summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/third_party/libyuv/source/compare.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/third_party/libyuv/source/compare.cc')
-rw-r--r--media/libvpx/libvpx/third_party/libyuv/source/compare.cc429
1 files changed, 429 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/third_party/libyuv/source/compare.cc b/media/libvpx/libvpx/third_party/libyuv/source/compare.cc
new file mode 100644
index 0000000000..50e3abd055
--- /dev/null
+++ b/media/libvpx/libvpx/third_party/libyuv/source/compare.cc
@@ -0,0 +1,429 @@
+/*
+ * Copyright 2011 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/compare.h"
+
+#include <float.h>
+#include <math.h>
+#ifdef _OPENMP
+#include <omp.h>
+#endif
+
+#include "libyuv/basic_types.h"
+#include "libyuv/compare_row.h"
+#include "libyuv/cpu_id.h"
+#include "libyuv/row.h"
+#include "libyuv/video_common.h"
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+// hash seed of 5381 recommended.
+LIBYUV_API
+uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) {
+ const int kBlockSize = 1 << 15; // 32768;
+ int remainder;
+ uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) =
+ HashDjb2_C;
+#if defined(HAS_HASHDJB2_SSE41)
+ if (TestCpuFlag(kCpuHasSSE41)) {
+ HashDjb2_SSE = HashDjb2_SSE41;
+ }
+#endif
+#if defined(HAS_HASHDJB2_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ HashDjb2_SSE = HashDjb2_AVX2;
+ }
+#endif
+
+ while (count >= (uint64_t)(kBlockSize)) {
+ seed = HashDjb2_SSE(src, kBlockSize, seed);
+ src += kBlockSize;
+ count -= kBlockSize;
+ }
+ remainder = (int)count & ~15;
+ if (remainder) {
+ seed = HashDjb2_SSE(src, remainder, seed);
+ src += remainder;
+ count -= remainder;
+ }
+ remainder = (int)count & 15;
+ if (remainder) {
+ seed = HashDjb2_C(src, remainder, seed);
+ }
+ return seed;
+}
+
+static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) {
+ int x;
+ for (x = 0; x < width - 1; x += 2) {
+ if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB.
+ return FOURCC_BGRA;
+ }
+ if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA.
+ return FOURCC_ARGB;
+ }
+ if (argb[4] != 255) { // Second pixel first byte is not Alpha of 255.
+ return FOURCC_BGRA;
+ }
+ if (argb[7] != 255) { // Second pixel 4th byte is not Alpha of 255.
+ return FOURCC_ARGB;
+ }
+ argb += 8;
+ }
+ if (width & 1) {
+ if (argb[0] != 255) { // First byte is not Alpha of 255, so not ARGB.
+ return FOURCC_BGRA;
+ }
+ if (argb[3] != 255) { // 4th byte is not Alpha of 255, so not BGRA.
+ return FOURCC_ARGB;
+ }
+ }
+ return 0;
+}
+
+// Scan an opaque argb image and return fourcc based on alpha offset.
+// Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown.
+LIBYUV_API
+uint32_t ARGBDetect(const uint8_t* argb,
+ int stride_argb,
+ int width,
+ int height) {
+ uint32_t fourcc = 0;
+ int h;
+
+ // Coalesce rows.
+ if (stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ stride_argb = 0;
+ }
+ for (h = 0; h < height && fourcc == 0; ++h) {
+ fourcc = ARGBDetectRow_C(argb, width);
+ argb += stride_argb;
+ }
+ return fourcc;
+}
+
+// NEON version accumulates in 16 bit shorts which overflow at 65536 bytes.
+// So actual maximum is 1 less loop, which is 64436 - 32 bytes.
+
+LIBYUV_API
+uint64_t ComputeHammingDistance(const uint8_t* src_a,
+ const uint8_t* src_b,
+ int count) {
+ const int kBlockSize = 1 << 15; // 32768;
+ const int kSimdSize = 64;
+ // SIMD for multiple of 64, and C for remainder
+ int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1);
+ uint64_t diff = 0;
+ int i;
+ uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b,
+ int count) = HammingDistance_C;
+#if defined(HAS_HAMMINGDISTANCE_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ HammingDistance = HammingDistance_NEON;
+ }
+#endif
+#if defined(HAS_HAMMINGDISTANCE_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ HammingDistance = HammingDistance_SSSE3;
+ }
+#endif
+#if defined(HAS_HAMMINGDISTANCE_SSE42)
+ if (TestCpuFlag(kCpuHasSSE42)) {
+ HammingDistance = HammingDistance_SSE42;
+ }
+#endif
+#if defined(HAS_HAMMINGDISTANCE_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ HammingDistance = HammingDistance_AVX2;
+ }
+#endif
+#if defined(HAS_HAMMINGDISTANCE_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ HammingDistance = HammingDistance_MSA;
+ }
+#endif
+#ifdef _OPENMP
+#pragma omp parallel for reduction(+ : diff)
+#endif
+ for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
+ diff += HammingDistance(src_a + i, src_b + i, kBlockSize);
+ }
+ src_a += count & ~(kBlockSize - 1);
+ src_b += count & ~(kBlockSize - 1);
+ if (remainder) {
+ diff += HammingDistance(src_a, src_b, remainder);
+ src_a += remainder;
+ src_b += remainder;
+ }
+ remainder = count & (kSimdSize - 1);
+ if (remainder) {
+ diff += HammingDistance_C(src_a, src_b, remainder);
+ }
+ return diff;
+}
+
+// TODO(fbarchard): Refactor into row function.
+LIBYUV_API
+uint64_t ComputeSumSquareError(const uint8_t* src_a,
+ const uint8_t* src_b,
+ int count) {
+ // SumSquareError returns values 0 to 65535 for each squared difference.
+ // Up to 65536 of those can be summed and remain within a uint32_t.
+ // After each block of 65536 pixels, accumulate into a uint64_t.
+ const int kBlockSize = 65536;
+ int remainder = count & (kBlockSize - 1) & ~31;
+ uint64_t sse = 0;
+ int i;
+ uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b,
+ int count) = SumSquareError_C;
+#if defined(HAS_SUMSQUAREERROR_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SumSquareError = SumSquareError_NEON;
+ }
+#endif
+#if defined(HAS_SUMSQUAREERROR_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ // Note only used for multiples of 16 so count is not checked.
+ SumSquareError = SumSquareError_SSE2;
+ }
+#endif
+#if defined(HAS_SUMSQUAREERROR_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ // Note only used for multiples of 32 so count is not checked.
+ SumSquareError = SumSquareError_AVX2;
+ }
+#endif
+#if defined(HAS_SUMSQUAREERROR_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SumSquareError = SumSquareError_MSA;
+ }
+#endif
+#ifdef _OPENMP
+#pragma omp parallel for reduction(+ : sse)
+#endif
+ for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
+ sse += SumSquareError(src_a + i, src_b + i, kBlockSize);
+ }
+ src_a += count & ~(kBlockSize - 1);
+ src_b += count & ~(kBlockSize - 1);
+ if (remainder) {
+ sse += SumSquareError(src_a, src_b, remainder);
+ src_a += remainder;
+ src_b += remainder;
+ }
+ remainder = count & 31;
+ if (remainder) {
+ sse += SumSquareError_C(src_a, src_b, remainder);
+ }
+ return sse;
+}
+
+LIBYUV_API
+uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a,
+ int stride_a,
+ const uint8_t* src_b,
+ int stride_b,
+ int width,
+ int height) {
+ uint64_t sse = 0;
+ int h;
+ // Coalesce rows.
+ if (stride_a == width && stride_b == width) {
+ width *= height;
+ height = 1;
+ stride_a = stride_b = 0;
+ }
+ for (h = 0; h < height; ++h) {
+ sse += ComputeSumSquareError(src_a, src_b, width);
+ src_a += stride_a;
+ src_b += stride_b;
+ }
+ return sse;
+}
+
+LIBYUV_API
+double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) {
+ double psnr;
+ if (sse > 0) {
+ double mse = (double)count / (double)sse;
+ psnr = 10.0 * log10(255.0 * 255.0 * mse);
+ } else {
+ psnr = kMaxPsnr; // Limit to prevent divide by 0
+ }
+
+ if (psnr > kMaxPsnr) {
+ psnr = kMaxPsnr;
+ }
+
+ return psnr;
+}
+
+LIBYUV_API
+double CalcFramePsnr(const uint8_t* src_a,
+ int stride_a,
+ const uint8_t* src_b,
+ int stride_b,
+ int width,
+ int height) {
+ const uint64_t samples = (uint64_t)width * (uint64_t)height;
+ const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b,
+ stride_b, width, height);
+ return SumSquareErrorToPsnr(sse, samples);
+}
+
+LIBYUV_API
+double I420Psnr(const uint8_t* src_y_a,
+ int stride_y_a,
+ const uint8_t* src_u_a,
+ int stride_u_a,
+ const uint8_t* src_v_a,
+ int stride_v_a,
+ const uint8_t* src_y_b,
+ int stride_y_b,
+ const uint8_t* src_u_b,
+ int stride_u_b,
+ const uint8_t* src_v_b,
+ int stride_v_b,
+ int width,
+ int height) {
+ const uint64_t sse_y = ComputeSumSquareErrorPlane(
+ src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
+ const int width_uv = (width + 1) >> 1;
+ const int height_uv = (height + 1) >> 1;
+ const uint64_t sse_u = ComputeSumSquareErrorPlane(
+ src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv);
+ const uint64_t sse_v = ComputeSumSquareErrorPlane(
+ src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv);
+ const uint64_t samples = (uint64_t)width * (uint64_t)height +
+ 2 * ((uint64_t)width_uv * (uint64_t)height_uv);
+ const uint64_t sse = sse_y + sse_u + sse_v;
+ return SumSquareErrorToPsnr(sse, samples);
+}
+
+static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
+static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
+
+static double Ssim8x8_C(const uint8_t* src_a,
+ int stride_a,
+ const uint8_t* src_b,
+ int stride_b) {
+ int64_t sum_a = 0;
+ int64_t sum_b = 0;
+ int64_t sum_sq_a = 0;
+ int64_t sum_sq_b = 0;
+ int64_t sum_axb = 0;
+
+ int i;
+ for (i = 0; i < 8; ++i) {
+ int j;
+ for (j = 0; j < 8; ++j) {
+ sum_a += src_a[j];
+ sum_b += src_b[j];
+ sum_sq_a += src_a[j] * src_a[j];
+ sum_sq_b += src_b[j] * src_b[j];
+ sum_axb += src_a[j] * src_b[j];
+ }
+
+ src_a += stride_a;
+ src_b += stride_b;
+ }
+
+ {
+ const int64_t count = 64;
+ // scale the constants by number of pixels
+ const int64_t c1 = (cc1 * count * count) >> 12;
+ const int64_t c2 = (cc2 * count * count) >> 12;
+
+ const int64_t sum_a_x_sum_b = sum_a * sum_b;
+
+ const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) *
+ (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2);
+
+ const int64_t sum_a_sq = sum_a * sum_a;
+ const int64_t sum_b_sq = sum_b * sum_b;
+
+ const int64_t ssim_d =
+ (sum_a_sq + sum_b_sq + c1) *
+ (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2);
+
+ if (ssim_d == 0.0) {
+ return DBL_MAX;
+ }
+ return ssim_n * 1.0 / ssim_d;
+ }
+}
+
+// We are using a 8x8 moving window with starting location of each 8x8 window
+// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
+// block boundaries to penalize blocking artifacts.
+LIBYUV_API
+double CalcFrameSsim(const uint8_t* src_a,
+ int stride_a,
+ const uint8_t* src_b,
+ int stride_b,
+ int width,
+ int height) {
+ int samples = 0;
+ double ssim_total = 0;
+ double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b,
+ int stride_b) = Ssim8x8_C;
+
+ // sample point start with each 4x4 location
+ int i;
+ for (i = 0; i < height - 8; i += 4) {
+ int j;
+ for (j = 0; j < width - 8; j += 4) {
+ ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b);
+ samples++;
+ }
+
+ src_a += stride_a * 4;
+ src_b += stride_b * 4;
+ }
+
+ ssim_total /= samples;
+ return ssim_total;
+}
+
+LIBYUV_API
+double I420Ssim(const uint8_t* src_y_a,
+ int stride_y_a,
+ const uint8_t* src_u_a,
+ int stride_u_a,
+ const uint8_t* src_v_a,
+ int stride_v_a,
+ const uint8_t* src_y_b,
+ int stride_y_b,
+ const uint8_t* src_u_b,
+ int stride_u_b,
+ const uint8_t* src_v_b,
+ int stride_v_b,
+ int width,
+ int height) {
+ const double ssim_y =
+ CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
+ const int width_uv = (width + 1) >> 1;
+ const int height_uv = (height + 1) >> 1;
+ const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b,
+ width_uv, height_uv);
+ const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b,
+ width_uv, height_uv);
+ return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v);
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif