DoubleIntInt target =
+ reinterpret_cast<Prototype_Int_DoubleIntInt>(external);
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, &dval);
+ result = target(dval, arg0, arg1);
+ } else {
+ dval = get_double_from_register_pair(0);
+ result = target(dval, arg2, arg3);
+ }
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, result);
+ break;
+ }
+ case Args_Int_IntDoubleIntInt: {
+ double dval;
+ int32_t result;
+ Prototype_Int_IntDoubleIntInt target =
+ reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external);
+ if (UseHardFpABI()) {
+ get_double_from_d_register(0, &dval);
+ result = target(arg0, dval, arg1, arg2);
+ } else {
+ dval = get_double_from_register_pair(2);
+ result = target(arg0, dval, arg4, arg5);
+ }
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ set_register(r0, result);
+ break;
+ }
+ case Args_Double_DoubleDoubleDouble: {
+ double dval0, dval1, dval2;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ // the last argument is on stack
+ getFpFromStack(stack_pointer, &dval2);
+ Prototype_Double_DoubleDoubleDouble target =
+ reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external);
+ double dresult = target(dval0, dval1, dval2);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+ case Args_Double_DoubleDoubleDoubleDouble: {
+ double dval0, dval1, dval2, dval3;
+ int32_t ival;
+ getFpArgs(&dval0, &dval1, &ival);
+ // the two last arguments are on stack
+ getFpFromStack(stack_pointer, &dval2);
+ getFpFromStack(stack_pointer + 2, &dval3);
+ Prototype_Double_DoubleDoubleDoubleDouble target =
+ reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>(
+ external);
+ double dresult = target(dval0, dval1, dval2, dval3);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResultDouble(dresult);
+ break;
+ }
+
+ case Args_Int32_General: {
+ Prototype_Int32_General target =
+ reinterpret_cast<Prototype_Int32_General>(external);
+ int64_t result = target(arg0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32: {
+ Prototype_Int32_GeneralInt32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32>(external);
+ int64_t result = target(arg0, arg1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32: {
+ Prototype_Int32_GeneralInt32Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int32>(external);
+ int64_t result = target(arg0, arg1, arg2);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int32Int32: {
+ Prototype_Int32_GeneralInt32Int32Int32Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int32Int32Int32: {
+ Prototype_Int32_GeneralInt32Int32Int32Int32Int32 target =
+ reinterpret_cast<
+ Prototype_Int32_GeneralInt32Int32Int32Int32Int32>(external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int32Int32General: {
+ Prototype_Int32_GeneralInt32Int32Int32Int32General target =
+ reinterpret_cast<
+ Prototype_Int32_GeneralInt32Int32Int32Int32General>(external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int32Int32Int32Int32General: {
+ Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General target =
+ reinterpret_cast<
+ Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General>(
+ external);
+ int64_t result =
+ target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Float32Float32Int32Int32Int32General: {
+ float fval0, fval1;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(2, &fval0);
+ get_float_from_s_register(3, &fval1);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg2);
+ fval1 = mozilla::BitwiseCast<float>(arg3);
+ }
+ Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General
+ target = reinterpret_cast<
+ Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General>(
+ external);
+ int64_t result =
+ target(arg0, arg1, fval0, fval1, arg4, arg5, arg6, arg7);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General: {
+ float fval0, fval1, fval2, fval3;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(2, &fval0);
+ get_float_from_s_register(3, &fval1);
+ get_float_from_s_register(4, &fval2);
+ get_float_from_s_register(5, &fval3);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg2);
+ fval1 = mozilla::BitwiseCast<float>(arg3);
+ fval2 = mozilla::BitwiseCast<float>(arg4);
+ fval3 = mozilla::BitwiseCast<float>(arg5);
+ }
+ Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General
+ target = reinterpret_cast<
+ Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General>(
+ external);
+ int64_t result = target(arg0, arg1, fval0, fval1, fval2, fval3, arg6,
+ arg7, arg8, arg9, arg10);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General: {
+ float fval0, fval1, fval2, fval3, fval4;
+ if (UseHardFpABI()) {
+ get_float_from_s_register(2, &fval0);
+ get_float_from_s_register(3, &fval1);
+ get_float_from_s_register(5, &fval2);
+ get_float_from_s_register(6, &fval3);
+ get_float_from_s_register(8, &fval4);
+ } else {
+ fval0 = mozilla::BitwiseCast<float>(arg2);
+ fval1 = mozilla::BitwiseCast<float>(arg3);
+ fval2 = mozilla::BitwiseCast<float>(arg5);
+ fval3 = mozilla::BitwiseCast<float>(arg6);
+ fval4 = mozilla::BitwiseCast<float>(arg8);
+ }
+ Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General
+ target = reinterpret_cast<
+ Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General>(
+ external);
+ int64_t result =
+ target(arg0, arg1, fval0, fval1, arg4, fval2, fval3, arg7, fval4,
+ arg9, arg10, arg11, arg12, arg13);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int32General: {
+ Prototype_Int32_GeneralInt32Int32Int32General target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32Int64: {
+ Prototype_Int32_GeneralInt32Int32Int64 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, MakeInt64(arg3, arg4));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int32General: {
+ Prototype_Int32_GeneralInt32Int32General target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32Int64Int64: {
+ Prototype_Int32_GeneralInt32Int64Int64 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64>(
+ external);
+ int64_t result =
+ target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32GeneralInt32: {
+ Prototype_Int32_GeneralInt32GeneralInt32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt32GeneralInt32Int32: {
+ Prototype_Int32_GeneralInt32GeneralInt32Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralGeneral: {
+ Prototype_Int32_GeneralGeneral target =
+ reinterpret_cast<Prototype_Int32_GeneralGeneral>(external);
+ int64_t result = target(arg0, arg1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralGeneralGeneral: {
+ Prototype_Int32_GeneralGeneralGeneral target =
+ reinterpret_cast<Prototype_Int32_GeneralGeneralGeneral>(external);
+ int64_t result = target(arg0, arg1, arg2);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralGeneralInt32Int32: {
+ Prototype_Int32_GeneralGeneralInt32Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int32Int32Int32: {
+ Prototype_Int32_GeneralInt64Int32Int32Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32Int32>(
+ external);
+ int64_t result =
+ target(arg0, MakeInt64(arg2, arg3), arg4, arg5, arg6);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int32: {
+ Prototype_Int32_GeneralInt64Int32 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int32>(external);
+ int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int32Int64: {
+ Prototype_Int32_GeneralInt64Int32Int64 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64>(
+ external);
+ int64_t result =
+ target(arg0, MakeInt64(arg2, arg3), arg4, MakeInt64(arg6, arg7));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int32Int64General: {
+ Prototype_Int32_GeneralInt64Int32Int64General target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64General>(
+ external);
+ int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4,
+ MakeInt64(arg6, arg7), arg8);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int64Int64: {
+ Prototype_Int32_GeneralInt64Int64Int64 target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64>(
+ external);
+ int64_t result = target(arg0, MakeInt64(arg2, arg3),
+ MakeInt64(arg4, arg5), MakeInt64(arg6, arg7));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int64General: {
+ Prototype_Int32_GeneralInt64Int64General target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int64General>(
+ external);
+ int64_t result =
+ target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5), arg6);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int32_GeneralInt64Int64Int64General: {
+ Prototype_Int32_GeneralInt64Int64Int64General target =
+ reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64General>(
+ external);
+ int64_t result =
+ target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5),
+ MakeInt64(arg6, arg7), arg8);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General_GeneralInt32: {
+ Prototype_General_GeneralInt32 target =
+ reinterpret_cast<Prototype_General_GeneralInt32>(external);
+ int64_t result = target(arg0, arg1);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General_GeneralInt32Int32: {
+ Prototype_General_GeneralInt32Int32 target =
+ reinterpret_cast<Prototype_General_GeneralInt32Int32>(external);
+ int64_t result = target(arg0, arg1, arg2);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_General_GeneralInt32General: {
+ Prototype_General_GeneralInt32General target =
+ reinterpret_cast<Prototype_General_GeneralInt32General>(external);
+ int64_t result = target(arg0, arg1, arg2);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case js::jit::Args_General_GeneralInt32Int32GeneralInt32: {
+ Prototype_General_GeneralInt32Int32GeneralInt32 target =
+ reinterpret_cast<Prototype_General_GeneralInt32Int32GeneralInt32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case js::jit::Args_Int32_GeneralGeneralInt32General: {
+ Prototype_Int32_GeneralGeneralInt32General target =
+ reinterpret_cast<Prototype_Int32_GeneralGeneralInt32General>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case js::jit::Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32: {
+ Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32 target =
+ reinterpret_cast<
+ Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32>(
+ external);
+ int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int64_General: {
+ Prototype_Int64_General target =
+ reinterpret_cast<Prototype_Int64_General>(external);
+ int64_t result = target(arg0);
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+ case Args_Int64_GeneralInt64: {
+ Prototype_Int64_GeneralInt64 target =
+ reinterpret_cast<Prototype_Int64_GeneralInt64>(external);
+ int64_t result = target(arg0, MakeInt64(arg2, arg3));
+ scratchVolatileRegisters(/* scratchFloat = true */);
+ setCallResult(result);
+ break;
+ }
+
+ default:
+ MOZ_CRASH("call");
+ }
+
+ if (single_stepping_) {
+ single_step_callback_(single_step_callback_arg_, this, nullptr);
+ }
+
+ set_register(lr, saved_lr);
+ set_pc(get_register(lr));
+ break;
+ }
+ case kBreakpoint: {
+ ArmDebugger dbg(this);
+ dbg.debug();
+ break;
+ }
+ default: { // Stop uses all codes greater than 1 << 23.
+ if (svc >= (1 << 23)) {
+ uint32_t code = svc & kStopCodeMask;
+ if (isWatchedStop(code)) {
+ increaseStopCounter(code);
+ }
+
+ // Stop if it is enabled, otherwise go on jumping over the stop and
+ // the message address.
+ if (isEnabledStop(code)) {
+ ArmDebugger dbg(this);
+ dbg.stop(instr);
+ } else {
+ set_pc(get_pc() + 2 * SimInstruction::kInstrSize);
+ }
+ } else {
+ // This is not a valid svc code.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ }
+}
+
+void Simulator::canonicalizeNaN(double* value) {
+ if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) &&
+ FPSCR_default_NaN_mode_) {
+ *value = JS::CanonicalizeNaN(*value);
+ }
+}
+
+void Simulator::canonicalizeNaN(float* value) {
+ if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) &&
+ FPSCR_default_NaN_mode_) {
+ *value = JS::CanonicalizeNaN(*value);
+ }
+}
+
+// Stop helper functions.
+bool Simulator::isStopInstruction(SimInstruction* instr) {
+ return (instr->bits(27, 24) == 0xF) && (instr->svcValue() >= kStopCode);
+}
+
+bool Simulator::isWatchedStop(uint32_t code) {
+ MOZ_ASSERT(code <= kMaxStopCode);
+ return code < kNumOfWatchedStops;
+}
+
+bool Simulator::isEnabledStop(uint32_t code) {
+ MOZ_ASSERT(code <= kMaxStopCode);
+ // Unwatched stops are always enabled.
+ return !isWatchedStop(code) ||
+ !(watched_stops_[code].count & kStopDisabledBit);
+}
+
+void Simulator::enableStop(uint32_t code) {
+ MOZ_ASSERT(isWatchedStop(code));
+ if (!isEnabledStop(code)) {
+ watched_stops_[code].count &= ~kStopDisabledBit;
+ }
+}
+
+void Simulator::disableStop(uint32_t code) {
+ MOZ_ASSERT(isWatchedStop(code));
+ if (isEnabledStop(code)) {
+ watched_stops_[code].count |= kStopDisabledBit;
+ }
+}
+
+void Simulator::increaseStopCounter(uint32_t code) {
+ MOZ_ASSERT(code <= kMaxStopCode);
+ MOZ_ASSERT(isWatchedStop(code));
+ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
+ printf(
+ "Stop counter for code %i has overflowed.\n"
+ "Enabling this code and reseting the counter to 0.\n",
+ code);
+ watched_stops_[code].count = 0;
+ enableStop(code);
+ } else {
+ watched_stops_[code].count++;
+ }
+}
+
+// Print a stop status.
+void Simulator::printStopInfo(uint32_t code) {
+ MOZ_ASSERT(code <= kMaxStopCode);
+ if (!isWatchedStop(code)) {
+ printf("Stop not watched.");
+ } else {
+ const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
+ int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
+ // Don't print the state of unused breakpoints.
+ if (count != 0) {
+ if (watched_stops_[code].desc) {
+ printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
+ state, count, watched_stops_[code].desc);
+ } else {
+ printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
+ count);
+ }
+ }
+ }
+}
+
+// Instruction types 0 and 1 are both rolled into one function because they only
+// differ in the handling of the shifter_operand.
+void Simulator::decodeType01(SimInstruction* instr) {
+ int type = instr->typeValue();
+ if (type == 0 && instr->isSpecialType0()) {
+ // Multiply instruction or extra loads and stores.
+ if (instr->bits(7, 4) == 9) {
+ if (instr->bit(24) == 0) {
+ // Raw field decoding here. Multiply instructions have their Rd
+ // in funny places.
+ int rn = instr->rnValue();
+ int rm = instr->rmValue();
+ int rs = instr->rsValue();
+ int32_t rs_val = get_register(rs);
+ int32_t rm_val = get_register(rm);
+ if (instr->bit(23) == 0) {
+ if (instr->bit(21) == 0) {
+ // The MUL instruction description (A 4.1.33) refers to
+ // Rd as being the destination for the operation, but it
+ // confusingly uses the Rn field to encode it.
+ int rd = rn; // Remap the rn field to the Rd register.
+ int32_t alu_out = rm_val * rs_val;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ }
+ } else {
+ int rd = instr->rdValue();
+ int32_t acc_value = get_register(rd);
+ if (instr->bit(22) == 0) {
+ // The MLA instruction description (A 4.1.28) refers
+ // to the order of registers as "Rd, Rm, Rs,
+ // Rn". But confusingly it uses the Rn field to
+ // encode the Rd register and the Rd field to encode
+ // the Rn register.
+ int32_t mul_out = rm_val * rs_val;
+ int32_t result = acc_value + mul_out;
+ set_register(rn, result);
+ } else {
+ int32_t mul_out = rm_val * rs_val;
+ int32_t result = acc_value - mul_out;
+ set_register(rn, result);
+ }
+ }
+ } else {
+ // The signed/long multiply instructions use the terms RdHi
+ // and RdLo when referring to the target registers. They are
+ // mapped to the Rn and Rd fields as follows:
+ // RdLo == Rd
+ // RdHi == Rn (This is confusingly stored in variable rd here
+ // because the mul instruction from above uses the
+ // Rn field to encode the Rd register. Good luck figuring
+ // this out without reading the ARM instruction manual
+ // at a very detailed level.)
+ int rd_hi = rn; // Remap the rn field to the RdHi register.
+ int rd_lo = instr->rdValue();
+ int32_t hi_res = 0;
+ int32_t lo_res = 0;
+ if (instr->bit(22) == 1) {
+ int64_t left_op = static_cast<int32_t>(rm_val);
+ int64_t right_op = static_cast<int32_t>(rs_val);
+ uint64_t result = left_op * right_op;
+ hi_res = static_cast<int32_t>(result >> 32);
+ lo_res = static_cast<int32_t>(result & 0xffffffff);
+ } else {
+ // Unsigned multiply.
+ uint64_t left_op = static_cast<uint32_t>(rm_val);
+ uint64_t right_op = static_cast<uint32_t>(rs_val);
+ uint64_t result = left_op * right_op;
+ hi_res = static_cast<int32_t>(result >> 32);
+ lo_res = static_cast<int32_t>(result & 0xffffffff);
+ }
+ set_register(rd_lo, lo_res);
+ set_register(rd_hi, hi_res);
+ if (instr->hasS()) {
+ MOZ_CRASH();
+ }
+ }
+ } else {
+ if (instr->bits(excl::ExclusiveOpHi, excl::ExclusiveOpLo) ==
+ excl::ExclusiveOpcode) {
+ // Load-exclusive / store-exclusive.
+ if (instr->bit(excl::ExclusiveLoad)) {
+ int rn = instr->rnValue();
+ int rt = instr->rtValue();
+ int32_t address = get_register(rn);
+ switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) {
+ case excl::ExclusiveWord:
+ set_register(rt, readExW(address, instr));
+ break;
+ case excl::ExclusiveDouble: {
+ MOZ_ASSERT((rt % 2) == 0);
+ int32_t hibits;
+ int32_t lobits = readExDW(address, &hibits);
+ set_register(rt, lobits);
+ set_register(rt + 1, hibits);
+ break;
+ }
+ case excl::ExclusiveByte:
+ set_register(rt, readExBU(address));
+ break;
+ case excl::ExclusiveHalf:
+ set_register(rt, readExHU(address, instr));
+ break;
+ }
+ } else {
+ int rn = instr->rnValue();
+ int rd = instr->rdValue();
+ int rt = instr->bits(3, 0);
+ int32_t address = get_register(rn);
+ int32_t value = get_register(rt);
+ int32_t result = 0;
+ switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) {
+ case excl::ExclusiveWord:
+ result = writeExW(address, value, instr);
+ break;
+ case excl::ExclusiveDouble: {
+ MOZ_ASSERT((rt % 2) == 0);
+ int32_t value2 = get_register(rt + 1);
+ result = writeExDW(address, value, value2);
+ break;
+ }
+ case excl::ExclusiveByte:
+ result = writeExB(address, (uint8_t)value);
+ break;
+ case excl::ExclusiveHalf:
+ result = writeExH(address, (uint16_t)value, instr);
+ break;
+ }
+ set_register(rd, result);
+ }
+ } else {
+ MOZ_CRASH(); // Not used atm
+ }
+ }
+ } else {
+ // Extra load/store instructions.
+ int rd = instr->rdValue();
+ int rn = instr->rnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t addr = 0;
+ if (instr->bit(22) == 0) {
+ int rm = instr->rmValue();
+ int32_t rm_val = get_register(rm);
+ switch (instr->PUField()) {
+ case da_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val -= rm_val;
+ set_register(rn, rn_val);
+ break;
+ case ia_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val += rm_val;
+ set_register(rn, rn_val);
+ break;
+ case db_x:
+ rn_val -= rm_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ case ib_x:
+ rn_val += rm_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ default:
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ } else {
+ int32_t imm_val = (instr->immedHValue() << 4) | instr->immedLValue();
+ switch (instr->PUField()) {
+ case da_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val -= imm_val;
+ set_register(rn, rn_val);
+ break;
+ case ia_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val += imm_val;
+ set_register(rn, rn_val);
+ break;
+ case db_x:
+ rn_val -= imm_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ case ib_x:
+ rn_val += imm_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ default:
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ if ((instr->bits(7, 4) & 0xd) == 0xd && instr->bit(20) == 0) {
+ MOZ_ASSERT((rd % 2) == 0);
+ if (instr->hasH()) {
+ // The strd instruction.
+ int32_t value1 = get_register(rd);
+ int32_t value2 = get_register(rd + 1);
+ writeDW(addr, value1, value2);
+ } else {
+ // The ldrd instruction.
+ int* rn_data = readDW(addr);
+ if (rn_data) {
+ set_dw_register(rd, rn_data);
+ }
+ }
+ } else if (instr->hasH()) {
+ if (instr->hasSign()) {
+ if (instr->hasL()) {
+ int16_t val = readH(addr, instr);
+ set_register(rd, val);
+ } else {
+ int16_t val = get_register(rd);
+ writeH(addr, val, instr);
+ }
+ } else {
+ if (instr->hasL()) {
+ uint16_t val = readHU(addr, instr);
+ set_register(rd, val);
+ } else {
+ uint16_t val = get_register(rd);
+ writeH(addr, val, instr);
+ }
+ }
+ } else {
+ // Signed byte loads.
+ MOZ_ASSERT(instr->hasSign());
+ MOZ_ASSERT(instr->hasL());
+ int8_t val = readB(addr);
+ set_register(rd, val);
+ }
+ return;
+ }
+ } else if ((type == 0) && instr->isMiscType0()) {
+ if (instr->bits(7, 4) == 0) {
+ if (instr->bit(21) == 0) {
+ // mrs
+ int rd = instr->rdValue();
+ uint32_t flags;
+ if (instr->bit(22) == 0) {
+ // CPSR. Note: The Q flag is not yet implemented!
+ flags = (n_flag_ << 31) | (z_flag_ << 30) | (c_flag_ << 29) |
+ (v_flag_ << 28);
+ } else {
+ // SPSR
+ MOZ_CRASH();
+ }
+ set_register(rd, flags);
+ } else {
+ // msr
+ if (instr->bits(27, 23) == 2) {
+ // Register operand. For now we only emit mask 0b1100.
+ int rm = instr->rmValue();
+ mozilla::DebugOnly<uint32_t> mask = instr->bits(19, 16);
+ MOZ_ASSERT(mask == (3 << 2));
+
+ uint32_t flags = get_register(rm);
+ n_flag_ = (flags >> 31) & 1;
+ z_flag_ = (flags >> 30) & 1;
+ c_flag_ = (flags >> 29) & 1;
+ v_flag_ = (flags >> 28) & 1;
+ } else {
+ MOZ_CRASH();
+ }
+ }
+ } else if (instr->bits(22, 21) == 1) {
+ int rm = instr->rmValue();
+ switch (instr->bits(7, 4)) {
+ case 1: // BX
+ set_pc(get_register(rm));
+ break;
+ case 3: { // BLX
+ uint32_t old_pc = get_pc();
+ set_pc(get_register(rm));
+ set_register(lr, old_pc + SimInstruction::kInstrSize);
+ break;
+ }
+ case 7: { // BKPT
+ fprintf(stderr, "Simulator hit BKPT.\n");
+ if (getenv("ARM_SIM_DEBUGGER")) {
+ ArmDebugger dbg(this);
+ dbg.debug();
+ } else {
+ fprintf(stderr,
+ "Use ARM_SIM_DEBUGGER=1 to enter the builtin debugger.\n");
+ MOZ_CRASH("ARM simulator breakpoint");
+ }
+ break;
+ }
+ default:
+ MOZ_CRASH();
+ }
+ } else if (instr->bits(22, 21) == 3) {
+ int rm = instr->rmValue();
+ int rd = instr->rdValue();
+ switch (instr->bits(7, 4)) {
+ case 1: { // CLZ
+ uint32_t bits = get_register(rm);
+ int leading_zeros = 0;
+ if (bits == 0) {
+ leading_zeros = 32;
+ } else {
+ leading_zeros = mozilla::CountLeadingZeroes32(bits);
+ }
+ set_register(rd, leading_zeros);
+ break;
+ }
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ } else {
+ printf("%08x\n", instr->instructionBits());
+ MOZ_CRASH();
+ }
+ } else if ((type == 1) && instr->isNopType1()) {
+ // NOP.
+ } else if ((type == 1) && instr->isCsdbType1()) {
+ // Speculation barrier. (No-op for the simulator)
+ } else {
+ int rd = instr->rdValue();
+ int rn = instr->rnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t shifter_operand = 0;
+ bool shifter_carry_out = 0;
+ if (type == 0) {
+ shifter_operand = getShiftRm(instr, &shifter_carry_out);
+ } else {
+ MOZ_ASSERT(instr->typeValue() == 1);
+ shifter_operand = getImm(instr, &shifter_carry_out);
+ }
+ int32_t alu_out;
+ switch (instr->opcodeField()) {
+ case OpAnd:
+ alu_out = rn_val & shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ case OpEor:
+ alu_out = rn_val ^ shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ case OpSub:
+ alu_out = rn_val - shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(!borrowFrom(rn_val, shifter_operand));
+ setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false));
+ }
+ break;
+ case OpRsb:
+ alu_out = shifter_operand - rn_val;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(!borrowFrom(shifter_operand, rn_val));
+ setVFlag(overflowFrom(alu_out, shifter_operand, rn_val, false));
+ }
+ break;
+ case OpAdd:
+ alu_out = rn_val + shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(carryFrom(rn_val, shifter_operand));
+ setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
+ }
+ break;
+ case OpAdc:
+ alu_out = rn_val + shifter_operand + getCarry();
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(carryFrom(rn_val, shifter_operand, getCarry()));
+ setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
+ }
+ break;
+ case OpSbc:
+ alu_out = rn_val - shifter_operand - (getCarry() == 0 ? 1 : 0);
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ MOZ_CRASH();
+ }
+ break;
+ case OpRsc:
+ alu_out = shifter_operand - rn_val - (getCarry() == 0 ? 1 : 0);
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ MOZ_CRASH();
+ }
+ break;
+ case OpTst:
+ if (instr->hasS()) {
+ alu_out = rn_val & shifter_operand;
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ } else {
+ alu_out = instr->immedMovwMovtValue();
+ set_register(rd, alu_out);
+ }
+ break;
+ case OpTeq:
+ if (instr->hasS()) {
+ alu_out = rn_val ^ shifter_operand;
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ MOZ_CRASH();
+ }
+ break;
+ case OpCmp:
+ if (instr->hasS()) {
+ alu_out = rn_val - shifter_operand;
+ setNZFlags(alu_out);
+ setCFlag(!borrowFrom(rn_val, shifter_operand));
+ setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false));
+ } else {
+ alu_out =
+ (get_register(rd) & 0xffff) | (instr->immedMovwMovtValue() << 16);
+ set_register(rd, alu_out);
+ }
+ break;
+ case OpCmn:
+ if (instr->hasS()) {
+ alu_out = rn_val + shifter_operand;
+ setNZFlags(alu_out);
+ setCFlag(carryFrom(rn_val, shifter_operand));
+ setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true));
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ MOZ_CRASH();
+ }
+ break;
+ case OpOrr:
+ alu_out = rn_val | shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ case OpMov:
+ alu_out = shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ case OpBic:
+ alu_out = rn_val & ~shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ case OpMvn:
+ alu_out = ~shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->hasS()) {
+ setNZFlags(alu_out);
+ setCFlag(shifter_carry_out);
+ }
+ break;
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ }
+}
+
+void Simulator::decodeType2(SimInstruction* instr) {
+ int rd = instr->rdValue();
+ int rn = instr->rnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t im_val = instr->offset12Value();
+ int32_t addr = 0;
+ switch (instr->PUField()) {
+ case da_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val -= im_val;
+ set_register(rn, rn_val);
+ break;
+ case ia_x:
+ MOZ_ASSERT(!instr->hasW());
+ addr = rn_val;
+ rn_val += im_val;
+ set_register(rn, rn_val);
+ break;
+ case db_x:
+ rn_val -= im_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ case ib_x:
+ rn_val += im_val;
+ addr = rn_val;
+ if (instr->hasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ if (instr->hasB()) {
+ if (instr->hasL()) {
+ uint8_t val = readBU(addr);
+ set_register(rd, val);
+ } else {
+ uint8_t val = get_register(rd);
+ writeB(addr, val);
+ }
+ } else {
+ if (instr->hasL()) {
+ set_register(rd, readW(addr, instr, AllowUnaligned));
+ } else {
+ writeW(addr, get_register(rd), instr, AllowUnaligned);
+ }
+ }
+}
+
+static uint32_t rotateBytes(uint32_t val, int32_t rotate) {
+ switch (rotate) {
+ default:
+ return val;
+ case 1:
+ return (val >> 8) | (val << 24);
+ case 2:
+ return (val >> 16) | (val << 16);
+ case 3:
+ return (val >> 24) | (val << 8);
+ }
+}
+
+void Simulator::decodeType3(SimInstruction* instr) {
+ if (MOZ_UNLIKELY(instr->isUDF())) {
+ uint8_t* newPC;
+ if (wasm::HandleIllegalInstruction(registerState(), &newPC)) {
+ set_pc((int32_t)newPC);
+ return;
+ }
+ MOZ_CRASH("illegal instruction encountered");
+ }
+
+ int rd = instr->rdValue();
+ int rn = instr->rnValue();
+ int32_t rn_val = get_register(rn);
+ bool shifter_carry_out = 0;
+ int32_t shifter_operand = getShiftRm(instr, &shifter_carry_out);
+ int32_t addr = 0;
+ switch (instr->PUField()) {
+ case da_x:
+ MOZ_ASSERT(!instr->hasW());
+ MOZ_CRASH();
+ break;
+ case ia_x: {
+ if (instr->bit(4) == 0) {
+ // Memop.
+ } else {
+ if (instr->bit(5) == 0) {
+ switch (instr->bits(22, 21)) {
+ case 0:
+ if (instr->bit(20) == 0) {
+ if (instr->bit(6) == 0) {
+ // Pkhbt.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = get_register(instr->rmValue());
+ int32_t shift = instr->bits(11, 7);
+ rm_val <<= shift;
+ set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
+ } else {
+ // Pkhtb.
+ uint32_t rn_val = get_register(rn);
+ int32_t rm_val = get_register(instr->rmValue());
+ int32_t shift = instr->bits(11, 7);
+ if (shift == 0) {
+ shift = 32;
+ }
+ rm_val >>= shift;
+ set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 1:
+ MOZ_CRASH();
+ break;
+ case 2:
+ MOZ_CRASH();
+ break;
+ case 3: {
+ // Usat.
+ int32_t sat_pos = instr->bits(20, 16);
+ int32_t sat_val = (1 << sat_pos) - 1;
+ int32_t shift = instr->bits(11, 7);
+ int32_t shift_type = instr->bit(6);
+ int32_t rm_val = get_register(instr->rmValue());
+ if (shift_type == 0) { // LSL
+ rm_val <<= shift;
+ } else { // ASR
+ rm_val >>= shift;
+ }
+
+ // If saturation occurs, the Q flag should be set in the
+ // CPSR. There is no Q flag yet, and no instruction (MRS)
+ // to read the CPSR directly.
+ if (rm_val > sat_val) {
+ rm_val = sat_val;
+ } else if (rm_val < 0) {
+ rm_val = 0;
+ }
+ set_register(rd, rm_val);
+ break;
+ }
+ }
+ } else {
+ switch (instr->bits(22, 21)) {
+ case 0:
+ MOZ_CRASH();
+ break;
+ case 1:
+ if (instr->bits(7, 4) == 7 && instr->bits(19, 16) == 15) {
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ if (instr->bit(20)) {
+ // Sxth.
+ set_register(rd, (int32_t)(int16_t)(rm_val & 0xFFFF));
+ } else {
+ // Sxtb.
+ set_register(rd, (int32_t)(int8_t)(rm_val & 0xFF));
+ }
+ } else if (instr->bits(20, 16) == 0b1'1111 &&
+ instr->bits(11, 4) == 0b1111'0011) {
+ // Rev
+ uint32_t rm_val = get_register(instr->rmValue());
+
+ static_assert(MOZ_LITTLE_ENDIAN());
+ set_register(rd,
+ mozilla::NativeEndian::swapToBigEndian(rm_val));
+ } else if (instr->bits(20, 16) == 0b1'1111 &&
+ instr->bits(11, 4) == 0b1111'1011) {
+ // Rev16
+ uint32_t rm_val = get_register(instr->rmValue());
+
+ static_assert(MOZ_LITTLE_ENDIAN());
+ uint32_t hi = mozilla::NativeEndian::swapToBigEndian(
+ uint16_t(rm_val >> 16));
+ uint32_t lo =
+ mozilla::NativeEndian::swapToBigEndian(uint16_t(rm_val));
+ set_register(rd, (hi << 16) | lo);
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 2:
+ if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) {
+ if (instr->bits(19, 16) == 0xF) {
+ // Uxtb16.
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000));
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 3:
+ if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) {
+ if (instr->bits(19, 16) == 0xF) {
+ // Uxtb.
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ set_register(rd, (rm_val & 0xFF));
+ } else {
+ // Uxtab.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ set_register(rd, rn_val + (rm_val & 0xFF));
+ }
+ } else if ((instr->bit(20) == 1) && (instr->bits(9, 6) == 1)) {
+ if (instr->bits(19, 16) == 0xF) {
+ // Uxth.
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ set_register(rd, (rm_val & 0xFFFF));
+ } else {
+ // Uxtah.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = rotateBytes(get_register(instr->rmValue()),
+ instr->bits(11, 10));
+ set_register(rd, rn_val + (rm_val & 0xFFFF));
+ }
+ } else if (instr->bits(20, 16) == 0b1'1111 &&
+ instr->bits(11, 4) == 0b1111'1011) {
+ // Revsh
+ uint32_t rm_val = get_register(instr->rmValue());
+
+ static_assert(MOZ_LITTLE_ENDIAN());
+ set_register(
+ rd, int32_t(int16_t(mozilla::NativeEndian::swapToBigEndian(
+ uint16_t(rm_val)))));
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ }
+ }
+ return;
+ }
+ break;
+ }
+ case db_x: { // sudiv
+ if (instr->bit(22) == 0x0 && instr->bit(20) == 0x1 &&
+ instr->bits(15, 12) == 0x0f && instr->bits(7, 4) == 0x1) {
+ if (!instr->hasW()) {
+ // sdiv (in V8 notation matching ARM ISA format) rn = rm/rs.
+ int rm = instr->rmValue();
+ int32_t rm_val = get_register(rm);
+ int rs = instr->rsValue();
+ int32_t rs_val = get_register(rs);
+ int32_t ret_val = 0;
+ MOZ_ASSERT(rs_val != 0);
+ if ((rm_val == INT32_MIN) && (rs_val == -1)) {
+ ret_val = INT32_MIN;
+ } else {
+ ret_val = rm_val / rs_val;
+ }
+ set_register(rn, ret_val);
+ return;
+ } else {
+ // udiv (in V8 notation matching ARM ISA format) rn = rm/rs.
+ int rm = instr->rmValue();
+ uint32_t rm_val = get_register(rm);
+ int rs = instr->rsValue();
+ uint32_t rs_val = get_register(rs);
+ uint32_t ret_val = 0;
+ MOZ_ASSERT(rs_val != 0);
+ ret_val = rm_val / rs_val;
+ set_register(rn, ret_val);
+ return;
+ }
+ }
+
+ addr = rn_val - shifter_operand;
+ if (instr->hasW()) {
+ set_register(rn, addr);
+ }
+ break;
+ }
+ case ib_x: {
+ if (instr->hasW() && (instr->bits(6, 4) == 0x5)) {
+ uint32_t widthminus1 = static_cast<uint32_t>(instr->bits(20, 16));
+ uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7));
+ uint32_t msbit = widthminus1 + lsbit;
+ if (msbit <= 31) {
+ if (instr->bit(22)) {
+ // ubfx - unsigned bitfield extract.
+ uint32_t rm_val =
+ static_cast<uint32_t>(get_register(instr->rmValue()));
+ uint32_t extr_val = rm_val << (31 - msbit);
+ extr_val = extr_val >> (31 - widthminus1);
+ set_register(instr->rdValue(), extr_val);
+ } else {
+ // sbfx - signed bitfield extract.
+ int32_t rm_val = get_register(instr->rmValue());
+ int32_t extr_val = rm_val << (31 - msbit);
+ extr_val = extr_val >> (31 - widthminus1);
+ set_register(instr->rdValue(), extr_val);
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ return;
+ } else if (!instr->hasW() && (instr->bits(6, 4) == 0x1)) {
+ uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7));
+ uint32_t msbit = static_cast<uint32_t>(instr->bits(20, 16));
+ if (msbit >= lsbit) {
+ // bfc or bfi - bitfield clear/insert.
+ uint32_t rd_val =
+ static_cast<uint32_t>(get_register(instr->rdValue()));
+ uint32_t bitcount = msbit - lsbit + 1;
+ uint32_t mask = (1 << bitcount) - 1;
+ rd_val &= ~(mask << lsbit);
+ if (instr->rmValue() != 15) {
+ // bfi - bitfield insert.
+ uint32_t rm_val =
+ static_cast<uint32_t>(get_register(instr->rmValue()));
+ rm_val &= mask;
+ rd_val |= rm_val << lsbit;
+ }
+ set_register(instr->rdValue(), rd_val);
+ } else {
+ MOZ_CRASH();
+ }
+ return;
+ } else {
+ addr = rn_val + shifter_operand;
+ if (instr->hasW()) {
+ set_register(rn, addr);
+ }
+ }
+ break;
+ }
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ if (instr->hasB()) {
+ if (instr->hasL()) {
+ uint8_t byte = readB(addr);
+ set_register(rd, byte);
+ } else {
+ uint8_t byte = get_register(rd);
+ writeB(addr, byte);
+ }
+ } else {
+ if (instr->hasL()) {
+ set_register(rd, readW(addr, instr, AllowUnaligned));
+ } else {
+ writeW(addr, get_register(rd), instr, AllowUnaligned);
+ }
+ }
+}
+
+void Simulator::decodeType4(SimInstruction* instr) {
+ // Only allowed to be set in privileged mode.
+ MOZ_ASSERT(instr->bit(22) == 0);
+ bool load = instr->hasL();
+ handleRList(instr, load);
+}
+
+void Simulator::decodeType5(SimInstruction* instr) {
+ int off = instr->sImmed24Value() << 2;
+ intptr_t pc_address = get_pc();
+ if (instr->hasLink()) {
+ set_register(lr, pc_address + SimInstruction::kInstrSize);
+ }
+ int pc_reg = get_register(pc);
+ set_pc(pc_reg + off);
+}
+
+void Simulator::decodeType6(SimInstruction* instr) {
+ decodeType6CoprocessorIns(instr);
+}
+
+void Simulator::decodeType7(SimInstruction* instr) {
+ if (instr->bit(24) == 1) {
+ softwareInterrupt(instr);
+ } else if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) {
+ decodeType7CoprocessorIns(instr);
+ } else {
+ decodeTypeVFP(instr);
+ }
+}
+
+void Simulator::decodeType7CoprocessorIns(SimInstruction* instr) {
+ if (instr->bit(20) == 0) {
+ // MCR, MCR2
+ if (instr->coprocessorValue() == 15) {
+ int opc1 = instr->bits(23, 21);
+ int opc2 = instr->bits(7, 5);
+ int CRn = instr->bits(19, 16);
+ int CRm = instr->bits(3, 0);
+ if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 10) {
+ // ARMv6 DSB instruction. We do not use DSB.
+ MOZ_CRASH("DSB not implemented");
+ } else if (opc1 == 0 && opc2 == 5 && CRn == 7 && CRm == 10) {
+ // ARMv6 DMB instruction.
+ AtomicOperations::fenceSeqCst();
+ } else if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 5) {
+ // ARMv6 ISB instruction. We do not use ISB.
+ MOZ_CRASH("ISB not implemented");
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ // MRC, MRC2
+ MOZ_CRASH();
+ }
+}
+
+void Simulator::decodeTypeVFP(SimInstruction* instr) {
+ MOZ_ASSERT(instr->typeValue() == 7 && instr->bit(24) == 0);
+ MOZ_ASSERT(instr->bits(11, 9) == 0x5);
+
+ // Obtain double precision register codes.
+ VFPRegPrecision precision =
+ (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
+ int vm = instr->VFPMRegValue(precision);
+ int vd = instr->VFPDRegValue(precision);
+ int vn = instr->VFPNRegValue(precision);
+
+ if (instr->bit(4) == 0) {
+ if (instr->opc1Value() == 0x7) {
+ // Other data processing instructions.
+ if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x1)) {
+ // vmov register to register.
+ if (instr->szValue() == 0x1) {
+ int m = instr->VFPMRegValue(kDoublePrecision);
+ int d = instr->VFPDRegValue(kDoublePrecision);
+ double temp;
+ get_double_from_d_register(m, &temp);
+ set_d_register_from_double(d, temp);
+ } else {
+ int m = instr->VFPMRegValue(kSinglePrecision);
+ int d = instr->VFPDRegValue(kSinglePrecision);
+ float temp;
+ get_float_from_s_register(m, &temp);
+ set_s_register_from_float(d, temp);
+ }
+ } else if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x3)) {
+ // vabs
+ if (instr->szValue() == 0x1) {
+ union {
+ double f64;
+ uint64_t u64;
+ } u;
+ get_double_from_d_register(vm, &u.f64);
+ u.u64 &= 0x7fffffffffffffffu;
+ double dd_value = u.f64;
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ union {
+ float f32;
+ uint32_t u32;
+ } u;
+ get_float_from_s_register(vm, &u.f32);
+ u.u32 &= 0x7fffffffu;
+ float fd_value = u.f32;
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ }
+ } else if ((instr->opc2Value() == 0x1) && (instr->opc3Value() == 0x1)) {
+ // vneg
+ if (instr->szValue() == 0x1) {
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = -dm_value;
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = -fm_value;
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ }
+ } else if ((instr->opc2Value() == 0x7) && (instr->opc3Value() == 0x3)) {
+ decodeVCVTBetweenDoubleAndSingle(instr);
+ } else if ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) {
+ decodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if ((instr->opc2Value() == 0xA) && (instr->opc3Value() == 0x3) &&
+ (instr->bit(8) == 1)) {
+ // vcvt.f64.s32 Dd, Dd, #<fbits>.
+ int fraction_bits = 32 - ((instr->bits(3, 0) << 1) | instr->bit(5));
+ int fixed_value = get_sinteger_from_s_register(vd * 2);
+ double divide = 1 << fraction_bits;
+ set_d_register_from_double(vd, fixed_value / divide);
+ } else if (((instr->opc2Value() >> 1) == 0x6) &&
+ (instr->opc3Value() & 0x1)) {
+ decodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if (((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) &&
+ (instr->opc3Value() & 0x1)) {
+ decodeVCMP(instr);
+ } else if (((instr->opc2Value() == 0x1)) && (instr->opc3Value() == 0x3)) {
+ // vsqrt
+ if (instr->szValue() == 0x1) {
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = std::sqrt(dm_value);
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = std::sqrt(fm_value);
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ }
+ } else if (instr->opc3Value() == 0x0) {
+ // vmov immediate.
+ if (instr->szValue() == 0x1) {
+ set_d_register_from_double(vd, instr->doubleImmedVmov());
+ } else {
+ // vmov.f32 immediate.
+ set_s_register_from_float(vd, instr->float32ImmedVmov());
+ }
+ } else {
+ decodeVCVTBetweenFloatingPointAndIntegerFrac(instr);
+ }
+ } else if (instr->opc1Value() == 0x3) {
+ if (instr->szValue() != 0x1) {
+ if (instr->opc3Value() & 0x1) {
+ // vsub
+ float fn_value;
+ get_float_from_s_register(vn, &fn_value);
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = fn_value - fm_value;
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ } else {
+ // vadd
+ float fn_value;
+ get_float_from_s_register(vn, &fn_value);
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = fn_value + fm_value;
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ }
+ } else {
+ if (instr->opc3Value() & 0x1) {
+ // vsub
+ double dn_value;
+ get_double_from_d_register(vn, &dn_value);
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = dn_value - dm_value;
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ // vadd
+ double dn_value;
+ get_double_from_d_register(vn, &dn_value);
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = dn_value + dm_value;
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ }
+ }
+ } else if ((instr->opc1Value() == 0x2) && !(instr->opc3Value() & 0x1)) {
+ // vmul
+ if (instr->szValue() != 0x1) {
+ float fn_value;
+ get_float_from_s_register(vn, &fn_value);
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = fn_value * fm_value;
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ } else {
+ double dn_value;
+ get_double_from_d_register(vn, &dn_value);
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = dn_value * dm_value;
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ }
+ } else if ((instr->opc1Value() == 0x0)) {
+ // vmla, vmls
+ const bool is_vmls = (instr->opc3Value() & 0x1);
+
+ if (instr->szValue() != 0x1) {
+ MOZ_CRASH("Not used by V8.");
+ }
+
+ double dd_val;
+ get_double_from_d_register(vd, &dd_val);
+ double dn_val;
+ get_double_from_d_register(vn, &dn_val);
+ double dm_val;
+ get_double_from_d_register(vm, &dm_val);
+
+ // Note: we do the mul and add/sub in separate steps to avoid
+ // getting a result with too high precision.
+ set_d_register_from_double(vd, dn_val * dm_val);
+ double temp;
+ get_double_from_d_register(vd, &temp);
+ if (is_vmls) {
+ temp = dd_val - temp;
+ } else {
+ temp = dd_val + temp;
+ }
+ canonicalizeNaN(&temp);
+ set_d_register_from_double(vd, temp);
+ } else if ((instr->opc1Value() == 0x4) && !(instr->opc3Value() & 0x1)) {
+ // vdiv
+ if (instr->szValue() != 0x1) {
+ float fn_value;
+ get_float_from_s_register(vn, &fn_value);
+ float fm_value;
+ get_float_from_s_register(vm, &fm_value);
+ float fd_value = fn_value / fm_value;
+ div_zero_vfp_flag_ = (fm_value == 0);
+ canonicalizeNaN(&fd_value);
+ set_s_register_from_float(vd, fd_value);
+ } else {
+ double dn_value;
+ get_double_from_d_register(vn, &dn_value);
+ double dm_value;
+ get_double_from_d_register(vm, &dm_value);
+ double dd_value = dn_value / dm_value;
+ div_zero_vfp_flag_ = (dm_value == 0);
+ canonicalizeNaN(&dd_value);
+ set_d_register_from_double(vd, dd_value);
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ if (instr->VCValue() == 0x0 && instr->VAValue() == 0x0) {
+ decodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
+ } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) &&
+ (instr->bit(23) == 0x0)) {
+ // vmov (ARM core register to scalar).
+ int vd = instr->bits(19, 16) | (instr->bit(7) << 4);
+ double dd_value;
+ get_double_from_d_register(vd, &dd_value);
+ int32_t data[2];
+ memcpy(data, &dd_value, 8);
+ data[instr->bit(21)] = get_register(instr->rtValue());
+ memcpy(&dd_value, data, 8);
+ set_d_register_from_double(vd, dd_value);
+ } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) &&
+ (instr->bit(23) == 0x0)) {
+ // vmov (scalar to ARM core register).
+ int vn = instr->bits(19, 16) | (instr->bit(7) << 4);
+ double dn_value;
+ get_double_from_d_register(vn, &dn_value);
+ int32_t data[2];
+ memcpy(data, &dn_value, 8);
+ set_register(instr->rtValue(), data[instr->bit(21)]);
+ } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) {
+ // vmrs
+ uint32_t rt = instr->rtValue();
+ if (rt == 0xF) {
+ copy_FPSCR_to_APSR();
+ } else {
+ // Emulate FPSCR from the Simulator flags.
+ uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) |
+ (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) |
+ (FPSCR_default_NaN_mode_ << 25) |
+ (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) |
+ (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) |
+ (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_);
+ set_register(rt, fpscr);
+ }
+ } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) {
+ // vmsr
+ uint32_t rt = instr->rtValue();
+ if (rt == pc) {
+ MOZ_CRASH();
+ } else {
+ uint32_t rt_value = get_register(rt);
+ n_flag_FPSCR_ = (rt_value >> 31) & 1;
+ z_flag_FPSCR_ = (rt_value >> 30) & 1;
+ c_flag_FPSCR_ = (rt_value >> 29) & 1;
+ v_flag_FPSCR_ = (rt_value >> 28) & 1;
+ FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
+ inexact_vfp_flag_ = (rt_value >> 4) & 1;
+ underflow_vfp_flag_ = (rt_value >> 3) & 1;
+ overflow_vfp_flag_ = (rt_value >> 2) & 1;
+ div_zero_vfp_flag_ = (rt_value >> 1) & 1;
+ inv_op_vfp_flag_ = (rt_value >> 0) & 1;
+ FPSCR_rounding_mode_ =
+ static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask);
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ }
+}
+
+void Simulator::decodeVMOVBetweenCoreAndSinglePrecisionRegisters(
+ SimInstruction* instr) {
+ MOZ_ASSERT(instr->bit(4) == 1 && instr->VCValue() == 0x0 &&
+ instr->VAValue() == 0x0);
+
+ int t = instr->rtValue();
+ int n = instr->VFPNRegValue(kSinglePrecision);
+ bool to_arm_register = (instr->VLValue() == 0x1);
+ if (to_arm_register) {
+ int32_t int_value = get_sinteger_from_s_register(n);
+ set_register(t, int_value);
+ } else {
+ int32_t rs_val = get_register(t);
+ set_s_register_from_sinteger(n, rs_val);
+ }
+}
+
+void Simulator::decodeVCMP(SimInstruction* instr) {
+ MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7));
+ MOZ_ASSERT(((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) &&
+ (instr->opc3Value() & 0x1));
+ // Comparison.
+
+ VFPRegPrecision precision = kSinglePrecision;
+ if (instr->szValue() == 1) {
+ precision = kDoublePrecision;
+ }
+
+ int d = instr->VFPDRegValue(precision);
+ int m = 0;
+ if (instr->opc2Value() == 0x4) {
+ m = instr->VFPMRegValue(precision);
+ }
+
+ if (precision == kDoublePrecision) {
+ double dd_value;
+ get_double_from_d_register(d, &dd_value);
+ double dm_value = 0.0;
+ if (instr->opc2Value() == 0x4) {
+ get_double_from_d_register(m, &dm_value);
+ }
+
+ // Raise exceptions for quiet NaNs if necessary.
+ if (instr->bit(7) == 1) {
+ if (std::isnan(dd_value)) {
+ inv_op_vfp_flag_ = true;
+ }
+ }
+ compute_FPSCR_Flags(dd_value, dm_value);
+ } else {
+ float fd_value;
+ get_float_from_s_register(d, &fd_value);
+ float fm_value = 0.0;
+ if (instr->opc2Value() == 0x4) {
+ get_float_from_s_register(m, &fm_value);
+ }
+
+ // Raise exceptions for quiet NaNs if necessary.
+ if (instr->bit(7) == 1) {
+ if (std::isnan(fd_value)) {
+ inv_op_vfp_flag_ = true;
+ }
+ }
+ compute_FPSCR_Flags(fd_value, fm_value);
+ }
+}
+
+void Simulator::decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr) {
+ MOZ_ASSERT(instr->bit(4) == 0 && instr->opc1Value() == 0x7);
+ MOZ_ASSERT(instr->opc2Value() == 0x7 && instr->opc3Value() == 0x3);
+
+ VFPRegPrecision dst_precision = kDoublePrecision;
+ VFPRegPrecision src_precision = kSinglePrecision;
+ if (instr->szValue() == 1) {
+ dst_precision = kSinglePrecision;
+ src_precision = kDoublePrecision;
+ }
+
+ int dst = instr->VFPDRegValue(dst_precision);
+ int src = instr->VFPMRegValue(src_precision);
+
+ if (dst_precision == kSinglePrecision) {
+ double val;
+ get_double_from_d_register(src, &val);
+ set_s_register_from_float(dst, static_cast<float>(val));
+ } else {
+ float val;
+ get_float_from_s_register(src, &val);
+ set_d_register_from_double(dst, static_cast<double>(val));
+ }
+}
+
+static bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val,
+ bool unsigned_) {
+ MOZ_ASSERT(mode == SimRN || mode == SimRM || mode == SimRZ);
+ double max_uint = static_cast<double>(0xffffffffu);
+ double max_int = static_cast<double>(INT32_MAX);
+ double min_int = static_cast<double>(INT32_MIN);
+
+ // Check for NaN.
+ if (val != val) {
+ return true;
+ }
+
+ // Check for overflow. This code works because 32bit integers can be exactly
+ // represented by ieee-754 64bit floating-point values.
+ switch (mode) {
+ case SimRN:
+ return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5)
+ : (val >= (max_int + 0.5)) || (val < (min_int - 0.5));
+ case SimRM:
+ return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0)
+ : (val >= (max_int + 1.0)) || (val < min_int);
+ case SimRZ:
+ return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1)
+ : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0));
+ default:
+ MOZ_CRASH();
+ return true;
+ }
+}
+
+// We call this function only if we had a vfp invalid exception.
+// It returns the correct saturated value.
+static int VFPConversionSaturate(double val, bool unsigned_res) {
+ if (val != val) { // NaN.
+ return 0;
+ }
+ if (unsigned_res) {
+ return (val < 0) ? 0 : 0xffffffffu;
+ }
+ return (val < 0) ? INT32_MIN : INT32_MAX;
+}
+
+void Simulator::decodeVCVTBetweenFloatingPointAndInteger(
+ SimInstruction* instr) {
+ MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7) &&
+ (instr->bits(27, 23) == 0x1D));
+ MOZ_ASSERT(
+ ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) ||
+ (((instr->opc2Value() >> 1) == 0x6) && (instr->opc3Value() & 0x1)));
+
+ // Conversion between floating-point and integer.
+ bool to_integer = (instr->bit(18) == 1);
+
+ VFPRegPrecision src_precision =
+ (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
+
+ if (to_integer) {
+ // We are playing with code close to the C++ standard's limits below,
+ // hence the very simple code and heavy checks.
+ //
+ // Note: C++ defines default type casting from floating point to integer
+ // as (close to) rounding toward zero ("fractional part discarded").
+
+ int dst = instr->VFPDRegValue(kSinglePrecision);
+ int src = instr->VFPMRegValue(src_precision);
+
+ // Bit 7 in vcvt instructions indicates if we should use the FPSCR
+ // rounding mode or the default Round to Zero mode.
+ VFPRoundingMode mode = (instr->bit(7) != 1) ? FPSCR_rounding_mode_ : SimRZ;
+ MOZ_ASSERT(mode == SimRM || mode == SimRZ || mode == SimRN);
+
+ bool unsigned_integer = (instr->bit(16) == 0);
+ bool double_precision = (src_precision == kDoublePrecision);
+
+ double val;
+ if (double_precision) {
+ get_double_from_d_register(src, &val);
+ } else {
+ float fval;
+ get_float_from_s_register(src, &fval);
+ val = double(fval);
+ }
+
+ int temp = unsigned_integer ? static_cast<uint32_t>(val)
+ : static_cast<int32_t>(val);
+
+ inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
+
+ double abs_diff = unsigned_integer
+ ? std::fabs(val - static_cast<uint32_t>(temp))
+ : std::fabs(val - temp);
+
+ inexact_vfp_flag_ = (abs_diff != 0);
+
+ if (inv_op_vfp_flag_) {
+ temp = VFPConversionSaturate(val, unsigned_integer);
+ } else {
+ switch (mode) {
+ case SimRN: {
+ int val_sign = (val > 0) ? 1 : -1;
+ if (abs_diff > 0.5) {
+ temp += val_sign;
+ } else if (abs_diff == 0.5) {
+ // Round to even if exactly halfway.
+ temp = ((temp % 2) == 0) ? temp : temp + val_sign;
+ }
+ break;
+ }
+
+ case SimRM:
+ temp = temp > val ? temp - 1 : temp;
+ break;
+
+ case SimRZ:
+ // Nothing to do.
+ break;
+
+ default:
+ MOZ_CRASH();
+ }
+ }
+
+ // Update the destination register.
+ set_s_register_from_sinteger(dst, temp);
+ } else {
+ bool unsigned_integer = (instr->bit(7) == 0);
+ int dst = instr->VFPDRegValue(src_precision);
+ int src = instr->VFPMRegValue(kSinglePrecision);
+
+ int val = get_sinteger_from_s_register(src);
+
+ if (src_precision == kDoublePrecision) {
+ if (unsigned_integer) {
+ set_d_register_from_double(
+ dst, static_cast<double>(static_cast<uint32_t>(val)));
+ } else {
+ set_d_register_from_double(dst, static_cast<double>(val));
+ }
+ } else {
+ if (unsigned_integer) {
+ set_s_register_from_float(
+ dst, static_cast<float>(static_cast<uint32_t>(val)));
+ } else {
+ set_s_register_from_float(dst, static_cast<float>(val));
+ }
+ }
+ }
+}
+
+// A VFPv3 specific instruction.
+void Simulator::decodeVCVTBetweenFloatingPointAndIntegerFrac(
+ SimInstruction* instr) {
+ MOZ_ASSERT(instr->bits(27, 24) == 0xE && instr->opc1Value() == 0x7 &&
+ instr->bit(19) == 1 && instr->bit(17) == 1 &&
+ instr->bits(11, 9) == 0x5 && instr->bit(6) == 1 &&
+ instr->bit(4) == 0);
+
+ int size = (instr->bit(7) == 1) ? 32 : 16;
+
+ int fraction_bits = size - ((instr->bits(3, 0) << 1) | instr->bit(5));
+ double mult = 1 << fraction_bits;
+
+ MOZ_ASSERT(size == 32); // Only handling size == 32 for now.
+
+ // Conversion between floating-point and integer.
+ bool to_fixed = (instr->bit(18) == 1);
+
+ VFPRegPrecision precision =
+ (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision;
+
+ if (to_fixed) {
+ // We are playing with code close to the C++ standard's limits below,
+ // hence the very simple code and heavy checks.
+ //
+ // Note: C++ defines default type casting from floating point to integer
+ // as (close to) rounding toward zero ("fractional part discarded").
+
+ int dst = instr->VFPDRegValue(precision);
+
+ bool unsigned_integer = (instr->bit(16) == 1);
+ bool double_precision = (precision == kDoublePrecision);
+
+ double val;
+ if (double_precision) {
+ get_double_from_d_register(dst, &val);
+ } else {
+ float fval;
+ get_float_from_s_register(dst, &fval);
+ val = double(fval);
+ }
+
+ // Scale value by specified number of fraction bits.
+ val *= mult;
+
+ // Rounding down towards zero. No need to account for the rounding error
+ // as this instruction always rounds down towards zero. See SimRZ below.
+ int temp = unsigned_integer ? static_cast<uint32_t>(val)
+ : static_cast<int32_t>(val);
+
+ inv_op_vfp_flag_ = get_inv_op_vfp_flag(SimRZ, val, unsigned_integer);
+
+ double abs_diff = unsigned_integer
+ ? std::fabs(val - static_cast<uint32_t>(temp))
+ : std::fabs(val - temp);
+
+ inexact_vfp_flag_ = (abs_diff != 0);
+
+ if (inv_op_vfp_flag_) {
+ temp = VFPConversionSaturate(val, unsigned_integer);
+ }
+
+ // Update the destination register.
+ if (double_precision) {
+ uint32_t dbl[2];
+ dbl[0] = temp;
+ dbl[1] = 0;
+ set_d_register(dst, dbl);
+ } else {
+ set_s_register_from_sinteger(dst, temp);
+ }
+ } else {
+ MOZ_CRASH(); // Not implemented, fixed to float.
+ }
+}
+
+void Simulator::decodeType6CoprocessorIns(SimInstruction* instr) {
+ MOZ_ASSERT(instr->typeValue() == 6);
+
+ if (instr->coprocessorValue() == 0xA) {
+ switch (instr->opcodeValue()) {
+ case 0x8:
+ case 0xA:
+ case 0xC:
+ case 0xE: { // Load and store single precision float to memory.
+ int rn = instr->rnValue();
+ int vd = instr->VFPDRegValue(kSinglePrecision);
+ int offset = instr->immed8Value();
+ if (!instr->hasU()) {
+ offset = -offset;
+ }
+
+ int32_t address = get_register(rn) + 4 * offset;
+ if (instr->hasL()) {
+ // Load double from memory: vldr.
+ set_s_register_from_sinteger(vd, readW(address, instr));
+ } else {
+ // Store double to memory: vstr.
+ writeW(address, get_sinteger_from_s_register(vd), instr);
+ }
+ break;
+ }
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB:
+ // Load/store multiple single from memory: vldm/vstm.
+ handleVList(instr);
+ break;
+ default:
+ MOZ_CRASH();
+ }
+ } else if (instr->coprocessorValue() == 0xB) {
+ switch (instr->opcodeValue()) {
+ case 0x2:
+ // Load and store double to two GP registers
+ if (instr->bits(7, 6) != 0 || instr->bit(4) != 1) {
+ MOZ_CRASH(); // Not used atm.
+ } else {
+ int rt = instr->rtValue();
+ int rn = instr->rnValue();
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ if (instr->hasL()) {
+ int32_t data[2];
+ double d;
+ get_double_from_d_register(vm, &d);
+ memcpy(data, &d, 8);
+ set_register(rt, data[0]);
+ set_register(rn, data[1]);
+ } else {
+ int32_t data[] = {get_register(rt), get_register(rn)};
+ double d;
+ memcpy(&d, data, 8);
+ set_d_register_from_double(vm, d);
+ }
+ }
+ break;
+ case 0x8:
+ case 0xA:
+ case 0xC:
+ case 0xE: { // Load and store double to memory.
+ int rn = instr->rnValue();
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ int offset = instr->immed8Value();
+ if (!instr->hasU()) {
+ offset = -offset;
+ }
+ int32_t address = get_register(rn) + 4 * offset;
+ if (instr->hasL()) {
+ // Load double from memory: vldr.
+ uint64_t data = readQ(address, instr);
+ double val;
+ memcpy(&val, &data, 8);
+ set_d_register_from_double(vd, val);
+ } else {
+ // Store double to memory: vstr.
+ uint64_t data;
+ double val;
+ get_double_from_d_register(vd, &val);
+ memcpy(&data, &val, 8);
+ writeQ(address, data, instr);
+ }
+ break;
+ }
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB:
+ // Load/store multiple double from memory: vldm/vstm.
+ handleVList(instr);
+ break;
+ default:
+ MOZ_CRASH();
+ }
+ } else {
+ MOZ_CRASH();
+ }
+}
+
+void Simulator::decodeSpecialCondition(SimInstruction* instr) {
+ switch (instr->specialValue()) {
+ case 5:
+ if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 &&
+ instr->bit(4) == 1) {
+ // vmovl signed
+ if ((instr->vdValue() & 1) != 0) {
+ MOZ_CRASH("Undefined behavior");
+ }
+ int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1);
+ int Vm = (instr->bit(5) << 4) | instr->vmValue();
+ int imm3 = instr->bits(21, 19);
+ if (imm3 != 1 && imm3 != 2 && imm3 != 4) {
+ MOZ_CRASH();
+ }
+ int esize = 8 * imm3;
+ int elements = 64 / esize;
+ int8_t from[8];
+ get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
+ int16_t to[8];
+ int e = 0;
+ while (e < elements) {
+ to[e] = from[e];
+ e++;
+ }
+ set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 7:
+ if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 &&
+ instr->bit(4) == 1) {
+ // vmovl unsigned.
+ if ((instr->vdValue() & 1) != 0) {
+ MOZ_CRASH("Undefined behavior");
+ }
+ int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1);
+ int Vm = (instr->bit(5) << 4) | instr->vmValue();
+ int imm3 = instr->bits(21, 19);
+ if (imm3 != 1 && imm3 != 2 && imm3 != 4) {
+ MOZ_CRASH();
+ }
+ int esize = 8 * imm3;
+ int elements = 64 / esize;
+ uint8_t from[8];
+ get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
+ uint16_t to[8];
+ int e = 0;
+ while (e < elements) {
+ to[e] = from[e];
+ e++;
+ }
+ set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 8:
+ if (instr->bits(21, 20) == 0) {
+ // vst1
+ int Vd = (instr->bit(22) << 4) | instr->vdValue();
+ int Rn = instr->vnValue();
+ int type = instr->bits(11, 8);
+ int Rm = instr->vmValue();
+ int32_t address = get_register(Rn);
+ int regs = 0;
+ switch (type) {
+ case nlt_1:
+ regs = 1;
+ break;
+ case nlt_2:
+ regs = 2;
+ break;
+ case nlt_3:
+ regs = 3;
+ break;
+ case nlt_4:
+ regs = 4;
+ break;
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ int r = 0;
+ while (r < regs) {
+ uint32_t data[2];
+ get_d_register(Vd + r, data);
+ // TODO: We should AllowUnaligned here only if the alignment attribute
+ // of the instruction calls for default alignment.
+ //
+ // Use writeQ to get handling of traps right. (The spec says to
+ // perform two individual word writes, but let's not worry about
+ // that.)
+ writeQ(address, (uint64_t(data[1]) << 32) | uint64_t(data[0]), instr,
+ AllowUnaligned);
+ address += 8;
+ r++;
+ }
+ if (Rm != 15) {
+ if (Rm == 13) {
+ set_register(Rn, address);
+ } else {
+ set_register(Rn, get_register(Rn) + get_register(Rm));
+ }
+ }
+ } else if (instr->bits(21, 20) == 2) {
+ // vld1
+ int Vd = (instr->bit(22) << 4) | instr->vdValue();
+ int Rn = instr->vnValue();
+ int type = instr->bits(11, 8);
+ int Rm = instr->vmValue();
+ int32_t address = get_register(Rn);
+ int regs = 0;
+ switch (type) {
+ case nlt_1:
+ regs = 1;
+ break;
+ case nlt_2:
+ regs = 2;
+ break;
+ case nlt_3:
+ regs = 3;
+ break;
+ case nlt_4:
+ regs = 4;
+ break;
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ int r = 0;
+ while (r < regs) {
+ uint32_t data[2];
+ // TODO: We should AllowUnaligned here only if the alignment attribute
+ // of the instruction calls for default alignment.
+ //
+ // Use readQ to get handling of traps right. (The spec says to
+ // perform two individual word reads, but let's not worry about that.)
+ uint64_t tmp = readQ(address, instr, AllowUnaligned);
+ data[0] = tmp;
+ data[1] = tmp >> 32;
+ set_d_register(Vd + r, data);
+ address += 8;
+ r++;
+ }
+ if (Rm != 15) {
+ if (Rm == 13) {
+ set_register(Rn, address);
+ } else {
+ set_register(Rn, get_register(Rn) + get_register(Rm));
+ }
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 9:
+ if (instr->bits(9, 8) == 0) {
+ int Vd = (instr->bit(22) << 4) | instr->vdValue();
+ int Rn = instr->vnValue();
+ int size = instr->bits(11, 10);
+ int Rm = instr->vmValue();
+ int index = instr->bits(7, 5);
+ int align = instr->bit(4);
+ int32_t address = get_register(Rn);
+ if (size != 2 || align) {
+ MOZ_CRASH("NYI");
+ }
+ int a = instr->bits(5, 4);
+ if (a != 0 && a != 3) {
+ MOZ_CRASH("Unspecified");
+ }
+ if (index > 1) {
+ Vd++;
+ index -= 2;
+ }
+ uint32_t data[2];
+ get_d_register(Vd, data);
+ switch (instr->bits(21, 20)) {
+ case 0:
+ // vst1 single element from one lane
+ writeW(address, data[index], instr, AllowUnaligned);
+ break;
+ case 2:
+ // vld1 single element to one lane
+ data[index] = readW(address, instr, AllowUnaligned);
+ set_d_register(Vd, data);
+ break;
+ default:
+ MOZ_CRASH("NYI");
+ }
+ address += 4;
+ if (Rm != 15) {
+ if (Rm == 13) {
+ set_register(Rn, address);
+ } else {
+ set_register(Rn, get_register(Rn) + get_register(Rm));
+ }
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 0xA:
+ if (instr->bits(31, 20) == 0xf57) {
+ switch (instr->bits(7, 4)) {
+ case 1: // CLREX
+ exclusiveMonitorClear();
+ break;
+ case 5: // DMB
+ AtomicOperations::fenceSeqCst();
+ break;
+ case 4: // DSB
+ // We do not use DSB.
+ MOZ_CRASH("DSB unimplemented");
+ case 6: // ISB
+ // We do not use ISB.
+ MOZ_CRASH("ISB unimplemented");
+ default:
+ MOZ_CRASH();
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 0xB:
+ if (instr->bits(22, 20) == 5 && instr->bits(15, 12) == 0xf) {
+ // pld: ignore instruction.
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 0x1C:
+ case 0x1D:
+ if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) {
+ // MCR, MCR2, MRC, MRC2 with cond == 15
+ decodeType7CoprocessorIns(instr);
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ default:
+ MOZ_CRASH();
+ }
+}
+
+// Executes the current instruction.
+void Simulator::instructionDecode(SimInstruction* instr) {
+ if (!SimulatorProcess::ICacheCheckingDisableCount) {
+ AutoLockSimulatorCache als;
+ SimulatorProcess::checkICacheLocked(instr);
+ }
+
+ pc_modified_ = false;
+
+ static const uint32_t kSpecialCondition = 15 << 28;
+ if (instr->conditionField() == kSpecialCondition) {
+ decodeSpecialCondition(instr);
+ } else if (conditionallyExecute(instr)) {
+ switch (instr->typeValue()) {
+ case 0:
+ case 1:
+ decodeType01(instr);
+ break;
+ case 2:
+ decodeType2(instr);
+ break;
+ case 3:
+ decodeType3(instr);
+ break;
+ case 4:
+ decodeType4(instr);
+ break;
+ case 5:
+ decodeType5(instr);
+ break;
+ case 6:
+ decodeType6(instr);
+ break;
+ case 7:
+ decodeType7(instr);
+ break;
+ default:
+ MOZ_CRASH();
+ break;
+ }
+ // If the instruction is a non taken conditional stop, we need to skip
+ // the inlined message address.
+ } else if (instr->isStop()) {
+ set_pc(get_pc() + 2 * SimInstruction::kInstrSize);
+ }
+ if (!pc_modified_) {
+ set_register(pc,
+ reinterpret_cast<int32_t>(instr) + SimInstruction::kInstrSize);
+ }
+}
+
+void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) {
+ single_stepping_ = true;
+ single_step_callback_ = cb;
+ single_step_callback_arg_ = arg;
+ single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
+}
+
+void Simulator::disable_single_stepping() {
+ if (!single_stepping_) {
+ return;
+ }
+ single_step_callback_(single_step_callback_arg_, this, (void*)get_pc());
+ single_stepping_ = false;
+ single_step_callback_ = nullptr;
+ single_step_callback_arg_ = nullptr;
+}
+
+template <bool EnableStopSimAt>
+void Simulator::execute() {
+ if (single_stepping_) {
+ single_step_callback_(single_step_callback_arg_, this, nullptr);
+ }
+
+ // Get the PC to simulate. Cannot use the accessor here as we need the raw
+ // PC value and not the one used as input to arithmetic instructions.
+ int program_counter = get_pc();
+
+ while (program_counter != end_sim_pc) {
+ if (EnableStopSimAt && (icount_ == Simulator::StopSimAt)) {
+ fprintf(stderr, "\nStopped simulation at icount %lld\n", icount_);
+ ArmDebugger dbg(this);
+ dbg.debug();
+ } else {
+ if (single_stepping_) {
+ single_step_callback_(single_step_callback_arg_, this,
+ (void*)program_counter);
+ }
+ SimInstruction* instr =
+ reinterpret_cast<SimInstruction*>(program_counter);
+ instructionDecode(instr);
+ icount_++;
+ }
+ program_counter = get_pc();
+ }
+
+ if (single_stepping_) {
+ single_step_callback_(single_step_callback_arg_, this, nullptr);
+ }
+}
+
+void Simulator::callInternal(uint8_t* entry) {
+ // Prepare to execute the code at entry.
+ set_register(pc, reinterpret_cast<int32_t>(entry));
+
+ // Put down marker for end of simulation. The simulator will stop simulation
+ // when the PC reaches this value. By saving the "end simulation" value into
+ // the LR the simulation stops when returning to this call point.
+ set_register(lr, end_sim_pc);
+
+ // Remember the values of callee-saved registers. The code below assumes
+ // that r9 is not used as sb (static base) in simulator code and therefore
+ // is regarded as a callee-saved register.
+ int32_t r4_val = get_register(r4);
+ int32_t r5_val = get_register(r5);
+ int32_t r6_val = get_register(r6);
+ int32_t r7_val = get_register(r7);
+ int32_t r8_val = get_register(r8);
+ int32_t r9_val = get_register(r9);
+ int32_t r10_val = get_register(r10);
+ int32_t r11_val = get_register(r11);
+
+ // Remember d8 to d15 which are callee-saved.
+ uint64_t d8_val;
+ get_d_register(d8, &d8_val);
+ uint64_t d9_val;
+ get_d_register(d9, &d9_val);
+ uint64_t d10_val;
+ get_d_register(d10, &d10_val);
+ uint64_t d11_val;
+ get_d_register(d11, &d11_val);
+ uint64_t d12_val;
+ get_d_register(d12, &d12_val);
+ uint64_t d13_val;
+ get_d_register(d13, &d13_val);
+ uint64_t d14_val;
+ get_d_register(d14, &d14_val);
+ uint64_t d15_val;
+ get_d_register(d15, &d15_val);
+
+ // Set up the callee-saved registers with a known value. To be able to check
+ // that they are preserved properly across JS execution.
+ int32_t callee_saved_value = uint32_t(icount_);
+ uint64_t callee_saved_value_d = uint64_t(icount_);
+
+ if (!skipCalleeSavedRegsCheck) {
+ set_register(r4, callee_saved_value);
+ set_register(r5, callee_saved_value);
+ set_register(r6, callee_saved_value);
+ set_register(r7, callee_saved_value);
+ set_register(r8, callee_saved_value);
+ set_register(r9, callee_saved_value);
+ set_register(r10, callee_saved_value);
+ set_register(r11, callee_saved_value);
+
+ set_d_register(d8, &callee_saved_value_d);
+ set_d_register(d9, &callee_saved_value_d);
+ set_d_register(d10, &callee_saved_value_d);
+ set_d_register(d11, &callee_saved_value_d);
+ set_d_register(d12, &callee_saved_value_d);
+ set_d_register(d13, &callee_saved_value_d);
+ set_d_register(d14, &callee_saved_value_d);
+ set_d_register(d15, &callee_saved_value_d);
+ }
+ // Start the simulation.
+ if (Simulator::StopSimAt != -1L) {
+ execute<true>();
+ } else {
+ execute<false>();
+ }
+
+ if (!skipCalleeSavedRegsCheck) {
+ // Check that the callee-saved registers have been preserved.
+ MOZ_ASSERT(callee_saved_value == get_register(r4));
+ MOZ_ASSERT(callee_saved_value == get_register(r5));
+ MOZ_ASSERT(callee_saved_value == get_register(r6));
+ MOZ_ASSERT(callee_saved_value == get_register(r7));
+ MOZ_ASSERT(callee_saved_value == get_register(r8));
+ MOZ_ASSERT(callee_saved_value == get_register(r9));
+ MOZ_ASSERT(callee_saved_value == get_register(r10));
+ MOZ_ASSERT(callee_saved_value == get_register(r11));
+
+ uint64_t value;
+ get_d_register(d8, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d9, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d10, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d11, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d12, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d13, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d14, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+ get_d_register(d15, &value);
+ MOZ_ASSERT(callee_saved_value_d == value);
+
+ // Restore callee-saved registers with the original value.
+ set_register(r4, r4_val);
+ set_register(r5, r5_val);
+ set_register(r6, r6_val);
+ set_register(r7, r7_val);
+ set_register(r8, r8_val);
+ set_register(r9, r9_val);
+ set_register(r10, r10_val);
+ set_register(r11, r11_val);
+
+ set_d_register(d8, &d8_val);
+ set_d_register(d9, &d9_val);
+ set_d_register(d10, &d10_val);
+ set_d_register(d11, &d11_val);
+ set_d_register(d12, &d12_val);
+ set_d_register(d13, &d13_val);
+ set_d_register(d14, &d14_val);
+ set_d_register(d15, &d15_val);
+ }
+}
+
+int32_t Simulator::call(uint8_t* entry, int argument_count, ...) {
+ va_list parameters;
+ va_start(parameters, argument_count);
+
+ // First four arguments passed in registers.
+ if (argument_count >= 1) {
+ set_register(r0, va_arg(parameters, int32_t));
+ }
+ if (argument_count >= 2) {
+ set_register(r1, va_arg(parameters, int32_t));
+ }
+ if (argument_count >= 3) {
+ set_register(r2, va_arg(parameters, int32_t));
+ }
+ if (argument_count >= 4) {
+ set_register(r3, va_arg(parameters, int32_t));
+ }
+
+ // Remaining arguments passed on stack.
+ int original_stack = get_register(sp);
+ int entry_stack = original_stack;
+ if (argument_count >= 4) {
+ entry_stack -= (argument_count - 4) * sizeof(int32_t);
+ }
+
+ entry_stack &= ~ABIStackAlignment;
+
+ // Store remaining arguments on stack, from low to high memory.
+ intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
+ for (int i = 4; i < argument_count; i++) {
+ stack_argument[i - 4] = va_arg(parameters, int32_t);
+ }
+ va_end(parameters);
+ set_register(sp, entry_stack);
+
+ callInternal(entry);
+
+ // Pop stack passed arguments.
+ MOZ_ASSERT(entry_stack == get_register(sp));
+ set_register(sp, original_stack);
+
+ int32_t result = get_register(r0);
+ return result;
+}
+
+Simulator* Simulator::Current() {
+ JSContext* cx = TlsContext.get();
+ MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime()));
+ return cx->simulator();
+}
+
+} // namespace jit
+} // namespace js
+
+js::jit::Simulator* JSContext::simulator() const { return simulator_; }