summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/disasm
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/disasm')
-rw-r--r--js/src/jit/arm/disasm/Constants-arm.cpp117
-rw-r--r--js/src/jit/arm/disasm/Constants-arm.h684
-rw-r--r--js/src/jit/arm/disasm/Disasm-arm.cpp2031
-rw-r--r--js/src/jit/arm/disasm/Disasm-arm.h141
4 files changed, 2973 insertions, 0 deletions
diff --git a/js/src/jit/arm/disasm/Constants-arm.cpp b/js/src/jit/arm/disasm/Constants-arm.cpp
new file mode 100644
index 0000000000..408e2df686
--- /dev/null
+++ b/js/src/jit/arm/disasm/Constants-arm.cpp
@@ -0,0 +1,117 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ */
+// Copyright 2009 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "jit/arm/disasm/Constants-arm.h"
+
+#ifdef JS_DISASM_ARM
+
+namespace js {
+namespace jit {
+namespace disasm {
+
+double Instruction::DoubleImmedVmov() const {
+ // Reconstruct a double from the immediate encoded in the vmov instruction.
+ //
+ // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh]
+ // double: [aBbbbbbb,bbcdefgh,00000000,00000000,
+ // 00000000,00000000,00000000,00000000]
+ //
+ // where B = ~b. Only the high 16 bits are affected.
+ uint64_t high16;
+ high16 = (Bits(17, 16) << 4) | Bits(3, 0); // xxxxxxxx,xxcdefgh.
+ high16 |= (0xff * Bit(18)) << 6; // xxbbbbbb,bbxxxxxx.
+ high16 |= (Bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx.
+ high16 |= Bit(19) << 15; // axxxxxxx,xxxxxxxx.
+
+ uint64_t imm = high16 << 48;
+ double d;
+ memcpy(&d, &imm, 8);
+ return d;
+}
+
+// These register names are defined in a way to match the native disassembler
+// formatting. See for example the command "objdump -d <binary file>".
+const char* Registers::names_[kNumRegisters] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "fp", "ip", "sp", "lr", "pc",
+};
+
+// List of alias names which can be used when referring to ARM registers.
+const Registers::RegisterAlias Registers::aliases_[] = {
+ {10, "sl"}, {11, "r11"}, {12, "r12"}, {13, "r13"},
+ {14, "r14"}, {15, "r15"}, {kNoRegister, NULL}};
+
+const char* Registers::Name(int reg) {
+ const char* result;
+ if ((0 <= reg) && (reg < kNumRegisters)) {
+ result = names_[reg];
+ } else {
+ result = "noreg";
+ }
+ return result;
+}
+
+// Support for VFP registers s0 to s31 (d0 to d15) and d16-d31.
+// Note that "sN:sM" is the same as "dN/2" up to d15.
+// These register names are defined in a way to match the native disassembler
+// formatting. See for example the command "objdump -d <binary file>".
+const char* VFPRegisters::names_[kNumVFPRegisters] = {
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10",
+ "s11", "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21",
+ "s22", "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", "d0",
+ "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
+ "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
+ "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"};
+
+const char* VFPRegisters::Name(int reg, bool is_double) {
+ MOZ_ASSERT((0 <= reg) && (reg < kNumVFPRegisters));
+ return names_[reg + (is_double ? kNumVFPSingleRegisters : 0)];
+}
+
+int VFPRegisters::Number(const char* name, bool* is_double) {
+ for (int i = 0; i < kNumVFPRegisters; i++) {
+ if (strcmp(names_[i], name) == 0) {
+ if (i < kNumVFPSingleRegisters) {
+ *is_double = false;
+ return i;
+ } else {
+ *is_double = true;
+ return i - kNumVFPSingleRegisters;
+ }
+ }
+ }
+
+ // No register with the requested name found.
+ return kNoRegister;
+}
+
+int Registers::Number(const char* name) {
+ // Look through the canonical names.
+ for (int i = 0; i < kNumRegisters; i++) {
+ if (strcmp(names_[i], name) == 0) {
+ return i;
+ }
+ }
+
+ // Look through the alias names.
+ int i = 0;
+ while (aliases_[i].reg != kNoRegister) {
+ if (strcmp(aliases_[i].name, name) == 0) {
+ return aliases_[i].reg;
+ }
+ i++;
+ }
+
+ // No register with the requested name found.
+ return kNoRegister;
+}
+
+} // namespace disasm
+} // namespace jit
+} // namespace js
+
+#endif // JS_DISASM_ARM
diff --git a/js/src/jit/arm/disasm/Constants-arm.h b/js/src/jit/arm/disasm/Constants-arm.h
new file mode 100644
index 0000000000..0128062b3f
--- /dev/null
+++ b/js/src/jit/arm/disasm/Constants-arm.h
@@ -0,0 +1,684 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ */
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef jit_arm_disasm_Constants_arm_h
+#define jit_arm_disasm_Constants_arm_h
+
+#ifdef JS_DISASM_ARM
+
+# include "mozilla/Assertions.h"
+# include "mozilla/Types.h"
+
+# include <string.h>
+
+namespace js {
+namespace jit {
+namespace disasm {
+
+// Constant pool marker.
+// Use UDF, the permanently undefined instruction.
+const int kConstantPoolMarkerMask = 0xfff000f0;
+const int kConstantPoolMarker = 0xe7f000f0;
+const int kConstantPoolLengthMaxMask = 0xffff;
+
+inline int EncodeConstantPoolLength(int length) {
+ MOZ_ASSERT((length & kConstantPoolLengthMaxMask) == length);
+ return ((length & 0xfff0) << 4) | (length & 0xf);
+}
+
+inline int DecodeConstantPoolLength(int instr) {
+ MOZ_ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
+ return ((instr >> 4) & 0xfff0) | (instr & 0xf);
+}
+
+// Used in code age prologue - ldr(pc, MemOperand(pc, -4))
+const int kCodeAgeJumpInstruction = 0xe51ff004;
+
+// Number of registers in normal ARM mode.
+const int kNumRegisters = 16;
+
+// VFP support.
+const int kNumVFPSingleRegisters = 32;
+const int kNumVFPDoubleRegisters = 32;
+const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
+
+// PC is register 15.
+const int kPCRegister = 15;
+const int kNoRegister = -1;
+
+// -----------------------------------------------------------------------------
+// Conditions.
+
+// Defines constants and accessor classes to assemble, disassemble and
+// simulate ARM instructions.
+//
+// Section references in the code refer to the "ARM Architecture Reference
+// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
+//
+// Constants for specific fields are defined in their respective named enums.
+// General constants are in an anonymous enum in class Instr.
+
+// Values for the condition field as defined in section A3.2
+enum Condition {
+ kNoCondition = -1,
+
+ eq = 0 << 28, // Z set Equal.
+ ne = 1 << 28, // Z clear Not equal.
+ cs = 2 << 28, // C set Unsigned higher or same.
+ cc = 3 << 28, // C clear Unsigned lower.
+ mi = 4 << 28, // N set Negative.
+ pl = 5 << 28, // N clear Positive or zero.
+ vs = 6 << 28, // V set Overflow.
+ vc = 7 << 28, // V clear No overflow.
+ hi = 8 << 28, // C set, Z clear Unsigned higher.
+ ls = 9 << 28, // C clear or Z set Unsigned lower or same.
+ ge = 10 << 28, // N == V Greater or equal.
+ lt = 11 << 28, // N != V Less than.
+ gt = 12 << 28, // Z clear, N == V Greater than.
+ le = 13 << 28, // Z set or N != V Less then or equal
+ al = 14 << 28, // Always.
+
+ kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
+ kNumberOfConditions = 16,
+
+ // Aliases.
+ hs = cs, // C set Unsigned higher or same.
+ lo = cc // C clear Unsigned lower.
+};
+
+inline Condition NegateCondition(Condition cond) {
+ MOZ_ASSERT(cond != al);
+ return static_cast<Condition>(cond ^ ne);
+}
+
+// Commute a condition such that {a cond b == b cond' a}.
+inline Condition CommuteCondition(Condition cond) {
+ switch (cond) {
+ case lo:
+ return hi;
+ case hi:
+ return lo;
+ case hs:
+ return ls;
+ case ls:
+ return hs;
+ case lt:
+ return gt;
+ case gt:
+ return lt;
+ case ge:
+ return le;
+ case le:
+ return ge;
+ default:
+ return cond;
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Instructions encoding.
+
+// Instr is merely used by the Assembler to distinguish 32bit integers
+// representing instructions from usual 32 bit values.
+// Instruction objects are pointers to 32bit values, and provide methods to
+// access the various ISA fields.
+typedef int32_t Instr;
+
+// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
+// as defined in section A3.4
+enum Opcode {
+ AND = 0 << 21, // Logical AND.
+ EOR = 1 << 21, // Logical Exclusive OR.
+ SUB = 2 << 21, // Subtract.
+ RSB = 3 << 21, // Reverse Subtract.
+ ADD = 4 << 21, // Add.
+ ADC = 5 << 21, // Add with Carry.
+ SBC = 6 << 21, // Subtract with Carry.
+ RSC = 7 << 21, // Reverse Subtract with Carry.
+ TST = 8 << 21, // Test.
+ TEQ = 9 << 21, // Test Equivalence.
+ CMP = 10 << 21, // Compare.
+ CMN = 11 << 21, // Compare Negated.
+ ORR = 12 << 21, // Logical (inclusive) OR.
+ MOV = 13 << 21, // Move.
+ BIC = 14 << 21, // Bit Clear.
+ MVN = 15 << 21 // Move Not.
+};
+
+// The bits for bit 7-4 for some type 0 miscellaneous instructions.
+enum MiscInstructionsBits74 {
+ // With bits 22-21 01.
+ BX = 1 << 4,
+ BXJ = 2 << 4,
+ BLX = 3 << 4,
+ BKPT = 7 << 4,
+
+ // With bits 22-21 11.
+ CLZ = 1 << 4
+};
+
+// Load and store exclusive instructions.
+
+// Bit positions.
+enum {
+ ExclusiveOpHi = 24, // Hi bit of opcode field
+ ExclusiveOpLo = 23, // Lo bit of opcode field
+ ExclusiveSizeHi = 22, // Hi bit of operand size field
+ ExclusiveSizeLo = 21, // Lo bit of operand size field
+ ExclusiveLoad = 20 // Bit indicating load
+};
+
+// Opcode bits for exclusive instructions.
+enum { ExclusiveOpcode = 3 };
+
+// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo).
+enum {
+ ExclusiveWord = 0,
+ ExclusiveDouble = 1,
+ ExclusiveByte = 2,
+ ExclusiveHalf = 3
+};
+
+// Instruction encoding bits and masks.
+enum {
+ H = 1 << 5, // Halfword (or byte).
+ S6 = 1 << 6, // Signed (or unsigned).
+ L = 1 << 20, // Load (or store).
+ S = 1 << 20, // Set condition code (or leave unchanged).
+ W = 1 << 21, // Writeback base register (or leave unchanged).
+ A = 1 << 21, // Accumulate in multiply instruction (or not).
+ B = 1 << 22, // Unsigned byte (or word).
+ N = 1 << 22, // Long (or short).
+ U = 1 << 23, // Positive (or negative) offset/index.
+ P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
+ I = 1 << 25, // Immediate shifter operand (or not).
+ B0 = 1 << 0,
+ B4 = 1 << 4,
+ B5 = 1 << 5,
+ B6 = 1 << 6,
+ B7 = 1 << 7,
+ B8 = 1 << 8,
+ B9 = 1 << 9,
+ B12 = 1 << 12,
+ B16 = 1 << 16,
+ B17 = 1 << 17,
+ B18 = 1 << 18,
+ B19 = 1 << 19,
+ B20 = 1 << 20,
+ B21 = 1 << 21,
+ B22 = 1 << 22,
+ B23 = 1 << 23,
+ B24 = 1 << 24,
+ B25 = 1 << 25,
+ B26 = 1 << 26,
+ B27 = 1 << 27,
+ B28 = 1 << 28,
+
+ // Instruction bit masks.
+ kCondMask = 15 << 28,
+ kALUMask = 0x6f << 21,
+ kRdMask = 15 << 12, // In str instruction.
+ kCoprocessorMask = 15 << 8,
+ kOpCodeMask = 15 << 21, // In data-processing instructions.
+ kImm24Mask = (1 << 24) - 1,
+ kImm16Mask = (1 << 16) - 1,
+ kImm8Mask = (1 << 8) - 1,
+ kOff12Mask = (1 << 12) - 1,
+ kOff8Mask = (1 << 8) - 1
+};
+
+// -----------------------------------------------------------------------------
+// Addressing modes and instruction variants.
+
+// Condition code updating mode.
+enum SBit {
+ SetCC = 1 << 20, // Set condition code.
+ LeaveCC = 0 << 20 // Leave condition code unchanged.
+};
+
+// Status register selection.
+enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 };
+
+// Shifter types for Data-processing operands as defined in section A5.1.2.
+enum ShiftOp {
+ LSL = 0 << 5, // Logical shift left.
+ LSR = 1 << 5, // Logical shift right.
+ ASR = 2 << 5, // Arithmetic shift right.
+ ROR = 3 << 5, // Rotate right.
+
+ // RRX is encoded as ROR with shift_imm == 0.
+ // Use a special code to make the distinction. The RRX ShiftOp is only used
+ // as an argument, and will never actually be encoded. The Assembler will
+ // detect it and emit the correct ROR shift operand with shift_imm == 0.
+ RRX = -1,
+ kNumberOfShifts = 4
+};
+
+// Status register fields.
+enum SRegisterField {
+ CPSR_c = CPSR | 1 << 16,
+ CPSR_x = CPSR | 1 << 17,
+ CPSR_s = CPSR | 1 << 18,
+ CPSR_f = CPSR | 1 << 19,
+ SPSR_c = SPSR | 1 << 16,
+ SPSR_x = SPSR | 1 << 17,
+ SPSR_s = SPSR | 1 << 18,
+ SPSR_f = SPSR | 1 << 19
+};
+
+// Status register field mask (or'ed SRegisterField enum values).
+typedef uint32_t SRegisterFieldMask;
+
+// Memory operand addressing mode.
+enum AddrMode {
+ // Bit encoding P U W.
+ Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base).
+ PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback.
+ PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback.
+ NegOffset =
+ (8 | 0 | 0) << 21, // Negative offset (without writeback to base).
+ NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback.
+ NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback.
+};
+
+// Load/store multiple addressing mode.
+enum BlockAddrMode {
+ // Bit encoding P U W .
+ da = (0 | 0 | 0) << 21, // Decrement after.
+ ia = (0 | 4 | 0) << 21, // Increment after.
+ db = (8 | 0 | 0) << 21, // Decrement before.
+ ib = (8 | 4 | 0) << 21, // Increment before.
+ da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base.
+ ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base.
+ db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base.
+ ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base.
+
+ // Alias modes for comparison when writeback does not matter.
+ da_x = (0 | 0 | 0) << 21, // Decrement after.
+ ia_x = (0 | 4 | 0) << 21, // Increment after.
+ db_x = (8 | 0 | 0) << 21, // Decrement before.
+ ib_x = (8 | 4 | 0) << 21, // Increment before.
+
+ kBlockAddrModeMask = (8 | 4 | 1) << 21
+};
+
+// Coprocessor load/store operand size.
+enum LFlag {
+ Long = 1 << 22, // Long load/store coprocessor.
+ Short = 0 << 22 // Short load/store coprocessor.
+};
+
+// NEON data type
+enum NeonDataType {
+ NeonS8 = 0x1, // U = 0, imm3 = 0b001
+ NeonS16 = 0x2, // U = 0, imm3 = 0b010
+ NeonS32 = 0x4, // U = 0, imm3 = 0b100
+ NeonU8 = 1 << 24 | 0x1, // U = 1, imm3 = 0b001
+ NeonU16 = 1 << 24 | 0x2, // U = 1, imm3 = 0b010
+ NeonU32 = 1 << 24 | 0x4, // U = 1, imm3 = 0b100
+ NeonDataTypeSizeMask = 0x7,
+ NeonDataTypeUMask = 1 << 24
+};
+
+enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
+
+enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
+
+// -----------------------------------------------------------------------------
+// Supervisor Call (svc) specific support.
+
+// Special Software Interrupt codes when used in the presence of the ARM
+// simulator.
+// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
+// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
+enum SoftwareInterruptCodes {
+ // transition to C code
+ kCallRtRedirected = 0x10,
+ // break point
+ kBreakpoint = 0x20,
+ // stop
+ kStopCode = 1 << 23
+};
+const uint32_t kStopCodeMask = kStopCode - 1;
+const uint32_t kMaxStopCode = kStopCode - 1;
+const int32_t kDefaultStopCode = -1;
+
+// Type of VFP register. Determines register encoding.
+enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 };
+
+// VFP FPSCR constants.
+enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 };
+
+// This mask does not include the "inexact" or "input denormal" cumulative
+// exceptions flags, because we usually don't want to check for it.
+const uint32_t kVFPExceptionMask = 0xf;
+const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
+const uint32_t kVFPOverflowExceptionBit = 1 << 2;
+const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
+const uint32_t kVFPInexactExceptionBit = 1 << 4;
+const uint32_t kVFPFlushToZeroMask = 1 << 24;
+const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
+
+const uint32_t kVFPNConditionFlagBit = 1 << 31;
+const uint32_t kVFPZConditionFlagBit = 1 << 30;
+const uint32_t kVFPCConditionFlagBit = 1 << 29;
+const uint32_t kVFPVConditionFlagBit = 1 << 28;
+
+// VFP rounding modes. See ARM DDI 0406B Page A2-29.
+enum VFPRoundingMode {
+ RN = 0 << 22, // Round to Nearest.
+ RP = 1 << 22, // Round towards Plus Infinity.
+ RM = 2 << 22, // Round towards Minus Infinity.
+ RZ = 3 << 22, // Round towards zero.
+
+ // Aliases.
+ kRoundToNearest = RN,
+ kRoundToPlusInf = RP,
+ kRoundToMinusInf = RM,
+ kRoundToZero = RZ
+};
+
+const uint32_t kVFPRoundingModeMask = 3 << 22;
+
+enum CheckForInexactConversion {
+ kCheckForInexactConversion,
+ kDontCheckForInexactConversion
+};
+
+// -----------------------------------------------------------------------------
+// Hints.
+
+// Branch hints are not used on the ARM. They are defined so that they can
+// appear in shared function signatures, but will be ignored in ARM
+// implementations.
+enum Hint { no_hint };
+
+// Hints are not used on the arm. Negating is trivial.
+inline Hint NegateHint(Hint ignored) { return no_hint; }
+
+// -----------------------------------------------------------------------------
+// Instruction abstraction.
+
+// The class Instruction enables access to individual fields defined in the ARM
+// architecture instruction set encoding as described in figure A3-1.
+// Note that the Assembler uses typedef int32_t Instr.
+//
+// Example: Test whether the instruction at ptr does set the condition code
+// bits.
+//
+// bool InstructionSetsConditionCodes(byte* ptr) {
+// Instruction* instr = Instruction::At(ptr);
+// int type = instr->TypeValue();
+// return ((type == 0) || (type == 1)) && instr->HasS();
+// }
+//
+class Instruction {
+ public:
+ enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };
+
+ // Helper macro to define static accessors.
+ // We use the cast to char* trick to bypass the strict anti-aliasing rules.
+# define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
+ static inline return_type Name(Instr instr) { \
+ char* temp = reinterpret_cast<char*>(&instr); \
+ return reinterpret_cast<Instruction*>(temp)->Name(); \
+ }
+
+# define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
+
+ // Get the raw instruction bits.
+ inline Instr InstructionBits() const {
+ return *reinterpret_cast<const Instr*>(this);
+ }
+
+ // Set the raw instruction bits to value.
+ inline void SetInstructionBits(Instr value) {
+ *reinterpret_cast<Instr*>(this) = value;
+ }
+
+ // Read one particular bit out of the instruction bits.
+ inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
+
+ // Read a bit field's value out of the instruction bits.
+ inline int Bits(int hi, int lo) const {
+ return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
+ }
+
+ // Read a bit field out of the instruction bits.
+ inline int BitField(int hi, int lo) const {
+ return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
+ }
+
+ // Static support.
+
+ // Read one particular bit out of the instruction bits.
+ static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
+
+ // Read the value of a bit field out of the instruction bits.
+ static inline int Bits(Instr instr, int hi, int lo) {
+ return (instr >> lo) & ((2 << (hi - lo)) - 1);
+ }
+
+ // Read a bit field out of the instruction bits.
+ static inline int BitField(Instr instr, int hi, int lo) {
+ return instr & (((2 << (hi - lo)) - 1) << lo);
+ }
+
+ // Accessors for the different named fields used in the ARM encoding.
+ // The naming of these accessor corresponds to figure A3-1.
+ //
+ // Two kind of accessors are declared:
+ // - <Name>Field() will return the raw field, i.e. the field's bits at their
+ // original place in the instruction encoding.
+ // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
+ // 0xC0810002 ConditionField(instr) will return 0xC0000000.
+ // - <Name>Value() will return the field value, shifted back to bit 0.
+ // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
+ // 0xC0810002 ConditionField(instr) will return 0xC.
+
+ // Generally applicable fields
+ inline Condition ConditionValue() const {
+ return static_cast<Condition>(Bits(31, 28));
+ }
+ inline Condition ConditionField() const {
+ return static_cast<Condition>(BitField(31, 28));
+ }
+ DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
+ DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
+
+ inline int TypeValue() const { return Bits(27, 25); }
+ inline int SpecialValue() const { return Bits(27, 23); }
+
+ inline int RnValue() const { return Bits(19, 16); }
+ DECLARE_STATIC_ACCESSOR(RnValue);
+ inline int RdValue() const { return Bits(15, 12); }
+ DECLARE_STATIC_ACCESSOR(RdValue);
+
+ inline int CoprocessorValue() const { return Bits(11, 8); }
+ // Support for VFP.
+ // Vn(19-16) | Vd(15-12) | Vm(3-0)
+ inline int VnValue() const { return Bits(19, 16); }
+ inline int VmValue() const { return Bits(3, 0); }
+ inline int VdValue() const { return Bits(15, 12); }
+ inline int NValue() const { return Bit(7); }
+ inline int MValue() const { return Bit(5); }
+ inline int DValue() const { return Bit(22); }
+ inline int RtValue() const { return Bits(15, 12); }
+ inline int PValue() const { return Bit(24); }
+ inline int UValue() const { return Bit(23); }
+ inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
+ inline int Opc2Value() const { return Bits(19, 16); }
+ inline int Opc3Value() const { return Bits(7, 6); }
+ inline int SzValue() const { return Bit(8); }
+ inline int VLValue() const { return Bit(20); }
+ inline int VCValue() const { return Bit(8); }
+ inline int VAValue() const { return Bits(23, 21); }
+ inline int VBValue() const { return Bits(6, 5); }
+ inline int VFPNRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 16, 7);
+ }
+ inline int VFPMRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 0, 5);
+ }
+ inline int VFPDRegValue(VFPRegPrecision pre) {
+ return VFPGlueRegValue(pre, 12, 22);
+ }
+
+ // Fields used in Data processing instructions
+ inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); }
+ inline Opcode OpcodeField() const {
+ return static_cast<Opcode>(BitField(24, 21));
+ }
+ inline int SValue() const { return Bit(20); }
+ // with register
+ inline int RmValue() const { return Bits(3, 0); }
+ DECLARE_STATIC_ACCESSOR(RmValue);
+ inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
+ inline ShiftOp ShiftField() const {
+ return static_cast<ShiftOp>(BitField(6, 5));
+ }
+ inline int RegShiftValue() const { return Bit(4); }
+ inline int RsValue() const { return Bits(11, 8); }
+ inline int ShiftAmountValue() const { return Bits(11, 7); }
+ // with immediate
+ inline int RotateValue() const { return Bits(11, 8); }
+ DECLARE_STATIC_ACCESSOR(RotateValue);
+ inline int Immed8Value() const { return Bits(7, 0); }
+ DECLARE_STATIC_ACCESSOR(Immed8Value);
+ inline int Immed4Value() const { return Bits(19, 16); }
+ inline int ImmedMovwMovtValue() const {
+ return Immed4Value() << 12 | Offset12Value();
+ }
+ DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
+
+ // Fields used in Load/Store instructions
+ inline int PUValue() const { return Bits(24, 23); }
+ inline int PUField() const { return BitField(24, 23); }
+ inline int BValue() const { return Bit(22); }
+ inline int WValue() const { return Bit(21); }
+ inline int LValue() const { return Bit(20); }
+ // with register uses same fields as Data processing instructions above
+ // with immediate
+ inline int Offset12Value() const { return Bits(11, 0); }
+ // multiple
+ inline int RlistValue() const { return Bits(15, 0); }
+ // extra loads and stores
+ inline int SignValue() const { return Bit(6); }
+ inline int HValue() const { return Bit(5); }
+ inline int ImmedHValue() const { return Bits(11, 8); }
+ inline int ImmedLValue() const { return Bits(3, 0); }
+
+ // Fields used in Branch instructions
+ inline int LinkValue() const { return Bit(24); }
+ inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
+
+ // Fields used in Software interrupt instructions
+ inline SoftwareInterruptCodes SvcValue() const {
+ return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
+ }
+
+ // Test for special encodings of type 0 instructions (extra loads and stores,
+ // as well as multiplications).
+ inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
+
+ // Test for miscellaneous instructions encodings of type 0 instructions.
+ inline bool IsMiscType0() const {
+ return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) &&
+ ((Bit(7) == 0));
+ }
+
+ // Test for a nop instruction, which falls under type 1.
+ inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
+
+ // Test for a nop instruction, which falls under type 1.
+ inline bool IsCsdbType1() const { return Bits(24, 0) == 0x0120F014; }
+
+ // Test for a stop instruction.
+ inline bool IsStop() const {
+ return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
+ }
+
+ // Special accessors that test for existence of a value.
+ inline bool HasS() const { return SValue() == 1; }
+ inline bool HasB() const { return BValue() == 1; }
+ inline bool HasW() const { return WValue() == 1; }
+ inline bool HasL() const { return LValue() == 1; }
+ inline bool HasU() const { return UValue() == 1; }
+ inline bool HasSign() const { return SignValue() == 1; }
+ inline bool HasH() const { return HValue() == 1; }
+ inline bool HasLink() const { return LinkValue() == 1; }
+
+ // Decoding the double immediate in the vmov instruction.
+ double DoubleImmedVmov() const;
+
+ // Instructions are read of out a code stream. The only way to get a
+ // reference to an instruction is to convert a pointer. There is no way
+ // to allocate or create instances of class Instruction.
+ // Use the At(pc) function to create references to Instruction.
+ static Instruction* At(uint8_t* pc) {
+ return reinterpret_cast<Instruction*>(pc);
+ }
+
+ private:
+ // Join split register codes, depending on single or double precision.
+ // four_bit is the position of the least-significant bit of the four
+ // bit specifier. one_bit is the position of the additional single bit
+ // specifier.
+ inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
+ if (pre == kSinglePrecision) {
+ return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
+ }
+ return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
+ }
+
+ // We need to prevent the creation of instances of class Instruction.
+ Instruction() = delete;
+ Instruction(const Instruction&) = delete;
+ void operator=(const Instruction&) = delete;
+};
+
+// Helper functions for converting between register numbers and names.
+class Registers {
+ public:
+ // Return the name of the register.
+ static const char* Name(int reg);
+
+ // Lookup the register number for the name provided.
+ static int Number(const char* name);
+
+ struct RegisterAlias {
+ int reg;
+ const char* name;
+ };
+
+ private:
+ static const char* names_[kNumRegisters];
+ static const RegisterAlias aliases_[];
+};
+
+// Helper functions for converting between VFP register numbers and names.
+class VFPRegisters {
+ public:
+ // Return the name of the register.
+ static const char* Name(int reg, bool is_double);
+
+ // Lookup the register number for the name provided.
+ // Set flag pointed by is_double to true if register
+ // is double-precision.
+ static int Number(const char* name, bool* is_double);
+
+ private:
+ static const char* names_[kNumVFPRegisters];
+};
+
+} // namespace disasm
+} // namespace jit
+} // namespace js
+
+#endif // JS_DISASM_ARM
+
+#endif // jit_arm_disasm_Constants_arm_h
diff --git a/js/src/jit/arm/disasm/Disasm-arm.cpp b/js/src/jit/arm/disasm/Disasm-arm.cpp
new file mode 100644
index 0000000000..97f39e1331
--- /dev/null
+++ b/js/src/jit/arm/disasm/Disasm-arm.cpp
@@ -0,0 +1,2031 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ */
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// A Disassembler object is used to disassemble a block of code instruction by
+// instruction. The default implementation of the NameConverter object can be
+// overriden to modify register names or to do symbol lookup on addresses.
+//
+// The example below will disassemble a block of code and print it to stdout.
+//
+// disasm::NameConverter converter;
+// disasm::Disassembler d(converter);
+// for (uint8_t* pc = begin; pc < end;) {
+// disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer;
+// uint8_t* prev_pc = pc;
+// pc += d.InstructionDecode(buffer, pc);
+// printf("%p %08x %s\n",
+// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
+// }
+//
+// The Disassembler class also has a convenience method to disassemble a block
+// of code into a FILE*, meaning that the above functionality could also be
+// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
+
+#include "jit/arm/disasm/Disasm-arm.h"
+
+#ifdef JS_DISASM_ARM
+
+# include <stdarg.h>
+# include <stdio.h>
+# include <string.h>
+
+# include "jit/arm/disasm/Constants-arm.h"
+
+namespace js {
+namespace jit {
+namespace disasm {
+
+// Helper function for printing to a Vector.
+static int MOZ_FORMAT_PRINTF(2, 3)
+ SNPrintF(V8Vector<char> str, const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ int result = vsnprintf(str.start(), str.length(), format, args);
+ va_end(args);
+ return result;
+}
+
+//------------------------------------------------------------------------------
+
+// Decoder decodes and disassembles instructions into an output buffer.
+// It uses the converter to convert register names and call destinations into
+// more informative description.
+class Decoder {
+ public:
+ Decoder(const disasm::NameConverter& converter, V8Vector<char> out_buffer)
+ : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) {
+ out_buffer_[out_buffer_pos_] = '\0';
+ }
+
+ ~Decoder() {}
+
+ // Writes one disassembled instruction into 'buffer' (0-terminated).
+ // Returns the length of the disassembled machine instruction in bytes.
+ int InstructionDecode(uint8_t* instruction);
+
+ static bool IsConstantPoolAt(uint8_t* instr_ptr);
+ static int ConstantPoolSizeAt(uint8_t* instr_ptr);
+
+ private:
+ // Bottleneck functions to print into the out_buffer.
+ void PrintChar(const char ch);
+ void Print(const char* str);
+
+ // Printing of common values.
+ void PrintRegister(int reg);
+ void PrintSRegister(int reg);
+ void PrintDRegister(int reg);
+ int FormatVFPRegister(Instruction* instr, const char* format);
+ void PrintMovwMovt(Instruction* instr);
+ int FormatVFPinstruction(Instruction* instr, const char* format);
+ void PrintCondition(Instruction* instr);
+ void PrintShiftRm(Instruction* instr);
+ void PrintShiftImm(Instruction* instr);
+ void PrintShiftSat(Instruction* instr);
+ void PrintPU(Instruction* instr);
+ void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
+
+ // Handle formatting of instructions and their options.
+ int FormatRegister(Instruction* instr, const char* option);
+ void FormatNeonList(int Vd, int type);
+ void FormatNeonMemory(int Rn, int align, int Rm);
+ int FormatOption(Instruction* instr, const char* option);
+ void Format(Instruction* instr, const char* format);
+ void Unknown(Instruction* instr);
+
+ // Each of these functions decodes one particular instruction type, a 3-bit
+ // field in the instruction encoding.
+ // Types 0 and 1 are combined as they are largely the same except for the way
+ // they interpret the shifter operand.
+ void DecodeType01(Instruction* instr);
+ void DecodeType2(Instruction* instr);
+ void DecodeType3(Instruction* instr);
+ void DecodeType4(Instruction* instr);
+ void DecodeType5(Instruction* instr);
+ void DecodeType6(Instruction* instr);
+ // Type 7 includes special Debugger instructions.
+ int DecodeType7(Instruction* instr);
+ // For VFP support.
+ void DecodeTypeVFP(Instruction* instr);
+ void DecodeType6CoprocessorIns(Instruction* instr);
+
+ void DecodeSpecialCondition(Instruction* instr);
+
+ void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
+ void DecodeVCMP(Instruction* instr);
+ void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
+ void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
+
+ const disasm::NameConverter& converter_;
+ V8Vector<char> out_buffer_;
+ int out_buffer_pos_;
+
+ // Disallow copy and assign.
+ Decoder(const Decoder&) = delete;
+ void operator=(const Decoder&) = delete;
+};
+
+// Support for assertions in the Decoder formatting functions.
+# define STRING_STARTS_WITH(string, compare_string) \
+ (strncmp(string, compare_string, strlen(compare_string)) == 0)
+
+// Append the ch to the output buffer.
+void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; }
+
+// Append the str to the output buffer.
+void Decoder::Print(const char* str) {
+ char cur = *str++;
+ while (cur != '\0' && (out_buffer_pos_ < int(out_buffer_.length() - 1))) {
+ PrintChar(cur);
+ cur = *str++;
+ }
+ out_buffer_[out_buffer_pos_] = 0;
+}
+
+// These condition names are defined in a way to match the native disassembler
+// formatting. See for example the command "objdump -d <binary file>".
+static const char* const cond_names[kNumberOfConditions] = {
+ "eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
+ "hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
+};
+
+// Print the condition guarding the instruction.
+void Decoder::PrintCondition(Instruction* instr) {
+ Print(cond_names[instr->ConditionValue()]);
+}
+
+// Print the register name according to the active name converter.
+void Decoder::PrintRegister(int reg) {
+ Print(converter_.NameOfCPURegister(reg));
+}
+
+// Print the VFP S register name according to the active name converter.
+void Decoder::PrintSRegister(int reg) { Print(VFPRegisters::Name(reg, false)); }
+
+// Print the VFP D register name according to the active name converter.
+void Decoder::PrintDRegister(int reg) { Print(VFPRegisters::Name(reg, true)); }
+
+// These shift names are defined in a way to match the native disassembler
+// formatting. See for example the command "objdump -d <binary file>".
+static const char* const shift_names[kNumberOfShifts] = {"lsl", "lsr", "asr",
+ "ror"};
+
+// Print the register shift operands for the instruction. Generally used for
+// data processing instructions.
+void Decoder::PrintShiftRm(Instruction* instr) {
+ ShiftOp shift = instr->ShiftField();
+ int shift_index = instr->ShiftValue();
+ int shift_amount = instr->ShiftAmountValue();
+ int rm = instr->RmValue();
+
+ PrintRegister(rm);
+
+ if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
+ // Special case for using rm only.
+ return;
+ }
+ if (instr->RegShiftValue() == 0) {
+ // by immediate
+ if ((shift == ROR) && (shift_amount == 0)) {
+ Print(", RRX");
+ return;
+ } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
+ shift_amount = 32;
+ }
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d",
+ shift_names[shift_index], shift_amount);
+ } else {
+ // by register
+ int rs = instr->RsValue();
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", %s ",
+ shift_names[shift_index]);
+ PrintRegister(rs);
+ }
+}
+
+static inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
+ if (shift == 0) return value;
+ return (value >> shift) | (value << (32 - shift));
+}
+
+// Print the immediate operand for the instruction. Generally used for data
+// processing instructions.
+void Decoder::PrintShiftImm(Instruction* instr) {
+ int rotate = instr->RotateValue() * 2;
+ int immed8 = instr->Immed8Value();
+ int imm = RotateRight32(immed8, rotate);
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d", imm);
+}
+
+// Print the optional shift and immediate used by saturating instructions.
+void Decoder::PrintShiftSat(Instruction* instr) {
+ int shift = instr->Bits(11, 7);
+ if (shift > 0) {
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, ", %s #%d",
+ shift_names[instr->Bit(6) * 2], instr->Bits(11, 7));
+ }
+}
+
+// Print PU formatting to reduce complexity of FormatOption.
+void Decoder::PrintPU(Instruction* instr) {
+ switch (instr->PUField()) {
+ case da_x: {
+ Print("da");
+ break;
+ }
+ case ia_x: {
+ Print("ia");
+ break;
+ }
+ case db_x: {
+ Print("db");
+ break;
+ }
+ case ib_x: {
+ Print("ib");
+ break;
+ }
+ default: {
+ MOZ_CRASH();
+ break;
+ }
+ }
+}
+
+// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
+// the FormatOption method.
+void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
+ switch (svc) {
+ case kCallRtRedirected:
+ Print("call rt redirected");
+ return;
+ case kBreakpoint:
+ Print("breakpoint");
+ return;
+ default:
+ if (svc >= kStopCode) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x",
+ svc & kStopCodeMask, svc & kStopCodeMask);
+ } else {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc);
+ }
+ return;
+ }
+}
+
+// Handle all register based formatting in this function to reduce the
+// complexity of FormatOption.
+int Decoder::FormatRegister(Instruction* instr, const char* format) {
+ MOZ_ASSERT(format[0] == 'r');
+ if (format[1] == 'n') { // 'rn: Rn register
+ int reg = instr->RnValue();
+ PrintRegister(reg);
+ return 2;
+ } else if (format[1] == 'd') { // 'rd: Rd register
+ int reg = instr->RdValue();
+ PrintRegister(reg);
+ return 2;
+ } else if (format[1] == 's') { // 'rs: Rs register
+ int reg = instr->RsValue();
+ PrintRegister(reg);
+ return 2;
+ } else if (format[1] == 'm') { // 'rm: Rm register
+ int reg = instr->RmValue();
+ PrintRegister(reg);
+ return 2;
+ } else if (format[1] == 't') { // 'rt: Rt register
+ int reg = instr->RtValue();
+ PrintRegister(reg);
+ return 2;
+ } else if (format[1] == 'l') {
+ // 'rlist: register list for load and store multiple instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "rlist"));
+ int rlist = instr->RlistValue();
+ int reg = 0;
+ Print("{");
+ // Print register list in ascending order, by scanning the bit mask.
+ while (rlist != 0) {
+ if ((rlist & 1) != 0) {
+ PrintRegister(reg);
+ if ((rlist >> 1) != 0) {
+ Print(", ");
+ }
+ }
+ reg++;
+ rlist >>= 1;
+ }
+ Print("}");
+ return 5;
+ }
+ MOZ_CRASH();
+ return -1;
+}
+
+// Handle all VFP register based formatting in this function to reduce the
+// complexity of FormatOption.
+int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
+ MOZ_ASSERT((format[0] == 'S') || (format[0] == 'D'));
+
+ VFPRegPrecision precision =
+ format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
+
+ int retval = 2;
+ int reg = -1;
+ if (format[1] == 'n') {
+ reg = instr->VFPNRegValue(precision);
+ } else if (format[1] == 'm') {
+ reg = instr->VFPMRegValue(precision);
+ } else if (format[1] == 'd') {
+ if ((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) &&
+ (instr->Bits(11, 9) == 0x5) && (instr->Bit(4) == 0x1)) {
+ // vmov.32 has Vd in a different place.
+ reg = instr->Bits(19, 16) | (instr->Bit(7) << 4);
+ } else {
+ reg = instr->VFPDRegValue(precision);
+ }
+
+ if (format[2] == '+') {
+ int immed8 = instr->Immed8Value();
+ if (format[0] == 'S') reg += immed8 - 1;
+ if (format[0] == 'D') reg += (immed8 / 2 - 1);
+ }
+ if (format[2] == '+') retval = 3;
+ } else {
+ MOZ_CRASH();
+ }
+
+ if (precision == kSinglePrecision) {
+ PrintSRegister(reg);
+ } else {
+ PrintDRegister(reg);
+ }
+
+ return retval;
+}
+
+int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
+ Print(format);
+ return 0;
+}
+
+void Decoder::FormatNeonList(int Vd, int type) {
+ if (type == nlt_1) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d}", Vd);
+ } else if (type == nlt_2) {
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d}", Vd, Vd + 1);
+ } else if (type == nlt_3) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "{d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2);
+ } else if (type == nlt_4) {
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "{d%d, d%d, d%d, d%d}", Vd,
+ Vd + 1, Vd + 2, Vd + 3);
+ }
+}
+
+void Decoder::FormatNeonMemory(int Rn, int align, int Rm) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "[r%d", Rn);
+ if (align != 0) {
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, ":%d", (1 << align) << 6);
+ }
+ if (Rm == 15) {
+ Print("]");
+ } else if (Rm == 13) {
+ Print("]!");
+ } else {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "], r%d", Rm);
+ }
+}
+
+// Print the movw or movt instruction.
+void Decoder::PrintMovwMovt(Instruction* instr) {
+ int imm = instr->ImmedMovwMovtValue();
+ int rd = instr->RdValue();
+ PrintRegister(rd);
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", imm);
+}
+
+// FormatOption takes a formatting string and interprets it based on
+// the current instructions. The format string points to the first
+// character of the option string (the option escape has already been
+// consumed by the caller.) FormatOption returns the number of
+// characters that were consumed from the formatting string.
+int Decoder::FormatOption(Instruction* instr, const char* format) {
+ switch (format[0]) {
+ case 'a': { // 'a: accumulate multiplies
+ if (instr->Bit(21) == 0) {
+ Print("ul");
+ } else {
+ Print("la");
+ }
+ return 1;
+ }
+ case 'b': { // 'b: byte loads or stores
+ if (instr->HasB()) {
+ Print("b");
+ }
+ return 1;
+ }
+ case 'c': { // 'cond: conditional execution
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "cond"));
+ PrintCondition(instr);
+ return 4;
+ }
+ case 'd': { // 'd: vmov double immediate.
+ double d = instr->DoubleImmedVmov();
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%g", d);
+ return 1;
+ }
+ case 'f': { // 'f: bitfield instructions - v7 and above.
+ uint32_t lsbit = instr->Bits(11, 7);
+ uint32_t width = instr->Bits(20, 16) + 1;
+ if (instr->Bit(21) == 0) {
+ // BFC/BFI:
+ // Bits 20-16 represent most-significant bit. Covert to width.
+ width -= lsbit;
+ MOZ_ASSERT(width > 0);
+ }
+ MOZ_ASSERT((width + lsbit) <= 32);
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "#%d, #%d", lsbit, width);
+ return 1;
+ }
+ case 'h': { // 'h: halfword operation for extra loads and stores
+ if (instr->HasH()) {
+ Print("h");
+ } else {
+ Print("b");
+ }
+ return 1;
+ }
+ case 'i': { // 'i: immediate value from adjacent bits.
+ // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16
+ int width = (format[3] - '0') * 10 + (format[4] - '0');
+ int lsb = (format[6] - '0') * 10 + (format[7] - '0');
+
+ MOZ_ASSERT((width >= 1) && (width <= 32));
+ MOZ_ASSERT((lsb >= 0) && (lsb <= 31));
+ MOZ_ASSERT((width + lsb) <= 32);
+
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d",
+ instr->Bits(width + lsb - 1, lsb));
+ return 8;
+ }
+ case 'l': { // 'l: branch and link
+ if (instr->HasLink()) {
+ Print("l");
+ }
+ return 1;
+ }
+ case 'm': {
+ if (format[1] == 'w') {
+ // 'mw: movt/movw instructions.
+ PrintMovwMovt(instr);
+ return 2;
+ }
+ if (format[1] == 'e') { // 'memop: load/store instructions.
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "memop"));
+ if (instr->HasL()) {
+ Print("ldr");
+ } else {
+ if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) &&
+ (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) {
+ if (instr->Bit(5) == 1) {
+ Print("strd");
+ } else {
+ Print("ldrd");
+ }
+ return 5;
+ }
+ Print("str");
+ }
+ return 5;
+ }
+ // 'msg: for simulator break instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "msg"));
+ uint8_t* str =
+ reinterpret_cast<uint8_t*>(instr->InstructionBits() & 0x0fffffff);
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%s",
+ converter_.NameInCode(str));
+ return 3;
+ }
+ case 'o': {
+ if ((format[3] == '1') && (format[4] == '2')) {
+ // 'off12: 12-bit offset for load and store instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "off12"));
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d",
+ instr->Offset12Value());
+ return 5;
+ } else if (format[3] == '0') {
+ // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "off0to3and8to19"));
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "%d",
+ (instr->Bits(19, 8) << 4) + instr->Bits(3, 0));
+ return 15;
+ }
+ // 'off8: 8-bit offset for extra load and store instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "off8"));
+ int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs8);
+ return 4;
+ }
+ case 'p': { // 'pu: P and U bits for load and store instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "pu"));
+ PrintPU(instr);
+ return 2;
+ }
+ case 'r': {
+ return FormatRegister(instr, format);
+ }
+ case 's': {
+ if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat.
+ if (format[6] == 'o') { // 'shift_op
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_op"));
+ if (instr->TypeValue() == 0) {
+ PrintShiftRm(instr);
+ } else {
+ MOZ_ASSERT(instr->TypeValue() == 1);
+ PrintShiftImm(instr);
+ }
+ return 8;
+ } else if (format[6] == 's') { // 'shift_sat.
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_sat"));
+ PrintShiftSat(instr);
+ return 9;
+ } else { // 'shift_rm
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
+ PrintShiftRm(instr);
+ return 8;
+ }
+ } else if (format[1] == 'v') { // 'svc
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "svc"));
+ PrintSoftwareInterrupt(instr->SvcValue());
+ return 3;
+ } else if (format[1] == 'i') { // 'sign: signed extra loads and stores
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "sign"));
+ if (instr->HasSign()) {
+ Print("s");
+ }
+ return 4;
+ }
+ // 's: S field of data processing instructions
+ if (instr->HasS()) {
+ Print("s");
+ }
+ return 1;
+ }
+ case 't': { // 'target: target of branch instructions
+ MOZ_ASSERT(STRING_STARTS_WITH(format, "target"));
+ int off = (instr->SImmed24Value() << 2) + 8;
+ out_buffer_pos_ += SNPrintF(
+ out_buffer_ + out_buffer_pos_, "%+d -> %s", off,
+ converter_.NameOfAddress(reinterpret_cast<uint8_t*>(instr) + off));
+ return 6;
+ }
+ case 'u': { // 'u: signed or unsigned multiplies
+ // The manual gets the meaning of bit 22 backwards in the multiply
+ // instruction overview on page A3.16.2. The instructions that
+ // exist in u and s variants are the following:
+ // smull A4.1.87
+ // umull A4.1.129
+ // umlal A4.1.128
+ // smlal A4.1.76
+ // For these 0 means u and 1 means s. As can be seen on their individual
+ // pages. The other 18 mul instructions have the bit set or unset in
+ // arbitrary ways that are unrelated to the signedness of the instruction.
+ // None of these 18 instructions exist in both a 'u' and an 's' variant.
+
+ if (instr->Bit(22) == 0) {
+ Print("u");
+ } else {
+ Print("s");
+ }
+ return 1;
+ }
+ case 'v': {
+ return FormatVFPinstruction(instr, format);
+ }
+ case 'S':
+ case 'D': {
+ return FormatVFPRegister(instr, format);
+ }
+ case 'w': { // 'w: W field of load and store instructions
+ if (instr->HasW()) {
+ Print("!");
+ }
+ return 1;
+ }
+ default: {
+ MOZ_CRASH();
+ break;
+ }
+ }
+ MOZ_CRASH();
+ return -1;
+}
+
+// Format takes a formatting string for a whole instruction and prints it into
+// the output buffer. All escaped options are handed to FormatOption to be
+// parsed further.
+void Decoder::Format(Instruction* instr, const char* format) {
+ char cur = *format++;
+ while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
+ if (cur == '\'') { // Single quote is used as the formatting escape.
+ format += FormatOption(instr, format);
+ } else {
+ out_buffer_[out_buffer_pos_++] = cur;
+ }
+ cur = *format++;
+ }
+ out_buffer_[out_buffer_pos_] = '\0';
+}
+
+// The disassembler may end up decoding data inlined in the code. We do not want
+// it to crash if the data does not ressemble any known instruction.
+# define VERIFY(condition) \
+ if (!(condition)) { \
+ Unknown(instr); \
+ return; \
+ }
+
+// For currently unimplemented decodings the disassembler calls Unknown(instr)
+// which will just print "unknown" of the instruction bits.
+void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); }
+
+void Decoder::DecodeType01(Instruction* instr) {
+ int type = instr->TypeValue();
+ if ((type == 0) && instr->IsSpecialType0()) {
+ // multiply instruction or extra loads and stores
+ if (instr->Bits(7, 4) == 9) {
+ if (instr->Bit(24) == 0) {
+ // multiply instructions
+ if (instr->Bit(23) == 0) {
+ if (instr->Bit(21) == 0) {
+ // The MUL instruction description (A 4.1.33) refers to Rd as being
+ // the destination for the operation, but it confusingly uses the
+ // Rn field to encode it.
+ Format(instr, "mul'cond's 'rn, 'rm, 'rs");
+ } else {
+ if (instr->Bit(22) == 0) {
+ // The MLA instruction description (A 4.1.28) refers to the order
+ // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
+ // Rn field to encode the Rd register and the Rd field to encode
+ // the Rn register.
+ Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
+ } else {
+ // The MLS instruction description (A 4.1.29) refers to the order
+ // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
+ // Rn field to encode the Rd register and the Rd field to encode
+ // the Rn register.
+ Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
+ }
+ }
+ } else {
+ // The signed/long multiply instructions use the terms RdHi and RdLo
+ // when referring to the target registers. They are mapped to the Rn
+ // and Rd fields as follows:
+ // RdLo == Rd field
+ // RdHi == Rn field
+ // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
+ Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
+ }
+ } else {
+ if (instr->Bits(ExclusiveOpHi, ExclusiveOpLo) == ExclusiveOpcode) {
+ if (instr->Bit(ExclusiveLoad) == 1) {
+ switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) {
+ case ExclusiveWord:
+ Format(instr, "ldrex'cond 'rt, ['rn]");
+ break;
+ case ExclusiveDouble:
+ Format(instr, "ldrexd'cond 'rt, ['rn]");
+ break;
+ case ExclusiveByte:
+ Format(instr, "ldrexb'cond 'rt, ['rn]");
+ break;
+ case ExclusiveHalf:
+ Format(instr, "ldrexh'cond 'rt, ['rn]");
+ break;
+ }
+ } else {
+ // The documentation names the low four bits of the
+ // store-exclusive instructions "Rt" but canonically
+ // for disassembly they are really "Rm".
+ switch (instr->Bits(ExclusiveSizeHi, ExclusiveSizeLo)) {
+ case ExclusiveWord:
+ Format(instr, "strex'cond 'rd, 'rm, ['rn]");
+ break;
+ case ExclusiveDouble:
+ Format(instr, "strexd'cond 'rd, 'rm, ['rn]");
+ break;
+ case ExclusiveByte:
+ Format(instr, "strexb'cond 'rd, 'rm, ['rn]");
+ break;
+ case ExclusiveHalf:
+ Format(instr, "strexh'cond 'rd, 'rm, ['rn]");
+ break;
+ }
+ }
+ } else {
+ Unknown(instr);
+ }
+ }
+ } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xd) == 0xd)) {
+ // ldrd, strd
+ switch (instr->PUField()) {
+ case da_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
+ } else {
+ Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
+ }
+ break;
+ }
+ case ia_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
+ } else {
+ Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
+ }
+ break;
+ }
+ case db_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
+ } else {
+ Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
+ }
+ break;
+ }
+ case ib_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
+ } else {
+ Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
+ }
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ } else {
+ // extra load/store instructions
+ switch (instr->PUField()) {
+ case da_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
+ } else {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
+ }
+ break;
+ }
+ case ia_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
+ } else {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
+ }
+ break;
+ }
+ case db_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
+ } else {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
+ }
+ break;
+ }
+ case ib_x: {
+ if (instr->Bit(22) == 0) {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
+ } else {
+ Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
+ }
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ return;
+ }
+ } else if ((type == 0) && instr->IsMiscType0()) {
+ if (instr->Bits(22, 21) == 1) {
+ switch (instr->BitField(7, 4)) {
+ case BX:
+ Format(instr, "bx'cond 'rm");
+ break;
+ case BLX:
+ Format(instr, "blx'cond 'rm");
+ break;
+ case BKPT:
+ Format(instr, "bkpt 'off0to3and8to19");
+ break;
+ default:
+ Unknown(instr); // not used by V8
+ break;
+ }
+ } else if (instr->Bits(22, 21) == 3) {
+ switch (instr->BitField(7, 4)) {
+ case CLZ:
+ Format(instr, "clz'cond 'rd, 'rm");
+ break;
+ default:
+ Unknown(instr); // not used by V8
+ break;
+ }
+ } else {
+ Unknown(instr); // not used by V8
+ }
+ } else if ((type == 1) && instr->IsNopType1()) {
+ Format(instr, "nop'cond");
+ } else if ((type == 1) && instr->IsCsdbType1()) {
+ Format(instr, "csdb'cond");
+ } else {
+ switch (instr->OpcodeField()) {
+ case AND: {
+ Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case EOR: {
+ Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case SUB: {
+ Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case RSB: {
+ Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case ADD: {
+ Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case ADC: {
+ Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case SBC: {
+ Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case RSC: {
+ Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case TST: {
+ if (instr->HasS()) {
+ Format(instr, "tst'cond 'rn, 'shift_op");
+ } else {
+ Format(instr, "movw'cond 'mw");
+ }
+ break;
+ }
+ case TEQ: {
+ if (instr->HasS()) {
+ Format(instr, "teq'cond 'rn, 'shift_op");
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ MOZ_CRASH();
+ }
+ break;
+ }
+ case CMP: {
+ if (instr->HasS()) {
+ Format(instr, "cmp'cond 'rn, 'shift_op");
+ } else {
+ Format(instr, "movt'cond 'mw");
+ }
+ break;
+ }
+ case CMN: {
+ if (instr->HasS()) {
+ Format(instr, "cmn'cond 'rn, 'shift_op");
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ MOZ_CRASH();
+ }
+ break;
+ }
+ case ORR: {
+ Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case MOV: {
+ Format(instr, "mov'cond's 'rd, 'shift_op");
+ break;
+ }
+ case BIC: {
+ Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
+ break;
+ }
+ case MVN: {
+ Format(instr, "mvn'cond's 'rd, 'shift_op");
+ break;
+ }
+ default: {
+ // The Opcode field is a 4-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ }
+}
+
+void Decoder::DecodeType2(Instruction* instr) {
+ switch (instr->PUField()) {
+ case da_x: {
+ if (instr->HasW()) {
+ Unknown(instr); // not used in V8
+ return;
+ }
+ Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
+ break;
+ }
+ case ia_x: {
+ if (instr->HasW()) {
+ Unknown(instr); // not used in V8
+ return;
+ }
+ Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
+ break;
+ }
+ case db_x: {
+ Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
+ break;
+ }
+ case ib_x: {
+ Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+}
+
+void Decoder::DecodeType3(Instruction* instr) {
+ switch (instr->PUField()) {
+ case da_x: {
+ VERIFY(!instr->HasW());
+ Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
+ break;
+ }
+ case ia_x: {
+ if (instr->Bit(4) == 0) {
+ Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
+ } else {
+ if (instr->Bit(5) == 0) {
+ switch (instr->Bits(22, 21)) {
+ case 0:
+ if (instr->Bit(20) == 0) {
+ if (instr->Bit(6) == 0) {
+ Format(instr, "pkhbt'cond 'rd, 'rn, 'rm, lsl #'imm05@07");
+ } else {
+ if (instr->Bits(11, 7) == 0) {
+ Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #32");
+ } else {
+ Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #'imm05@07");
+ }
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 1:
+ MOZ_CRASH();
+ break;
+ case 2:
+ MOZ_CRASH();
+ break;
+ case 3:
+ Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
+ break;
+ }
+ } else {
+ switch (instr->Bits(22, 21)) {
+ case 0:
+ MOZ_CRASH();
+ break;
+ case 1:
+ if (instr->Bits(9, 6) == 1) {
+ if (instr->Bit(20) == 0) {
+ if (instr->Bits(19, 16) == 0xF) {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "sxtb'cond 'rd, 'rm");
+ break;
+ case 1:
+ Format(instr, "sxtb'cond 'rd, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "sxtb'cond 'rd, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "sxtb'cond 'rd, 'rm, ror #24");
+ break;
+ }
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "sxtab'cond 'rd, 'rn, 'rm");
+ break;
+ case 1:
+ Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #24");
+ break;
+ }
+ }
+ } else {
+ if (instr->Bits(19, 16) == 0xF) {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "sxth'cond 'rd, 'rm");
+ break;
+ case 1:
+ Format(instr, "sxth'cond 'rd, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "sxth'cond 'rd, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "sxth'cond 'rd, 'rm, ror #24");
+ break;
+ }
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "sxtah'cond 'rd, 'rn, 'rm");
+ break;
+ case 1:
+ Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #24");
+ break;
+ }
+ }
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 2:
+ if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
+ if (instr->Bits(19, 16) == 0xF) {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "uxtb16'cond 'rd, 'rm");
+ break;
+ case 1:
+ Format(instr, "uxtb16'cond 'rd, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "uxtb16'cond 'rd, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "uxtb16'cond 'rd, 'rm, ror #24");
+ break;
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ case 3:
+ if ((instr->Bits(9, 6) == 1)) {
+ if ((instr->Bit(20) == 0)) {
+ if (instr->Bits(19, 16) == 0xF) {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "uxtb'cond 'rd, 'rm");
+ break;
+ case 1:
+ Format(instr, "uxtb'cond 'rd, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "uxtb'cond 'rd, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "uxtb'cond 'rd, 'rm, ror #24");
+ break;
+ }
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "uxtab'cond 'rd, 'rn, 'rm");
+ break;
+ case 1:
+ Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #24");
+ break;
+ }
+ }
+ } else {
+ if (instr->Bits(19, 16) == 0xF) {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "uxth'cond 'rd, 'rm");
+ break;
+ case 1:
+ Format(instr, "uxth'cond 'rd, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "uxth'cond 'rd, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "uxth'cond 'rd, 'rm, ror #24");
+ break;
+ }
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 0:
+ Format(instr, "uxtah'cond 'rd, 'rn, 'rm");
+ break;
+ case 1:
+ Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #8");
+ break;
+ case 2:
+ Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #16");
+ break;
+ case 3:
+ Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #24");
+ break;
+ }
+ }
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ break;
+ }
+ }
+ }
+ break;
+ }
+ case db_x: {
+ if (instr->Bits(22, 20) == 0x5) {
+ if (instr->Bits(7, 4) == 0x1) {
+ if (instr->Bits(15, 12) == 0xF) {
+ Format(instr, "smmul'cond 'rn, 'rm, 'rs");
+ } else {
+ // SMMLA (in V8 notation matching ARM ISA format)
+ Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd");
+ }
+ break;
+ }
+ }
+ bool FLAG_enable_sudiv = true; // Flag doesn't exist in our engine.
+ if (FLAG_enable_sudiv) {
+ if (instr->Bits(5, 4) == 0x1) {
+ if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
+ if (instr->Bit(21) == 0x1) {
+ // UDIV (in V8 notation matching ARM ISA format) rn = rm/rs
+ Format(instr, "udiv'cond'b 'rn, 'rm, 'rs");
+ } else {
+ // SDIV (in V8 notation matching ARM ISA format) rn = rm/rs
+ Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs");
+ }
+ break;
+ }
+ }
+ }
+ Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
+ break;
+ }
+ case ib_x: {
+ if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
+ uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
+ uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
+ uint32_t msbit = widthminus1 + lsbit;
+ if (msbit <= 31) {
+ if (instr->Bit(22)) {
+ Format(instr, "ubfx'cond 'rd, 'rm, 'f");
+ } else {
+ Format(instr, "sbfx'cond 'rd, 'rm, 'f");
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
+ uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
+ uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
+ if (msbit >= lsbit) {
+ if (instr->RmValue() == 15) {
+ Format(instr, "bfc'cond 'rd, 'f");
+ } else {
+ Format(instr, "bfi'cond 'rd, 'rm, 'f");
+ }
+ } else {
+ MOZ_CRASH();
+ }
+ } else {
+ Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
+ }
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ MOZ_CRASH();
+ break;
+ }
+ }
+}
+
+void Decoder::DecodeType4(Instruction* instr) {
+ if (instr->Bit(22) != 0) {
+ // Privileged mode currently not supported.
+ Unknown(instr);
+ } else {
+ if (instr->HasL()) {
+ Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
+ } else {
+ Format(instr, "stm'cond'pu 'rn'w, 'rlist");
+ }
+ }
+}
+
+void Decoder::DecodeType5(Instruction* instr) {
+ Format(instr, "b'l'cond 'target");
+}
+
+void Decoder::DecodeType6(Instruction* instr) {
+ DecodeType6CoprocessorIns(instr);
+}
+
+int Decoder::DecodeType7(Instruction* instr) {
+ if (instr->Bit(24) == 1) {
+ if (instr->SvcValue() >= kStopCode) {
+ Format(instr, "stop'cond 'svc");
+ // Also print the stop message. Its address is encoded
+ // in the following 4 bytes.
+ out_buffer_pos_ += SNPrintF(
+ out_buffer_ + out_buffer_pos_, "\n %p %08x stop message: %s",
+ reinterpret_cast<void*>(instr + Instruction::kInstrSize),
+ *reinterpret_cast<uint32_t*>(instr + Instruction::kInstrSize),
+ *reinterpret_cast<char**>(instr + Instruction::kInstrSize));
+ // We have decoded 2 * Instruction::kInstrSize bytes.
+ return 2 * Instruction::kInstrSize;
+ } else {
+ Format(instr, "svc'cond 'svc");
+ }
+ } else {
+ DecodeTypeVFP(instr);
+ }
+ return Instruction::kInstrSize;
+}
+
+// void Decoder::DecodeTypeVFP(Instruction* instr)
+// vmov: Sn = Rt
+// vmov: Rt = Sn
+// vcvt: Dd = Sm
+// vcvt: Sd = Dm
+// vcvt.f64.s32 Dd, Dd, #<fbits>
+// Dd = vabs(Dm)
+// Sd = vabs(Sm)
+// Dd = vneg(Dm)
+// Sd = vneg(Sm)
+// Dd = vadd(Dn, Dm)
+// Sd = vadd(Sn, Sm)
+// Dd = vsub(Dn, Dm)
+// Sd = vsub(Sn, Sm)
+// Dd = vmul(Dn, Dm)
+// Sd = vmul(Sn, Sm)
+// Dd = vmla(Dn, Dm)
+// Sd = vmla(Sn, Sm)
+// Dd = vmls(Dn, Dm)
+// Sd = vmls(Sn, Sm)
+// Dd = vdiv(Dn, Dm)
+// Sd = vdiv(Sn, Sm)
+// vcmp(Dd, Dm)
+// vcmp(Sd, Sm)
+// Dd = vsqrt(Dm)
+// Sd = vsqrt(Sm)
+// vmrs
+// vmsr
+void Decoder::DecodeTypeVFP(Instruction* instr) {
+ VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
+ VERIFY(instr->Bits(11, 9) == 0x5);
+
+ if (instr->Bit(4) == 0) {
+ if (instr->Opc1Value() == 0x7) {
+ // Other data processing instructions
+ if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
+ // vmov register to register.
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vmov'cond.f64 'Dd, 'Dm");
+ } else {
+ Format(instr, "vmov'cond.f32 'Sd, 'Sm");
+ }
+ } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
+ // vabs
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vabs'cond.f64 'Dd, 'Dm");
+ } else {
+ Format(instr, "vabs'cond.f32 'Sd, 'Sm");
+ }
+ } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
+ // vneg
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vneg'cond.f64 'Dd, 'Dm");
+ } else {
+ Format(instr, "vneg'cond.f32 'Sd, 'Sm");
+ }
+ } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
+ DecodeVCVTBetweenDoubleAndSingle(instr);
+ } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
+ DecodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
+ (instr->Bit(8) == 1)) {
+ // vcvt.f64.s32 Dd, Dd, #<fbits>
+ int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
+ Format(instr, "vcvt'cond.f64.s32 'Dd, 'Dd");
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", fraction_bits);
+ } else if (((instr->Opc2Value() >> 1) == 0x6) &&
+ (instr->Opc3Value() & 0x1)) {
+ DecodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
+ (instr->Opc3Value() & 0x1)) {
+ DecodeVCMP(instr);
+ } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vsqrt'cond.f64 'Dd, 'Dm");
+ } else {
+ Format(instr, "vsqrt'cond.f32 'Sd, 'Sm");
+ }
+ } else if (instr->Opc3Value() == 0x0) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vmov'cond.f64 'Dd, 'd");
+ } else {
+ Unknown(instr); // Not used by V8.
+ }
+ } else if (((instr->Opc2Value() == 0x6)) && instr->Opc3Value() == 0x3) {
+ // vrintz - round towards zero (truncate)
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vrintz'cond.f64.f64 'Dd, 'Dm");
+ } else {
+ Format(instr, "vrintz'cond.f32.f32 'Sd, 'Sm");
+ }
+ } else {
+ Unknown(instr); // Not used by V8.
+ }
+ } else if (instr->Opc1Value() == 0x3) {
+ if (instr->SzValue() == 0x1) {
+ if (instr->Opc3Value() & 0x1) {
+ Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm");
+ } else {
+ Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm");
+ }
+ } else {
+ if (instr->Opc3Value() & 0x1) {
+ Format(instr, "vsub'cond.f32 'Sd, 'Sn, 'Sm");
+ } else {
+ Format(instr, "vadd'cond.f32 'Sd, 'Sn, 'Sm");
+ }
+ }
+ } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm");
+ } else {
+ Format(instr, "vmul'cond.f32 'Sd, 'Sn, 'Sm");
+ }
+ } else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm");
+ } else {
+ Format(instr, "vmla'cond.f32 'Sd, 'Sn, 'Sm");
+ }
+ } else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm");
+ } else {
+ Format(instr, "vmls'cond.f32 'Sd, 'Sn, 'Sm");
+ }
+ } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
+ if (instr->SzValue() == 0x1) {
+ Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm");
+ } else {
+ Format(instr, "vdiv'cond.f32 'Sd, 'Sn, 'Sm");
+ }
+ } else {
+ Unknown(instr); // Not used by V8.
+ }
+ } else {
+ if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) {
+ DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
+ } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) &&
+ (instr->Bit(23) == 0x0)) {
+ if (instr->Bit(21) == 0x0) {
+ Format(instr, "vmov'cond.32 'Dd[0], 'rt");
+ } else {
+ Format(instr, "vmov'cond.32 'Dd[1], 'rt");
+ }
+ } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) &&
+ (instr->Bit(23) == 0x0)) {
+ if (instr->Bit(21) == 0x0) {
+ Format(instr, "vmov'cond.32 'rt, 'Dd[0]");
+ } else {
+ Format(instr, "vmov'cond.32 'rt, 'Dd[1]");
+ }
+ } else if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x7) &&
+ (instr->Bits(19, 16) == 0x1)) {
+ if (instr->VLValue() == 0) {
+ if (instr->Bits(15, 12) == 0xF) {
+ Format(instr, "vmsr'cond FPSCR, APSR");
+ } else {
+ Format(instr, "vmsr'cond FPSCR, 'rt");
+ }
+ } else {
+ if (instr->Bits(15, 12) == 0xF) {
+ Format(instr, "vmrs'cond APSR, FPSCR");
+ } else {
+ Format(instr, "vmrs'cond 'rt, FPSCR");
+ }
+ }
+ }
+ }
+}
+
+void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
+ Instruction* instr) {
+ VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x0));
+
+ bool to_arm_register = (instr->VLValue() == 0x1);
+
+ if (to_arm_register) {
+ Format(instr, "vmov'cond 'rt, 'Sn");
+ } else {
+ Format(instr, "vmov'cond 'Sn, 'rt");
+ }
+}
+
+void Decoder::DecodeVCMP(Instruction* instr) {
+ VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
+ VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
+ (instr->Opc3Value() & 0x1));
+
+ // Comparison.
+ bool dp_operation = (instr->SzValue() == 1);
+ bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
+
+ if (dp_operation && !raise_exception_for_qnan) {
+ if (instr->Opc2Value() == 0x4) {
+ Format(instr, "vcmp'cond.f64 'Dd, 'Dm");
+ } else if (instr->Opc2Value() == 0x5) {
+ Format(instr, "vcmp'cond.f64 'Dd, #0.0");
+ } else {
+ Unknown(instr); // invalid
+ }
+ } else if (!raise_exception_for_qnan) {
+ if (instr->Opc2Value() == 0x4) {
+ Format(instr, "vcmp'cond.f32 'Sd, 'Sm");
+ } else if (instr->Opc2Value() == 0x5) {
+ Format(instr, "vcmp'cond.f32 'Sd, #0.0");
+ } else {
+ Unknown(instr); // invalid
+ }
+ } else {
+ Unknown(instr); // Not used by V8.
+ }
+}
+
+void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
+ VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
+ VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
+
+ bool double_to_single = (instr->SzValue() == 1);
+
+ if (double_to_single) {
+ Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm");
+ } else {
+ Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm");
+ }
+}
+
+void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
+ VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
+ VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
+ (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
+
+ bool to_integer = (instr->Bit(18) == 1);
+ bool dp_operation = (instr->SzValue() == 1);
+ if (to_integer) {
+ bool unsigned_integer = (instr->Bit(16) == 0);
+
+ if (dp_operation) {
+ if (unsigned_integer) {
+ Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm");
+ } else {
+ Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm");
+ }
+ } else {
+ if (unsigned_integer) {
+ Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm");
+ } else {
+ Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm");
+ }
+ }
+ } else {
+ bool unsigned_integer = (instr->Bit(7) == 0);
+
+ if (dp_operation) {
+ if (unsigned_integer) {
+ Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm");
+ } else {
+ Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm");
+ }
+ } else {
+ if (unsigned_integer) {
+ Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm");
+ } else {
+ Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm");
+ }
+ }
+ }
+}
+
+// Decode Type 6 coprocessor instructions.
+// Dm = vmov(Rt, Rt2)
+// <Rt, Rt2> = vmov(Dm)
+// Ddst = MEM(Rbase + 4*offset).
+// MEM(Rbase + 4*offset) = Dsrc.
+void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
+ VERIFY(instr->TypeValue() == 6);
+
+ if (instr->CoprocessorValue() == 0xA) {
+ switch (instr->OpcodeValue()) {
+ case 0x8:
+ case 0xA:
+ if (instr->HasL()) {
+ Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
+ } else {
+ Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
+ }
+ break;
+ case 0xC:
+ case 0xE:
+ if (instr->HasL()) {
+ Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
+ } else {
+ Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
+ }
+ break;
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB: {
+ bool to_vfp_register = (instr->VLValue() == 0x1);
+ if (to_vfp_register) {
+ Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
+ } else {
+ Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
+ }
+ break;
+ }
+ default:
+ Unknown(instr); // Not used by V8.
+ }
+ } else if (instr->CoprocessorValue() == 0xB) {
+ switch (instr->OpcodeValue()) {
+ case 0x2:
+ // Load and store double to two GP registers
+ if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
+ Unknown(instr); // Not used by V8.
+ } else if (instr->HasL()) {
+ Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
+ } else {
+ Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
+ }
+ break;
+ case 0x8:
+ case 0xA:
+ if (instr->HasL()) {
+ Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
+ } else {
+ Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
+ }
+ break;
+ case 0xC:
+ case 0xE:
+ if (instr->HasL()) {
+ Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
+ } else {
+ Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
+ }
+ break;
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB: {
+ bool to_vfp_register = (instr->VLValue() == 0x1);
+ if (to_vfp_register) {
+ Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
+ } else {
+ Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
+ }
+ break;
+ }
+ default:
+ Unknown(instr); // Not used by V8.
+ }
+ } else {
+ Unknown(instr); // Not used by V8.
+ }
+}
+
+void Decoder::DecodeSpecialCondition(Instruction* instr) {
+ switch (instr->SpecialValue()) {
+ case 5:
+ if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
+ (instr->Bit(4) == 1)) {
+ // vmovl signed
+ if ((instr->VdValue() & 1) != 0) Unknown(instr);
+ int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
+ int Vm = (instr->Bit(5) << 4) | instr->VmValue();
+ int imm3 = instr->Bits(21, 19);
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "vmovl.s%d q%d, d%d", imm3 * 8, Vd, Vm);
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 7:
+ if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
+ (instr->Bit(4) == 1)) {
+ // vmovl unsigned
+ if ((instr->VdValue() & 1) != 0) Unknown(instr);
+ int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
+ int Vm = (instr->Bit(5) << 4) | instr->VmValue();
+ int imm3 = instr->Bits(21, 19);
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "vmovl.u%d q%d, d%d", imm3 * 8, Vd, Vm);
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 8:
+ if (instr->Bits(21, 20) == 0) {
+ // vst1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int type = instr->Bits(11, 8);
+ int size = instr->Bits(7, 6);
+ int align = instr->Bits(5, 4);
+ int Rm = instr->VmValue();
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d ",
+ (1 << size) << 3);
+ FormatNeonList(Vd, type);
+ Print(", ");
+ FormatNeonMemory(Rn, align, Rm);
+ } else if (instr->Bits(21, 20) == 2) {
+ // vld1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int type = instr->Bits(11, 8);
+ int size = instr->Bits(7, 6);
+ int align = instr->Bits(5, 4);
+ int Rm = instr->VmValue();
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d ",
+ (1 << size) << 3);
+ FormatNeonList(Vd, type);
+ Print(", ");
+ FormatNeonMemory(Rn, align, Rm);
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 9:
+ if (instr->Bits(21, 20) == 0 && instr->Bits(9, 8) == 0) {
+ // vst1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int size = instr->Bits(11, 10);
+ int index = instr->Bits(7, 5);
+ int align = instr->Bit(4);
+ int Rm = instr->VmValue();
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d {d%d[%d]}, ",
+ (1 << size) << 3, Vd, index);
+ FormatNeonMemory(Rn, align, Rm);
+ } else if (instr->Bits(21, 20) == 2 && instr->Bits(9, 8) == 0) {
+ // vld1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int size = instr->Bits(11, 10);
+ int index = instr->Bits(7, 5);
+ int align = instr->Bit(4);
+ int Rm = instr->VmValue();
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d {d%d[%d]}, ",
+ (1 << size) << 3, Vd, index);
+ FormatNeonMemory(Rn, align, Rm);
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 0xA:
+ if (instr->Bits(22, 20) == 7) {
+ const char* option = "?";
+ switch (instr->Bits(3, 0)) {
+ case 2:
+ option = "oshst";
+ break;
+ case 3:
+ option = "osh";
+ break;
+ case 6:
+ option = "nshst";
+ break;
+ case 7:
+ option = "nsh";
+ break;
+ case 10:
+ option = "ishst";
+ break;
+ case 11:
+ option = "ish";
+ break;
+ case 14:
+ option = "st";
+ break;
+ case 15:
+ option = "sy";
+ break;
+ }
+ switch (instr->Bits(7, 4)) {
+ case 1:
+ Print("clrex");
+ break;
+ case 4:
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "dsb %s", option);
+ break;
+ case 5:
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "dmb %s", option);
+ break;
+ default:
+ Unknown(instr);
+ }
+ break;
+ }
+ [[fallthrough]];
+ case 0xB:
+ if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) {
+ int Rn = instr->Bits(19, 16);
+ int offset = instr->Bits(11, 0);
+ if (offset == 0) {
+ out_buffer_pos_ +=
+ SNPrintF(out_buffer_ + out_buffer_pos_, "pld [r%d]", Rn);
+ } else if (instr->Bit(23) == 0) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "pld [r%d, #-%d]", Rn, offset);
+ } else {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "pld [r%d, #+%d]", Rn, offset);
+ }
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 0x1D:
+ if (instr->Opc1Value() == 0x7 && instr->Bits(19, 18) == 0x2 &&
+ instr->Bits(11, 9) == 0x5 && instr->Bits(7, 6) == 0x1 &&
+ instr->Bit(4) == 0x0) {
+ // VRINTA, VRINTN, VRINTP, VRINTM (floating-point)
+ bool dp_operation = (instr->SzValue() == 1);
+ int rounding_mode = instr->Bits(17, 16);
+ switch (rounding_mode) {
+ case 0x0:
+ if (dp_operation) {
+ Format(instr, "vrinta.f64.f64 'Dd, 'Dm");
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 0x1:
+ if (dp_operation) {
+ Format(instr, "vrintn.f64.f64 'Dd, 'Dm");
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 0x2:
+ if (dp_operation) {
+ Format(instr, "vrintp.f64.f64 'Dd, 'Dm");
+ } else {
+ Unknown(instr);
+ }
+ break;
+ case 0x3:
+ if (dp_operation) {
+ Format(instr, "vrintm.f64.f64 'Dd, 'Dm");
+ } else {
+ Unknown(instr);
+ }
+ break;
+ default:
+ MOZ_CRASH(); // Case analysis is exhaustive.
+ break;
+ }
+ } else {
+ Unknown(instr);
+ }
+ break;
+ default:
+ Unknown(instr);
+ break;
+ }
+}
+
+# undef VERIFIY
+
+bool Decoder::IsConstantPoolAt(uint8_t* instr_ptr) {
+ int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
+ return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
+}
+
+int Decoder::ConstantPoolSizeAt(uint8_t* instr_ptr) {
+ if (IsConstantPoolAt(instr_ptr)) {
+ int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
+ return DecodeConstantPoolLength(instruction_bits);
+ } else {
+ return -1;
+ }
+}
+
+// Disassemble the instruction at *instr_ptr into the output buffer.
+int Decoder::InstructionDecode(uint8_t* instr_ptr) {
+ Instruction* instr = Instruction::At(instr_ptr);
+ // Print raw instruction bytes.
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ",
+ instr->InstructionBits());
+ if (instr->ConditionField() == kSpecialCondition) {
+ DecodeSpecialCondition(instr);
+ return Instruction::kInstrSize;
+ }
+ int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
+ if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
+ out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
+ "constant pool begin (length %d)",
+ DecodeConstantPoolLength(instruction_bits));
+ return Instruction::kInstrSize;
+ } else if (instruction_bits == kCodeAgeJumpInstruction) {
+ // The code age prologue has a constant immediatly following the jump
+ // instruction.
+ Instruction* target = Instruction::At(instr_ptr + Instruction::kInstrSize);
+ DecodeType2(instr);
+ SNPrintF(out_buffer_ + out_buffer_pos_, " (0x%08x)",
+ target->InstructionBits());
+ return 2 * Instruction::kInstrSize;
+ }
+ switch (instr->TypeValue()) {
+ case 0:
+ case 1: {
+ DecodeType01(instr);
+ break;
+ }
+ case 2: {
+ DecodeType2(instr);
+ break;
+ }
+ case 3: {
+ DecodeType3(instr);
+ break;
+ }
+ case 4: {
+ DecodeType4(instr);
+ break;
+ }
+ case 5: {
+ DecodeType5(instr);
+ break;
+ }
+ case 6: {
+ DecodeType6(instr);
+ break;
+ }
+ case 7: {
+ return DecodeType7(instr);
+ }
+ default: {
+ // The type field is 3-bits in the ARM encoding.
+ MOZ_CRASH();
+ break;
+ }
+ }
+ return Instruction::kInstrSize;
+}
+
+} // namespace disasm
+
+# undef STRING_STARTS_WITH
+# undef VERIFY
+
+//------------------------------------------------------------------------------
+
+namespace disasm {
+
+const char* NameConverter::NameOfAddress(uint8_t* addr) const {
+ SNPrintF(tmp_buffer_, "%p", addr);
+ return tmp_buffer_.start();
+}
+
+const char* NameConverter::NameOfConstant(uint8_t* addr) const {
+ return NameOfAddress(addr);
+}
+
+const char* NameConverter::NameOfCPURegister(int reg) const {
+ return disasm::Registers::Name(reg);
+}
+
+const char* NameConverter::NameOfByteCPURegister(int reg) const {
+ MOZ_CRASH(); // ARM does not have the concept of a byte register
+ return "nobytereg";
+}
+
+const char* NameConverter::NameOfXMMRegister(int reg) const {
+ MOZ_CRASH(); // ARM does not have any XMM registers
+ return "noxmmreg";
+}
+
+const char* NameConverter::NameInCode(uint8_t* addr) const {
+ // The default name converter is called for unknown code. So we will not try
+ // to access any memory.
+ return "";
+}
+
+//------------------------------------------------------------------------------
+
+Disassembler::Disassembler(const NameConverter& converter)
+ : converter_(converter) {}
+
+Disassembler::~Disassembler() {}
+
+int Disassembler::InstructionDecode(V8Vector<char> buffer,
+ uint8_t* instruction) {
+ Decoder d(converter_, buffer);
+ return d.InstructionDecode(instruction);
+}
+
+int Disassembler::ConstantPoolSizeAt(uint8_t* instruction) {
+ return Decoder::ConstantPoolSizeAt(instruction);
+}
+
+void Disassembler::Disassemble(FILE* f, uint8_t* begin, uint8_t* end) {
+ NameConverter converter;
+ Disassembler d(converter);
+ for (uint8_t* pc = begin; pc < end;) {
+ EmbeddedVector<char, ReasonableBufferSize> buffer;
+ buffer[0] = '\0';
+ uint8_t* prev_pc = pc;
+ pc += d.InstructionDecode(buffer, pc);
+ fprintf(f, "%p %08x %s\n", prev_pc,
+ *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
+ }
+}
+
+} // namespace disasm
+} // namespace jit
+} // namespace js
+
+#endif // JS_DISASM_ARM
diff --git a/js/src/jit/arm/disasm/Disasm-arm.h b/js/src/jit/arm/disasm/Disasm-arm.h
new file mode 100644
index 0000000000..8a0dd97c32
--- /dev/null
+++ b/js/src/jit/arm/disasm/Disasm-arm.h
@@ -0,0 +1,141 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ */
+// Copyright 2007-2008 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef jit_arm_disasm_Disasm_arm_h
+#define jit_arm_disasm_Disasm_arm_h
+
+#ifdef JS_DISASM_ARM
+
+# include "mozilla/Assertions.h"
+# include "mozilla/Types.h"
+
+# include <stdio.h>
+
+namespace js {
+namespace jit {
+namespace disasm {
+
+typedef unsigned char byte;
+
+// A reasonable (ie, safe) buffer size for the disassembly of a single
+// instruction.
+const int ReasonableBufferSize = 256;
+
+// Vector as used by the original code to allow for minimal modification.
+// Functions exactly like a character array with helper methods.
+template <typename T>
+class V8Vector {
+ public:
+ V8Vector() : start_(nullptr), length_(0) {}
+ V8Vector(T* data, int length) : start_(data), length_(length) {
+ MOZ_ASSERT(length == 0 || (length > 0 && data != nullptr));
+ }
+
+ // Returns the length of the vector.
+ int length() const { return length_; }
+
+ // Returns the pointer to the start of the data in the vector.
+ T* start() const { return start_; }
+
+ // Access individual vector elements - checks bounds in debug mode.
+ T& operator[](int index) const {
+ MOZ_ASSERT(0 <= index && index < length_);
+ return start_[index];
+ }
+
+ V8Vector<T> operator+(int offset) const {
+ MOZ_ASSERT(offset < length_);
+ return V8Vector<T>(start_ + offset, length_ - offset);
+ }
+
+ private:
+ T* start_;
+ int length_;
+};
+
+template <typename T, int kSize>
+class EmbeddedVector : public V8Vector<T> {
+ public:
+ EmbeddedVector() : V8Vector<T>(buffer_, kSize) {}
+
+ explicit EmbeddedVector(T initial_value) : V8Vector<T>(buffer_, kSize) {
+ for (int i = 0; i < kSize; ++i) {
+ buffer_[i] = initial_value;
+ }
+ }
+
+ // When copying, make underlying Vector to reference our buffer.
+ EmbeddedVector(const EmbeddedVector& rhs) : V8Vector<T>(rhs) {
+ MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
+ this->set_start(buffer_);
+ }
+
+ EmbeddedVector& operator=(const EmbeddedVector& rhs) {
+ if (this == &rhs) return *this;
+ V8Vector<T>::operator=(rhs);
+ MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
+ this->set_start(buffer_);
+ return *this;
+ }
+
+ private:
+ T buffer_[kSize];
+};
+
+// Interface and default implementation for converting addresses and
+// register-numbers to text. The default implementation is machine
+// specific.
+class NameConverter {
+ public:
+ virtual ~NameConverter() {}
+ virtual const char* NameOfCPURegister(int reg) const;
+ virtual const char* NameOfByteCPURegister(int reg) const;
+ virtual const char* NameOfXMMRegister(int reg) const;
+ virtual const char* NameOfAddress(byte* addr) const;
+ virtual const char* NameOfConstant(byte* addr) const;
+ virtual const char* NameInCode(byte* addr) const;
+
+ protected:
+ EmbeddedVector<char, 128> tmp_buffer_;
+};
+
+// A generic Disassembler interface
+class Disassembler {
+ public:
+ // Caller deallocates converter.
+ explicit Disassembler(const NameConverter& converter);
+
+ virtual ~Disassembler();
+
+ // Writes one disassembled instruction into 'buffer' (0-terminated).
+ // Returns the length of the disassembled machine instruction in bytes.
+ int InstructionDecode(V8Vector<char> buffer, uint8_t* instruction);
+
+ // Returns -1 if instruction does not mark the beginning of a constant pool,
+ // or the number of entries in the constant pool beginning here.
+ int ConstantPoolSizeAt(byte* instruction);
+
+ // Write disassembly into specified file 'f' using specified NameConverter
+ // (see constructor).
+ static void Disassemble(FILE* f, uint8_t* begin, uint8_t* end);
+
+ private:
+ const NameConverter& converter_;
+
+ // Disallow implicit constructors.
+ Disassembler() = delete;
+ Disassembler(const Disassembler&) = delete;
+ void operator=(const Disassembler&) = delete;
+};
+
+} // namespace disasm
+} // namespace jit
+} // namespace js
+
+#endif // JS_DISASM_ARM
+
+#endif // jit_arm_disasm_Disasm_arm_h