summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/simd/arm/jidctfst-neon.c
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjpeg/simd/arm/jidctfst-neon.c')
-rw-r--r--media/libjpeg/simd/arm/jidctfst-neon.c472
1 files changed, 472 insertions, 0 deletions
diff --git a/media/libjpeg/simd/arm/jidctfst-neon.c b/media/libjpeg/simd/arm/jidctfst-neon.c
new file mode 100644
index 0000000000..a91be5362e
--- /dev/null
+++ b/media/libjpeg/simd/arm/jidctfst-neon.c
@@ -0,0 +1,472 @@
+/*
+ * jidctfst-neon.c - fast integer IDCT (Arm Neon)
+ *
+ * Copyright (C) 2020, Arm Limited. All Rights Reserved.
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty. In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ * claim that you wrote the original software. If you use this software
+ * in a product, an acknowledgment in the product documentation would be
+ * appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ * misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ */
+
+#define JPEG_INTERNALS
+#include "../../jinclude.h"
+#include "../../jpeglib.h"
+#include "../../jsimd.h"
+#include "../../jdct.h"
+#include "../../jsimddct.h"
+#include "../jsimd.h"
+#include "align.h"
+
+#include <arm_neon.h>
+
+
+/* jsimd_idct_ifast_neon() performs dequantization and a fast, not so accurate
+ * inverse DCT (Discrete Cosine Transform) on one block of coefficients. It
+ * uses the same calculations and produces exactly the same output as IJG's
+ * original jpeg_idct_ifast() function, which can be found in jidctfst.c.
+ *
+ * Scaled integer constants are used to avoid floating-point arithmetic:
+ * 0.082392200 = 2688 * 2^-15
+ * 0.414213562 = 13568 * 2^-15
+ * 0.847759065 = 27776 * 2^-15
+ * 0.613125930 = 20096 * 2^-15
+ *
+ * See jidctfst.c for further details of the IDCT algorithm. Where possible,
+ * the variable names and comments here in jsimd_idct_ifast_neon() match up
+ * with those in jpeg_idct_ifast().
+ */
+
+#define PASS1_BITS 2
+
+#define F_0_082 2688
+#define F_0_414 13568
+#define F_0_847 27776
+#define F_0_613 20096
+
+
+ALIGN(16) static const int16_t jsimd_idct_ifast_neon_consts[] = {
+ F_0_082, F_0_414, F_0_847, F_0_613
+};
+
+void jsimd_idct_ifast_neon(void *dct_table, JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ IFAST_MULT_TYPE *quantptr = dct_table;
+
+ /* Load DCT coefficients. */
+ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
+ int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
+ int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
+ int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
+ int16x8_t row4 = vld1q_s16(coef_block + 4 * DCTSIZE);
+ int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
+ int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
+ int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
+
+ /* Load quantization table values for DC coefficients. */
+ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
+ /* Dequantize DC coefficients. */
+ row0 = vmulq_s16(row0, quant_row0);
+
+ /* Construct bitmap to test if all AC coefficients are 0. */
+ int16x8_t bitmap = vorrq_s16(row1, row2);
+ bitmap = vorrq_s16(bitmap, row3);
+ bitmap = vorrq_s16(bitmap, row4);
+ bitmap = vorrq_s16(bitmap, row5);
+ bitmap = vorrq_s16(bitmap, row6);
+ bitmap = vorrq_s16(bitmap, row7);
+
+ int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
+ int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
+
+ /* Load IDCT conversion constants. */
+ const int16x4_t consts = vld1_s16(jsimd_idct_ifast_neon_consts);
+
+ if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
+ /* All AC coefficients are zero.
+ * Compute DC values and duplicate into vectors.
+ */
+ int16x8_t dcval = row0;
+ row1 = dcval;
+ row2 = dcval;
+ row3 = dcval;
+ row4 = dcval;
+ row5 = dcval;
+ row6 = dcval;
+ row7 = dcval;
+ } else if (left_ac_bitmap == 0) {
+ /* AC coefficients are zero for columns 0, 1, 2, and 3.
+ * Use DC values for these columns.
+ */
+ int16x4_t dcval = vget_low_s16(row0);
+
+ /* Commence regular fast IDCT computation for columns 4, 5, 6, and 7. */
+
+ /* Load quantization table. */
+ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
+ int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
+ int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
+ int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
+ int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
+ int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
+ int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
+
+ /* Even part: dequantize DCT coefficients. */
+ int16x4_t tmp0 = vget_high_s16(row0);
+ int16x4_t tmp1 = vmul_s16(vget_high_s16(row2), quant_row2);
+ int16x4_t tmp2 = vmul_s16(vget_high_s16(row4), quant_row4);
+ int16x4_t tmp3 = vmul_s16(vget_high_s16(row6), quant_row6);
+
+ int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
+ int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
+
+ int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
+ int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
+ int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
+ tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
+ tmp12 = vsub_s16(tmp12, tmp13);
+
+ tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
+ tmp3 = vsub_s16(tmp10, tmp13);
+ tmp1 = vadd_s16(tmp11, tmp12);
+ tmp2 = vsub_s16(tmp11, tmp12);
+
+ /* Odd part: dequantize DCT coefficients. */
+ int16x4_t tmp4 = vmul_s16(vget_high_s16(row1), quant_row1);
+ int16x4_t tmp5 = vmul_s16(vget_high_s16(row3), quant_row3);
+ int16x4_t tmp6 = vmul_s16(vget_high_s16(row5), quant_row5);
+ int16x4_t tmp7 = vmul_s16(vget_high_s16(row7), quant_row7);
+
+ int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
+ int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
+ int16x4_t z11 = vadd_s16(tmp4, tmp7);
+ int16x4_t z12 = vsub_s16(tmp4, tmp7);
+
+ tmp7 = vadd_s16(z11, z13); /* phase 5 */
+ int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
+ tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
+ tmp11 = vadd_s16(tmp11, z11_sub_z13);
+
+ int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
+ int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
+ z5 = vadd_s16(z5, z10_add_z12);
+ tmp10 = vqdmulh_lane_s16(z12, consts, 0);
+ tmp10 = vadd_s16(tmp10, z12);
+ tmp10 = vsub_s16(tmp10, z5);
+ tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
+ tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
+ tmp12 = vadd_s16(tmp12, z5);
+
+ tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
+ tmp5 = vsub_s16(tmp11, tmp6);
+ tmp4 = vadd_s16(tmp10, tmp5);
+
+ row0 = vcombine_s16(dcval, vadd_s16(tmp0, tmp7));
+ row7 = vcombine_s16(dcval, vsub_s16(tmp0, tmp7));
+ row1 = vcombine_s16(dcval, vadd_s16(tmp1, tmp6));
+ row6 = vcombine_s16(dcval, vsub_s16(tmp1, tmp6));
+ row2 = vcombine_s16(dcval, vadd_s16(tmp2, tmp5));
+ row5 = vcombine_s16(dcval, vsub_s16(tmp2, tmp5));
+ row4 = vcombine_s16(dcval, vadd_s16(tmp3, tmp4));
+ row3 = vcombine_s16(dcval, vsub_s16(tmp3, tmp4));
+ } else if (right_ac_bitmap == 0) {
+ /* AC coefficients are zero for columns 4, 5, 6, and 7.
+ * Use DC values for these columns.
+ */
+ int16x4_t dcval = vget_high_s16(row0);
+
+ /* Commence regular fast IDCT computation for columns 0, 1, 2, and 3. */
+
+ /* Load quantization table. */
+ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
+ int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
+ int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
+ int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
+ int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
+ int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
+ int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
+
+ /* Even part: dequantize DCT coefficients. */
+ int16x4_t tmp0 = vget_low_s16(row0);
+ int16x4_t tmp1 = vmul_s16(vget_low_s16(row2), quant_row2);
+ int16x4_t tmp2 = vmul_s16(vget_low_s16(row4), quant_row4);
+ int16x4_t tmp3 = vmul_s16(vget_low_s16(row6), quant_row6);
+
+ int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */
+ int16x4_t tmp11 = vsub_s16(tmp0, tmp2);
+
+ int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */
+ int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3);
+ int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1);
+ tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3);
+ tmp12 = vsub_s16(tmp12, tmp13);
+
+ tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */
+ tmp3 = vsub_s16(tmp10, tmp13);
+ tmp1 = vadd_s16(tmp11, tmp12);
+ tmp2 = vsub_s16(tmp11, tmp12);
+
+ /* Odd part: dequantize DCT coefficients. */
+ int16x4_t tmp4 = vmul_s16(vget_low_s16(row1), quant_row1);
+ int16x4_t tmp5 = vmul_s16(vget_low_s16(row3), quant_row3);
+ int16x4_t tmp6 = vmul_s16(vget_low_s16(row5), quant_row5);
+ int16x4_t tmp7 = vmul_s16(vget_low_s16(row7), quant_row7);
+
+ int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */
+ int16x4_t neg_z10 = vsub_s16(tmp5, tmp6);
+ int16x4_t z11 = vadd_s16(tmp4, tmp7);
+ int16x4_t z12 = vsub_s16(tmp4, tmp7);
+
+ tmp7 = vadd_s16(z11, z13); /* phase 5 */
+ int16x4_t z11_sub_z13 = vsub_s16(z11, z13);
+ tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1);
+ tmp11 = vadd_s16(tmp11, z11_sub_z13);
+
+ int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10);
+ int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2);
+ z5 = vadd_s16(z5, z10_add_z12);
+ tmp10 = vqdmulh_lane_s16(z12, consts, 0);
+ tmp10 = vadd_s16(tmp10, z12);
+ tmp10 = vsub_s16(tmp10, z5);
+ tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3);
+ tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10));
+ tmp12 = vadd_s16(tmp12, z5);
+
+ tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */
+ tmp5 = vsub_s16(tmp11, tmp6);
+ tmp4 = vadd_s16(tmp10, tmp5);
+
+ row0 = vcombine_s16(vadd_s16(tmp0, tmp7), dcval);
+ row7 = vcombine_s16(vsub_s16(tmp0, tmp7), dcval);
+ row1 = vcombine_s16(vadd_s16(tmp1, tmp6), dcval);
+ row6 = vcombine_s16(vsub_s16(tmp1, tmp6), dcval);
+ row2 = vcombine_s16(vadd_s16(tmp2, tmp5), dcval);
+ row5 = vcombine_s16(vsub_s16(tmp2, tmp5), dcval);
+ row4 = vcombine_s16(vadd_s16(tmp3, tmp4), dcval);
+ row3 = vcombine_s16(vsub_s16(tmp3, tmp4), dcval);
+ } else {
+ /* Some AC coefficients are non-zero; full IDCT calculation required. */
+
+ /* Load quantization table. */
+ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
+ int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
+ int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
+ int16x8_t quant_row4 = vld1q_s16(quantptr + 4 * DCTSIZE);
+ int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
+ int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
+ int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
+
+ /* Even part: dequantize DCT coefficients. */
+ int16x8_t tmp0 = row0;
+ int16x8_t tmp1 = vmulq_s16(row2, quant_row2);
+ int16x8_t tmp2 = vmulq_s16(row4, quant_row4);
+ int16x8_t tmp3 = vmulq_s16(row6, quant_row6);
+
+ int16x8_t tmp10 = vaddq_s16(tmp0, tmp2); /* phase 3 */
+ int16x8_t tmp11 = vsubq_s16(tmp0, tmp2);
+
+ int16x8_t tmp13 = vaddq_s16(tmp1, tmp3); /* phases 5-3 */
+ int16x8_t tmp1_sub_tmp3 = vsubq_s16(tmp1, tmp3);
+ int16x8_t tmp12 = vqdmulhq_lane_s16(tmp1_sub_tmp3, consts, 1);
+ tmp12 = vaddq_s16(tmp12, tmp1_sub_tmp3);
+ tmp12 = vsubq_s16(tmp12, tmp13);
+
+ tmp0 = vaddq_s16(tmp10, tmp13); /* phase 2 */
+ tmp3 = vsubq_s16(tmp10, tmp13);
+ tmp1 = vaddq_s16(tmp11, tmp12);
+ tmp2 = vsubq_s16(tmp11, tmp12);
+
+ /* Odd part: dequantize DCT coefficients. */
+ int16x8_t tmp4 = vmulq_s16(row1, quant_row1);
+ int16x8_t tmp5 = vmulq_s16(row3, quant_row3);
+ int16x8_t tmp6 = vmulq_s16(row5, quant_row5);
+ int16x8_t tmp7 = vmulq_s16(row7, quant_row7);
+
+ int16x8_t z13 = vaddq_s16(tmp6, tmp5); /* phase 6 */
+ int16x8_t neg_z10 = vsubq_s16(tmp5, tmp6);
+ int16x8_t z11 = vaddq_s16(tmp4, tmp7);
+ int16x8_t z12 = vsubq_s16(tmp4, tmp7);
+
+ tmp7 = vaddq_s16(z11, z13); /* phase 5 */
+ int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
+ tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
+ tmp11 = vaddq_s16(tmp11, z11_sub_z13);
+
+ int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
+ int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
+ z5 = vaddq_s16(z5, z10_add_z12);
+ tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
+ tmp10 = vaddq_s16(tmp10, z12);
+ tmp10 = vsubq_s16(tmp10, z5);
+ tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
+ tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
+ tmp12 = vaddq_s16(tmp12, z5);
+
+ tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
+ tmp5 = vsubq_s16(tmp11, tmp6);
+ tmp4 = vaddq_s16(tmp10, tmp5);
+
+ row0 = vaddq_s16(tmp0, tmp7);
+ row7 = vsubq_s16(tmp0, tmp7);
+ row1 = vaddq_s16(tmp1, tmp6);
+ row6 = vsubq_s16(tmp1, tmp6);
+ row2 = vaddq_s16(tmp2, tmp5);
+ row5 = vsubq_s16(tmp2, tmp5);
+ row4 = vaddq_s16(tmp3, tmp4);
+ row3 = vsubq_s16(tmp3, tmp4);
+ }
+
+ /* Transpose rows to work on columns in pass 2. */
+ int16x8x2_t rows_01 = vtrnq_s16(row0, row1);
+ int16x8x2_t rows_23 = vtrnq_s16(row2, row3);
+ int16x8x2_t rows_45 = vtrnq_s16(row4, row5);
+ int16x8x2_t rows_67 = vtrnq_s16(row6, row7);
+
+ int32x4x2_t rows_0145_l = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[0]),
+ vreinterpretq_s32_s16(rows_45.val[0]));
+ int32x4x2_t rows_0145_h = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[1]),
+ vreinterpretq_s32_s16(rows_45.val[1]));
+ int32x4x2_t rows_2367_l = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[0]),
+ vreinterpretq_s32_s16(rows_67.val[0]));
+ int32x4x2_t rows_2367_h = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[1]),
+ vreinterpretq_s32_s16(rows_67.val[1]));
+
+ int32x4x2_t cols_04 = vzipq_s32(rows_0145_l.val[0], rows_2367_l.val[0]);
+ int32x4x2_t cols_15 = vzipq_s32(rows_0145_h.val[0], rows_2367_h.val[0]);
+ int32x4x2_t cols_26 = vzipq_s32(rows_0145_l.val[1], rows_2367_l.val[1]);
+ int32x4x2_t cols_37 = vzipq_s32(rows_0145_h.val[1], rows_2367_h.val[1]);
+
+ int16x8_t col0 = vreinterpretq_s16_s32(cols_04.val[0]);
+ int16x8_t col1 = vreinterpretq_s16_s32(cols_15.val[0]);
+ int16x8_t col2 = vreinterpretq_s16_s32(cols_26.val[0]);
+ int16x8_t col3 = vreinterpretq_s16_s32(cols_37.val[0]);
+ int16x8_t col4 = vreinterpretq_s16_s32(cols_04.val[1]);
+ int16x8_t col5 = vreinterpretq_s16_s32(cols_15.val[1]);
+ int16x8_t col6 = vreinterpretq_s16_s32(cols_26.val[1]);
+ int16x8_t col7 = vreinterpretq_s16_s32(cols_37.val[1]);
+
+ /* 1-D IDCT, pass 2 */
+
+ /* Even part */
+ int16x8_t tmp10 = vaddq_s16(col0, col4);
+ int16x8_t tmp11 = vsubq_s16(col0, col4);
+
+ int16x8_t tmp13 = vaddq_s16(col2, col6);
+ int16x8_t col2_sub_col6 = vsubq_s16(col2, col6);
+ int16x8_t tmp12 = vqdmulhq_lane_s16(col2_sub_col6, consts, 1);
+ tmp12 = vaddq_s16(tmp12, col2_sub_col6);
+ tmp12 = vsubq_s16(tmp12, tmp13);
+
+ int16x8_t tmp0 = vaddq_s16(tmp10, tmp13);
+ int16x8_t tmp3 = vsubq_s16(tmp10, tmp13);
+ int16x8_t tmp1 = vaddq_s16(tmp11, tmp12);
+ int16x8_t tmp2 = vsubq_s16(tmp11, tmp12);
+
+ /* Odd part */
+ int16x8_t z13 = vaddq_s16(col5, col3);
+ int16x8_t neg_z10 = vsubq_s16(col3, col5);
+ int16x8_t z11 = vaddq_s16(col1, col7);
+ int16x8_t z12 = vsubq_s16(col1, col7);
+
+ int16x8_t tmp7 = vaddq_s16(z11, z13); /* phase 5 */
+ int16x8_t z11_sub_z13 = vsubq_s16(z11, z13);
+ tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1);
+ tmp11 = vaddq_s16(tmp11, z11_sub_z13);
+
+ int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10);
+ int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2);
+ z5 = vaddq_s16(z5, z10_add_z12);
+ tmp10 = vqdmulhq_lane_s16(z12, consts, 0);
+ tmp10 = vaddq_s16(tmp10, z12);
+ tmp10 = vsubq_s16(tmp10, z5);
+ tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3);
+ tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10));
+ tmp12 = vaddq_s16(tmp12, z5);
+
+ int16x8_t tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */
+ int16x8_t tmp5 = vsubq_s16(tmp11, tmp6);
+ int16x8_t tmp4 = vaddq_s16(tmp10, tmp5);
+
+ col0 = vaddq_s16(tmp0, tmp7);
+ col7 = vsubq_s16(tmp0, tmp7);
+ col1 = vaddq_s16(tmp1, tmp6);
+ col6 = vsubq_s16(tmp1, tmp6);
+ col2 = vaddq_s16(tmp2, tmp5);
+ col5 = vsubq_s16(tmp2, tmp5);
+ col4 = vaddq_s16(tmp3, tmp4);
+ col3 = vsubq_s16(tmp3, tmp4);
+
+ /* Scale down by a factor of 8, narrowing to 8-bit. */
+ int8x16_t cols_01_s8 = vcombine_s8(vqshrn_n_s16(col0, PASS1_BITS + 3),
+ vqshrn_n_s16(col1, PASS1_BITS + 3));
+ int8x16_t cols_45_s8 = vcombine_s8(vqshrn_n_s16(col4, PASS1_BITS + 3),
+ vqshrn_n_s16(col5, PASS1_BITS + 3));
+ int8x16_t cols_23_s8 = vcombine_s8(vqshrn_n_s16(col2, PASS1_BITS + 3),
+ vqshrn_n_s16(col3, PASS1_BITS + 3));
+ int8x16_t cols_67_s8 = vcombine_s8(vqshrn_n_s16(col6, PASS1_BITS + 3),
+ vqshrn_n_s16(col7, PASS1_BITS + 3));
+ /* Clamp to range [0-255]. */
+ uint8x16_t cols_01 =
+ vreinterpretq_u8_s8
+ (vaddq_s8(cols_01_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
+ uint8x16_t cols_45 =
+ vreinterpretq_u8_s8
+ (vaddq_s8(cols_45_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
+ uint8x16_t cols_23 =
+ vreinterpretq_u8_s8
+ (vaddq_s8(cols_23_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
+ uint8x16_t cols_67 =
+ vreinterpretq_u8_s8
+ (vaddq_s8(cols_67_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE))));
+
+ /* Transpose block to prepare for store. */
+ uint32x4x2_t cols_0415 = vzipq_u32(vreinterpretq_u32_u8(cols_01),
+ vreinterpretq_u32_u8(cols_45));
+ uint32x4x2_t cols_2637 = vzipq_u32(vreinterpretq_u32_u8(cols_23),
+ vreinterpretq_u32_u8(cols_67));
+
+ uint8x16x2_t cols_0145 = vtrnq_u8(vreinterpretq_u8_u32(cols_0415.val[0]),
+ vreinterpretq_u8_u32(cols_0415.val[1]));
+ uint8x16x2_t cols_2367 = vtrnq_u8(vreinterpretq_u8_u32(cols_2637.val[0]),
+ vreinterpretq_u8_u32(cols_2637.val[1]));
+ uint16x8x2_t rows_0426 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[0]),
+ vreinterpretq_u16_u8(cols_2367.val[0]));
+ uint16x8x2_t rows_1537 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[1]),
+ vreinterpretq_u16_u8(cols_2367.val[1]));
+
+ uint8x16_t rows_04 = vreinterpretq_u8_u16(rows_0426.val[0]);
+ uint8x16_t rows_15 = vreinterpretq_u8_u16(rows_1537.val[0]);
+ uint8x16_t rows_26 = vreinterpretq_u8_u16(rows_0426.val[1]);
+ uint8x16_t rows_37 = vreinterpretq_u8_u16(rows_1537.val[1]);
+
+ JSAMPROW outptr0 = output_buf[0] + output_col;
+ JSAMPROW outptr1 = output_buf[1] + output_col;
+ JSAMPROW outptr2 = output_buf[2] + output_col;
+ JSAMPROW outptr3 = output_buf[3] + output_col;
+ JSAMPROW outptr4 = output_buf[4] + output_col;
+ JSAMPROW outptr5 = output_buf[5] + output_col;
+ JSAMPROW outptr6 = output_buf[6] + output_col;
+ JSAMPROW outptr7 = output_buf[7] + output_col;
+
+ /* Store DCT block to memory. */
+ vst1q_lane_u64((uint64_t *)outptr0, vreinterpretq_u64_u8(rows_04), 0);
+ vst1q_lane_u64((uint64_t *)outptr1, vreinterpretq_u64_u8(rows_15), 0);
+ vst1q_lane_u64((uint64_t *)outptr2, vreinterpretq_u64_u8(rows_26), 0);
+ vst1q_lane_u64((uint64_t *)outptr3, vreinterpretq_u64_u8(rows_37), 0);
+ vst1q_lane_u64((uint64_t *)outptr4, vreinterpretq_u64_u8(rows_04), 1);
+ vst1q_lane_u64((uint64_t *)outptr5, vreinterpretq_u64_u8(rows_15), 1);
+ vst1q_lane_u64((uint64_t *)outptr6, vreinterpretq_u64_u8(rows_26), 1);
+ vst1q_lane_u64((uint64_t *)outptr7, vreinterpretq_u64_u8(rows_37), 1);
+}