summaryrefslogtreecommitdiffstats
path: root/media/libvpx/libvpx/third_party/libyuv/source/scale.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libvpx/libvpx/third_party/libyuv/source/scale.cc')
-rw-r--r--media/libvpx/libvpx/third_party/libyuv/source/scale.cc1741
1 files changed, 1741 insertions, 0 deletions
diff --git a/media/libvpx/libvpx/third_party/libyuv/source/scale.cc b/media/libvpx/libvpx/third_party/libyuv/source/scale.cc
new file mode 100644
index 0000000000..2cfa1c6cb1
--- /dev/null
+++ b/media/libvpx/libvpx/third_party/libyuv/source/scale.cc
@@ -0,0 +1,1741 @@
+/*
+ * Copyright 2011 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/scale.h"
+
+#include <assert.h>
+#include <string.h>
+
+#include "libyuv/cpu_id.h"
+#include "libyuv/planar_functions.h" // For CopyPlane
+#include "libyuv/row.h"
+#include "libyuv/scale_row.h"
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+static __inline int Abs(int v) {
+ return v >= 0 ? v : -v;
+}
+
+#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s)
+
+// Scale plane, 1/2
+// This is an optimized version for scaling down a plane to 1/2 of
+// its original size.
+
+static void ScalePlaneDown2(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown2)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width) =
+ filtering == kFilterNone
+ ? ScaleRowDown2_C
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_C
+ : ScaleRowDown2Box_C);
+ int row_stride = src_stride << 1;
+ (void)src_width;
+ (void)src_height;
+ if (!filtering) {
+ src_ptr += src_stride; // Point to odd rows.
+ src_stride = 0;
+ }
+
+#if defined(HAS_SCALEROWDOWN2_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_Any_NEON
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_NEON
+ : ScaleRowDown2Box_Any_NEON);
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_NEON
+ : (filtering == kFilterLinear
+ ? ScaleRowDown2Linear_NEON
+ : ScaleRowDown2Box_NEON);
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_Any_SSSE3
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_SSSE3
+ : ScaleRowDown2Box_Any_SSSE3);
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_SSSE3
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_SSSE3
+ : ScaleRowDown2Box_SSSE3);
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_Any_AVX2
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_AVX2
+ : ScaleRowDown2Box_Any_AVX2);
+ if (IS_ALIGNED(dst_width, 32)) {
+ ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_AVX2
+ : (filtering == kFilterLinear
+ ? ScaleRowDown2Linear_AVX2
+ : ScaleRowDown2Box_AVX2);
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_Any_MSA
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_MSA
+ : ScaleRowDown2Box_Any_MSA);
+ if (IS_ALIGNED(dst_width, 32)) {
+ ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_MSA
+ : (filtering == kFilterLinear
+ ? ScaleRowDown2Linear_MSA
+ : ScaleRowDown2Box_MSA);
+ }
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ // TODO(fbarchard): Loop through source height to allow odd height.
+ for (y = 0; y < dst_height; ++y) {
+ ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
+ src_ptr += row_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+static void ScalePlaneDown2_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown2)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width) =
+ filtering == kFilterNone
+ ? ScaleRowDown2_16_C
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_16_C
+ : ScaleRowDown2Box_16_C);
+ int row_stride = src_stride << 1;
+ (void)src_width;
+ (void)src_height;
+ if (!filtering) {
+ src_ptr += src_stride; // Point to odd rows.
+ src_stride = 0;
+ }
+
+#if defined(HAS_SCALEROWDOWN2_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown2 =
+ filtering ? ScaleRowDown2Box_16_NEON : ScaleRowDown2_16_NEON;
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown2 =
+ filtering == kFilterNone
+ ? ScaleRowDown2_16_SSE2
+ : (filtering == kFilterLinear ? ScaleRowDown2Linear_16_SSE2
+ : ScaleRowDown2Box_16_SSE2);
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ // TODO(fbarchard): Loop through source height to allow odd height.
+ for (y = 0; y < dst_height; ++y) {
+ ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
+ src_ptr += row_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+// Scale plane, 1/4
+// This is an optimized version for scaling down a plane to 1/4 of
+// its original size.
+
+static void ScalePlaneDown4(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown4)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width) =
+ filtering ? ScaleRowDown4Box_C : ScaleRowDown4_C;
+ int row_stride = src_stride << 2;
+ (void)src_width;
+ (void)src_height;
+ if (!filtering) {
+ src_ptr += src_stride * 2; // Point to row 2.
+ src_stride = 0;
+ }
+#if defined(HAS_SCALEROWDOWN4_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_Any_NEON : ScaleRowDown4_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleRowDown4 = filtering ? ScaleRowDown4Box_NEON : ScaleRowDown4_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN4_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_Any_SSSE3 : ScaleRowDown4_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleRowDown4 = filtering ? ScaleRowDown4Box_SSSE3 : ScaleRowDown4_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN4_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_Any_AVX2 : ScaleRowDown4_Any_AVX2;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown4 = filtering ? ScaleRowDown4Box_AVX2 : ScaleRowDown4_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN4_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_Any_MSA : ScaleRowDown4_Any_MSA;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleRowDown4 = filtering ? ScaleRowDown4Box_MSA : ScaleRowDown4_MSA;
+ }
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ for (y = 0; y < dst_height; ++y) {
+ ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
+ src_ptr += row_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+static void ScalePlaneDown4_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown4)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width) =
+ filtering ? ScaleRowDown4Box_16_C : ScaleRowDown4_16_C;
+ int row_stride = src_stride << 2;
+ (void)src_width;
+ (void)src_height;
+ if (!filtering) {
+ src_ptr += src_stride * 2; // Point to row 2.
+ src_stride = 0;
+ }
+#if defined(HAS_SCALEROWDOWN4_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_16_NEON : ScaleRowDown4_16_NEON;
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN4_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
+ ScaleRowDown4 =
+ filtering ? ScaleRowDown4Box_16_SSE2 : ScaleRowDown4_16_SSE2;
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ for (y = 0; y < dst_height; ++y) {
+ ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
+ src_ptr += row_stride;
+ dst_ptr += dst_stride;
+ }
+}
+
+// Scale plane down, 3/4
+static void ScalePlaneDown34(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown34_0)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width);
+ void (*ScaleRowDown34_1)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width);
+ const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
+ (void)src_width;
+ (void)src_height;
+ assert(dst_width % 3 == 0);
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_C;
+ ScaleRowDown34_1 = ScaleRowDown34_C;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_C;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_C;
+ }
+#if defined(HAS_SCALEROWDOWN34_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_Any_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_Any_NEON;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_NEON;
+ }
+ if (dst_width % 24 == 0) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_NEON;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_NEON;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN34_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_Any_MSA;
+ ScaleRowDown34_1 = ScaleRowDown34_Any_MSA;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_MSA;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_MSA;
+ }
+ if (dst_width % 48 == 0) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_MSA;
+ ScaleRowDown34_1 = ScaleRowDown34_MSA;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_MSA;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_MSA;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN34_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_Any_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_Any_SSSE3;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_SSSE3;
+ }
+ if (dst_width % 24 == 0) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_SSSE3;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_SSSE3;
+ }
+ }
+ }
+#endif
+
+ for (y = 0; y < dst_height - 2; y += 3) {
+ ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 2;
+ dst_ptr += dst_stride;
+ }
+
+ // Remainder 1 or 2 rows with last row vertically unfiltered
+ if ((dst_height % 3) == 2) {
+ ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
+ } else if ((dst_height % 3) == 1) {
+ ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
+ }
+}
+
+static void ScalePlaneDown34_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown34_0)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width);
+ void (*ScaleRowDown34_1)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width);
+ const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
+ (void)src_width;
+ (void)src_height;
+ assert(dst_width % 3 == 0);
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_16_C;
+ ScaleRowDown34_1 = ScaleRowDown34_16_C;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_C;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_C;
+ }
+#if defined(HAS_SCALEROWDOWN34_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && (dst_width % 24 == 0)) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_16_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_16_NEON;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_NEON;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN34_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
+ if (!filtering) {
+ ScaleRowDown34_0 = ScaleRowDown34_16_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_16_SSSE3;
+ } else {
+ ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_SSSE3;
+ ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_SSSE3;
+ }
+ }
+#endif
+
+ for (y = 0; y < dst_height - 2; y += 3) {
+ ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 2;
+ dst_ptr += dst_stride;
+ }
+
+ // Remainder 1 or 2 rows with last row vertically unfiltered
+ if ((dst_height % 3) == 2) {
+ ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride;
+ dst_ptr += dst_stride;
+ ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
+ } else if ((dst_height % 3) == 1) {
+ ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
+ }
+}
+
+// Scale plane, 3/8
+// This is an optimized version for scaling down a plane to 3/8
+// of its original size.
+//
+// Uses box filter arranges like this
+// aaabbbcc -> abc
+// aaabbbcc def
+// aaabbbcc ghi
+// dddeeeff
+// dddeeeff
+// dddeeeff
+// ggghhhii
+// ggghhhii
+// Boxes are 3x3, 2x3, 3x2 and 2x2
+
+static void ScalePlaneDown38(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown38_3)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width);
+ void (*ScaleRowDown38_2)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width);
+ const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
+ assert(dst_width % 3 == 0);
+ (void)src_width;
+ (void)src_height;
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_C;
+ ScaleRowDown38_2 = ScaleRowDown38_C;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_C;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_C;
+ }
+
+#if defined(HAS_SCALEROWDOWN38_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_Any_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_Any_NEON;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_NEON;
+ }
+ if (dst_width % 12 == 0) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_NEON;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_NEON;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN38_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_Any_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_Any_SSSE3;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_SSSE3;
+ }
+ if (dst_width % 12 == 0 && !filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_SSSE3;
+ }
+ if (dst_width % 6 == 0 && filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN38_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_Any_MSA;
+ ScaleRowDown38_2 = ScaleRowDown38_Any_MSA;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_MSA;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_MSA;
+ }
+ if (dst_width % 12 == 0) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_MSA;
+ ScaleRowDown38_2 = ScaleRowDown38_MSA;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_MSA;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_MSA;
+ }
+ }
+ }
+#endif
+
+ for (y = 0; y < dst_height - 2; y += 3) {
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 2;
+ dst_ptr += dst_stride;
+ }
+
+ // Remainder 1 or 2 rows with last row vertically unfiltered
+ if ((dst_height % 3) == 2) {
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
+ } else if ((dst_height % 3) == 1) {
+ ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
+ }
+}
+
+static void ScalePlaneDown38_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ int y;
+ void (*ScaleRowDown38_3)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width);
+ void (*ScaleRowDown38_2)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, int dst_width);
+ const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
+ (void)src_width;
+ (void)src_height;
+ assert(dst_width % 3 == 0);
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_16_C;
+ ScaleRowDown38_2 = ScaleRowDown38_16_C;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_C;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_C;
+ }
+#if defined(HAS_SCALEROWDOWN38_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && (dst_width % 12 == 0)) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_16_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_16_NEON;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_NEON;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN38_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
+ if (!filtering) {
+ ScaleRowDown38_3 = ScaleRowDown38_16_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_16_SSSE3;
+ } else {
+ ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_SSSE3;
+ ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_SSSE3;
+ }
+ }
+#endif
+
+ for (y = 0; y < dst_height - 2; y += 3) {
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 2;
+ dst_ptr += dst_stride;
+ }
+
+ // Remainder 1 or 2 rows with last row vertically unfiltered
+ if ((dst_height % 3) == 2) {
+ ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
+ src_ptr += src_stride * 3;
+ dst_ptr += dst_stride;
+ ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
+ } else if ((dst_height % 3) == 1) {
+ ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
+ }
+}
+
+#define MIN1(x) ((x) < 1 ? 1 : (x))
+
+static __inline uint32_t SumPixels(int iboxwidth, const uint16_t* src_ptr) {
+ uint32_t sum = 0u;
+ int x;
+ assert(iboxwidth > 0);
+ for (x = 0; x < iboxwidth; ++x) {
+ sum += src_ptr[x];
+ }
+ return sum;
+}
+
+static __inline uint32_t SumPixels_16(int iboxwidth, const uint32_t* src_ptr) {
+ uint32_t sum = 0u;
+ int x;
+ assert(iboxwidth > 0);
+ for (x = 0; x < iboxwidth; ++x) {
+ sum += src_ptr[x];
+ }
+ return sum;
+}
+
+static void ScaleAddCols2_C(int dst_width,
+ int boxheight,
+ int x,
+ int dx,
+ const uint16_t* src_ptr,
+ uint8_t* dst_ptr) {
+ int i;
+ int scaletbl[2];
+ int minboxwidth = dx >> 16;
+ int boxwidth;
+ scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
+ scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
+ for (i = 0; i < dst_width; ++i) {
+ int ix = x >> 16;
+ x += dx;
+ boxwidth = MIN1((x >> 16) - ix);
+ *dst_ptr++ =
+ SumPixels(boxwidth, src_ptr + ix) * scaletbl[boxwidth - minboxwidth] >>
+ 16;
+ }
+}
+
+static void ScaleAddCols2_16_C(int dst_width,
+ int boxheight,
+ int x,
+ int dx,
+ const uint32_t* src_ptr,
+ uint16_t* dst_ptr) {
+ int i;
+ int scaletbl[2];
+ int minboxwidth = dx >> 16;
+ int boxwidth;
+ scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
+ scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
+ for (i = 0; i < dst_width; ++i) {
+ int ix = x >> 16;
+ x += dx;
+ boxwidth = MIN1((x >> 16) - ix);
+ *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + ix) *
+ scaletbl[boxwidth - minboxwidth] >>
+ 16;
+ }
+}
+
+static void ScaleAddCols0_C(int dst_width,
+ int boxheight,
+ int x,
+ int dx,
+ const uint16_t* src_ptr,
+ uint8_t* dst_ptr) {
+ int scaleval = 65536 / boxheight;
+ int i;
+ (void)dx;
+ src_ptr += (x >> 16);
+ for (i = 0; i < dst_width; ++i) {
+ *dst_ptr++ = src_ptr[i] * scaleval >> 16;
+ }
+}
+
+static void ScaleAddCols1_C(int dst_width,
+ int boxheight,
+ int x,
+ int dx,
+ const uint16_t* src_ptr,
+ uint8_t* dst_ptr) {
+ int boxwidth = MIN1(dx >> 16);
+ int scaleval = 65536 / (boxwidth * boxheight);
+ int i;
+ x >>= 16;
+ for (i = 0; i < dst_width; ++i) {
+ *dst_ptr++ = SumPixels(boxwidth, src_ptr + x) * scaleval >> 16;
+ x += boxwidth;
+ }
+}
+
+static void ScaleAddCols1_16_C(int dst_width,
+ int boxheight,
+ int x,
+ int dx,
+ const uint32_t* src_ptr,
+ uint16_t* dst_ptr) {
+ int boxwidth = MIN1(dx >> 16);
+ int scaleval = 65536 / (boxwidth * boxheight);
+ int i;
+ for (i = 0; i < dst_width; ++i) {
+ *dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16;
+ x += boxwidth;
+ }
+}
+
+// Scale plane down to any dimensions, with interpolation.
+// (boxfilter).
+//
+// Same method as SimpleScale, which is fixed point, outputting
+// one pixel of destination using fixed point (16.16) to step
+// through source, sampling a box of pixel with simple
+// averaging.
+static void ScalePlaneBox(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr) {
+ int j, k;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ const int max_y = (src_height << 16);
+ ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+ {
+ // Allocate a row buffer of uint16_t.
+ align_buffer_64(row16, src_width * 2);
+ void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
+ const uint16_t* src_ptr, uint8_t* dst_ptr) =
+ (dx & 0xffff) ? ScaleAddCols2_C
+ : ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C);
+ void (*ScaleAddRow)(const uint8_t* src_ptr, uint16_t* dst_ptr,
+ int src_width) = ScaleAddRow_C;
+#if defined(HAS_SCALEADDROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ScaleAddRow = ScaleAddRow_Any_SSE2;
+ if (IS_ALIGNED(src_width, 16)) {
+ ScaleAddRow = ScaleAddRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SCALEADDROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleAddRow = ScaleAddRow_Any_AVX2;
+ if (IS_ALIGNED(src_width, 32)) {
+ ScaleAddRow = ScaleAddRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SCALEADDROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleAddRow = ScaleAddRow_Any_NEON;
+ if (IS_ALIGNED(src_width, 16)) {
+ ScaleAddRow = ScaleAddRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEADDROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleAddRow = ScaleAddRow_Any_MSA;
+ if (IS_ALIGNED(src_width, 16)) {
+ ScaleAddRow = ScaleAddRow_MSA;
+ }
+ }
+#endif
+
+ for (j = 0; j < dst_height; ++j) {
+ int boxheight;
+ int iy = y >> 16;
+ const uint8_t* src = src_ptr + iy * src_stride;
+ y += dy;
+ if (y > max_y) {
+ y = max_y;
+ }
+ boxheight = MIN1((y >> 16) - iy);
+ memset(row16, 0, src_width * 2);
+ for (k = 0; k < boxheight; ++k) {
+ ScaleAddRow(src, (uint16_t*)(row16), src_width);
+ src += src_stride;
+ }
+ ScaleAddCols(dst_width, boxheight, x, dx, (uint16_t*)(row16), dst_ptr);
+ dst_ptr += dst_stride;
+ }
+ free_aligned_buffer_64(row16);
+ }
+}
+
+static void ScalePlaneBox_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr) {
+ int j, k;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ const int max_y = (src_height << 16);
+ ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+ {
+ // Allocate a row buffer of uint32_t.
+ align_buffer_64(row32, src_width * 4);
+ void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
+ const uint32_t* src_ptr, uint16_t* dst_ptr) =
+ (dx & 0xffff) ? ScaleAddCols2_16_C : ScaleAddCols1_16_C;
+ void (*ScaleAddRow)(const uint16_t* src_ptr, uint32_t* dst_ptr,
+ int src_width) = ScaleAddRow_16_C;
+
+#if defined(HAS_SCALEADDROW_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) {
+ ScaleAddRow = ScaleAddRow_16_SSE2;
+ }
+#endif
+
+ for (j = 0; j < dst_height; ++j) {
+ int boxheight;
+ int iy = y >> 16;
+ const uint16_t* src = src_ptr + iy * src_stride;
+ y += dy;
+ if (y > max_y) {
+ y = max_y;
+ }
+ boxheight = MIN1((y >> 16) - iy);
+ memset(row32, 0, src_width * 4);
+ for (k = 0; k < boxheight; ++k) {
+ ScaleAddRow(src, (uint32_t*)(row32), src_width);
+ src += src_stride;
+ }
+ ScaleAddCols(dst_width, boxheight, x, dx, (uint32_t*)(row32), dst_ptr);
+ dst_ptr += dst_stride;
+ }
+ free_aligned_buffer_64(row32);
+ }
+}
+
+// Scale plane down with bilinear interpolation.
+void ScalePlaneBilinearDown(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
+ // Allocate a row buffer.
+ align_buffer_64(row, src_width);
+
+ const int max_y = (src_height - 1) << 16;
+ int j;
+ void (*ScaleFilterCols)(uint8_t * dst_ptr, const uint8_t* src_ptr,
+ int dst_width, int x, int dx) =
+ (src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C;
+ void (*InterpolateRow)(uint8_t * dst_ptr, const uint8_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(src_width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(src_width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(src_width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow = InterpolateRow_Any_MSA;
+ if (IS_ALIGNED(src_width, 32)) {
+ InterpolateRow = InterpolateRow_MSA;
+ }
+ }
+#endif
+
+#if defined(HAS_SCALEFILTERCOLS_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEFILTERCOLS_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleFilterCols = ScaleFilterCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEFILTERCOLS_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleFilterCols = ScaleFilterCols_MSA;
+ }
+ }
+#endif
+ if (y > max_y) {
+ y = max_y;
+ }
+
+ for (j = 0; j < dst_height; ++j) {
+ int yi = y >> 16;
+ const uint8_t* src = src_ptr + yi * src_stride;
+ if (filtering == kFilterLinear) {
+ ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow(row, src, src_stride, src_width, yf);
+ ScaleFilterCols(dst_ptr, row, dst_width, x, dx);
+ }
+ dst_ptr += dst_stride;
+ y += dy;
+ if (y > max_y) {
+ y = max_y;
+ }
+ }
+ free_aligned_buffer_64(row);
+}
+
+void ScalePlaneBilinearDown_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
+ // Allocate a row buffer.
+ align_buffer_64(row, src_width * 2);
+
+ const int max_y = (src_height - 1) << 16;
+ int j;
+ void (*ScaleFilterCols)(uint16_t * dst_ptr, const uint16_t* src_ptr,
+ int dst_width, int x, int dx) =
+ (src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C;
+ void (*InterpolateRow)(uint16_t * dst_ptr, const uint16_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_16_C;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+#if defined(HAS_INTERPOLATEROW_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ InterpolateRow = InterpolateRow_Any_16_SSE2;
+ if (IS_ALIGNED(src_width, 16)) {
+ InterpolateRow = InterpolateRow_16_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_16_SSSE3;
+ if (IS_ALIGNED(src_width, 16)) {
+ InterpolateRow = InterpolateRow_16_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_16_AVX2;
+ if (IS_ALIGNED(src_width, 32)) {
+ InterpolateRow = InterpolateRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_16_NEON;
+ if (IS_ALIGNED(src_width, 16)) {
+ InterpolateRow = InterpolateRow_16_NEON;
+ }
+ }
+#endif
+
+#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_16_SSSE3;
+ }
+#endif
+ if (y > max_y) {
+ y = max_y;
+ }
+
+ for (j = 0; j < dst_height; ++j) {
+ int yi = y >> 16;
+ const uint16_t* src = src_ptr + yi * src_stride;
+ if (filtering == kFilterLinear) {
+ ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow((uint16_t*)row, src, src_stride, src_width, yf);
+ ScaleFilterCols(dst_ptr, (uint16_t*)row, dst_width, x, dx);
+ }
+ dst_ptr += dst_stride;
+ y += dy;
+ if (y > max_y) {
+ y = max_y;
+ }
+ }
+ free_aligned_buffer_64(row);
+}
+
+// Scale up down with bilinear interpolation.
+void ScalePlaneBilinearUp(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr,
+ enum FilterMode filtering) {
+ int j;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ const int max_y = (src_height - 1) << 16;
+ void (*InterpolateRow)(uint8_t * dst_ptr, const uint8_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ void (*ScaleFilterCols)(uint8_t * dst_ptr, const uint8_t* src_ptr,
+ int dst_width, int x, int dx) =
+ filtering ? ScaleFilterCols_C : ScaleCols_C;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(dst_width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+
+ if (filtering && src_width >= 32768) {
+ ScaleFilterCols = ScaleFilterCols64_C;
+ }
+#if defined(HAS_SCALEFILTERCOLS_SSSE3)
+ if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEFILTERCOLS_NEON)
+ if (filtering && TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleFilterCols = ScaleFilterCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEFILTERCOLS_MSA)
+ if (filtering && TestCpuFlag(kCpuHasMSA) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleFilterCols = ScaleFilterCols_MSA;
+ }
+ }
+#endif
+ if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
+ ScaleFilterCols = ScaleColsUp2_C;
+#if defined(HAS_SCALECOLS_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
+ ScaleFilterCols = ScaleColsUp2_SSE2;
+ }
+#endif
+ }
+
+ if (y > max_y) {
+ y = max_y;
+ }
+ {
+ int yi = y >> 16;
+ const uint8_t* src = src_ptr + yi * src_stride;
+
+ // Allocate 2 row buffers.
+ const int kRowSize = (dst_width + 31) & ~31;
+ align_buffer_64(row, kRowSize * 2);
+
+ uint8_t* rowptr = row;
+ int rowstride = kRowSize;
+ int lasty = yi;
+
+ ScaleFilterCols(rowptr, src, dst_width, x, dx);
+ if (src_height > 1) {
+ src += src_stride;
+ }
+ ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
+ src += src_stride;
+
+ for (j = 0; j < dst_height; ++j) {
+ yi = y >> 16;
+ if (yi != lasty) {
+ if (y > max_y) {
+ y = max_y;
+ yi = y >> 16;
+ src = src_ptr + yi * src_stride;
+ }
+ if (yi != lasty) {
+ ScaleFilterCols(rowptr, src, dst_width, x, dx);
+ rowptr += rowstride;
+ rowstride = -rowstride;
+ lasty = yi;
+ src += src_stride;
+ }
+ }
+ if (filtering == kFilterLinear) {
+ InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
+ }
+ dst_ptr += dst_stride;
+ y += dy;
+ }
+ free_aligned_buffer_64(row);
+ }
+}
+
+void ScalePlaneBilinearUp_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr,
+ enum FilterMode filtering) {
+ int j;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ const int max_y = (src_height - 1) << 16;
+ void (*InterpolateRow)(uint16_t * dst_ptr, const uint16_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_16_C;
+ void (*ScaleFilterCols)(uint16_t * dst_ptr, const uint16_t* src_ptr,
+ int dst_width, int x, int dx) =
+ filtering ? ScaleFilterCols_16_C : ScaleCols_16_C;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+#if defined(HAS_INTERPOLATEROW_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ InterpolateRow = InterpolateRow_Any_16_SSE2;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_16_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_16_SSSE3;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_16_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_16_AVX2;
+ if (IS_ALIGNED(dst_width, 32)) {
+ InterpolateRow = InterpolateRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_16_NEON;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_16_NEON;
+ }
+ }
+#endif
+
+ if (filtering && src_width >= 32768) {
+ ScaleFilterCols = ScaleFilterCols64_16_C;
+ }
+#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
+ if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleFilterCols = ScaleFilterCols_16_SSSE3;
+ }
+#endif
+ if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
+ ScaleFilterCols = ScaleColsUp2_16_C;
+#if defined(HAS_SCALECOLS_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
+ ScaleFilterCols = ScaleColsUp2_16_SSE2;
+ }
+#endif
+ }
+
+ if (y > max_y) {
+ y = max_y;
+ }
+ {
+ int yi = y >> 16;
+ const uint16_t* src = src_ptr + yi * src_stride;
+
+ // Allocate 2 row buffers.
+ const int kRowSize = (dst_width + 31) & ~31;
+ align_buffer_64(row, kRowSize * 4);
+
+ uint16_t* rowptr = (uint16_t*)row;
+ int rowstride = kRowSize;
+ int lasty = yi;
+
+ ScaleFilterCols(rowptr, src, dst_width, x, dx);
+ if (src_height > 1) {
+ src += src_stride;
+ }
+ ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
+ src += src_stride;
+
+ for (j = 0; j < dst_height; ++j) {
+ yi = y >> 16;
+ if (yi != lasty) {
+ if (y > max_y) {
+ y = max_y;
+ yi = y >> 16;
+ src = src_ptr + yi * src_stride;
+ }
+ if (yi != lasty) {
+ ScaleFilterCols(rowptr, src, dst_width, x, dx);
+ rowptr += rowstride;
+ rowstride = -rowstride;
+ lasty = yi;
+ src += src_stride;
+ }
+ }
+ if (filtering == kFilterLinear) {
+ InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
+ }
+ dst_ptr += dst_stride;
+ y += dy;
+ }
+ free_aligned_buffer_64(row);
+ }
+}
+
+// Scale Plane to/from any dimensions, without interpolation.
+// Fixed point math is used for performance: The upper 16 bits
+// of x and dx is the integer part of the source position and
+// the lower 16 bits are the fixed decimal part.
+
+static void ScalePlaneSimple(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr) {
+ int i;
+ void (*ScaleCols)(uint8_t * dst_ptr, const uint8_t* src_ptr, int dst_width,
+ int x, int dx) = ScaleCols_C;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+ if (src_width * 2 == dst_width && x < 0x8000) {
+ ScaleCols = ScaleColsUp2_C;
+#if defined(HAS_SCALECOLS_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
+ ScaleCols = ScaleColsUp2_SSE2;
+ }
+#endif
+ }
+
+ for (i = 0; i < dst_height; ++i) {
+ ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx);
+ dst_ptr += dst_stride;
+ y += dy;
+ }
+}
+
+static void ScalePlaneSimple_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr) {
+ int i;
+ void (*ScaleCols)(uint16_t * dst_ptr, const uint16_t* src_ptr, int dst_width,
+ int x, int dx) = ScaleCols_16_C;
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+
+ if (src_width * 2 == dst_width && x < 0x8000) {
+ ScaleCols = ScaleColsUp2_16_C;
+#if defined(HAS_SCALECOLS_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
+ ScaleCols = ScaleColsUp2_16_SSE2;
+ }
+#endif
+ }
+
+ for (i = 0; i < dst_height; ++i) {
+ ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx);
+ dst_ptr += dst_stride;
+ y += dy;
+ }
+}
+
+// Scale a plane.
+// This function dispatches to a specialized scaler based on scale factor.
+
+LIBYUV_API
+void ScalePlane(const uint8_t* src,
+ int src_stride,
+ int src_width,
+ int src_height,
+ uint8_t* dst,
+ int dst_stride,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ // Simplify filtering when possible.
+ filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
+ filtering);
+
+ // Negative height means invert the image.
+ if (src_height < 0) {
+ src_height = -src_height;
+ src = src + (src_height - 1) * src_stride;
+ src_stride = -src_stride;
+ }
+
+ // Use specialized scales to improve performance for common resolutions.
+ // For example, all the 1/2 scalings will use ScalePlaneDown2()
+ if (dst_width == src_width && dst_height == src_height) {
+ // Straight copy.
+ CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height);
+ return;
+ }
+ if (dst_width == src_width && filtering != kFilterBox) {
+ int dy = FixedDiv(src_height, dst_height);
+ // Arbitrary scale vertically, but unscaled horizontally.
+ ScalePlaneVertical(src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, 0, 0, dy, 1, filtering);
+ return;
+ }
+ if (dst_width <= Abs(src_width) && dst_height <= src_height) {
+ // Scale down.
+ if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) {
+ // optimized, 3/4
+ ScalePlaneDown34(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, filtering);
+ return;
+ }
+ if (2 * dst_width == src_width && 2 * dst_height == src_height) {
+ // optimized, 1/2
+ ScalePlaneDown2(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, filtering);
+ return;
+ }
+ // 3/8 rounded up for odd sized chroma height.
+ if (8 * dst_width == 3 * src_width && 8 * dst_height == 3 * src_height) {
+ // optimized, 3/8
+ ScalePlaneDown38(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, filtering);
+ return;
+ }
+ if (4 * dst_width == src_width && 4 * dst_height == src_height &&
+ (filtering == kFilterBox || filtering == kFilterNone)) {
+ // optimized, 1/4
+ ScalePlaneDown4(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, filtering);
+ return;
+ }
+ }
+ if (filtering == kFilterBox && dst_height * 2 < src_height) {
+ ScalePlaneBox(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst);
+ return;
+ }
+ if (filtering && dst_height > src_height) {
+ ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ if (filtering) {
+ ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ ScalePlaneSimple(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst);
+}
+
+LIBYUV_API
+void ScalePlane_16(const uint16_t* src,
+ int src_stride,
+ int src_width,
+ int src_height,
+ uint16_t* dst,
+ int dst_stride,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ // Simplify filtering when possible.
+ filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
+ filtering);
+
+ // Negative height means invert the image.
+ if (src_height < 0) {
+ src_height = -src_height;
+ src = src + (src_height - 1) * src_stride;
+ src_stride = -src_stride;
+ }
+
+ // Use specialized scales to improve performance for common resolutions.
+ // For example, all the 1/2 scalings will use ScalePlaneDown2()
+ if (dst_width == src_width && dst_height == src_height) {
+ // Straight copy.
+ CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height);
+ return;
+ }
+ if (dst_width == src_width && filtering != kFilterBox) {
+ int dy = FixedDiv(src_height, dst_height);
+ // Arbitrary scale vertically, but unscaled vertically.
+ ScalePlaneVertical_16(src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst, 0, 0, dy, 1, filtering);
+ return;
+ }
+ if (dst_width <= Abs(src_width) && dst_height <= src_height) {
+ // Scale down.
+ if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) {
+ // optimized, 3/4
+ ScalePlaneDown34_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ if (2 * dst_width == src_width && 2 * dst_height == src_height) {
+ // optimized, 1/2
+ ScalePlaneDown2_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ // 3/8 rounded up for odd sized chroma height.
+ if (8 * dst_width == 3 * src_width && 8 * dst_height == 3 * src_height) {
+ // optimized, 3/8
+ ScalePlaneDown38_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ if (4 * dst_width == src_width && 4 * dst_height == src_height &&
+ (filtering == kFilterBox || filtering == kFilterNone)) {
+ // optimized, 1/4
+ ScalePlaneDown4_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ }
+ if (filtering == kFilterBox && dst_height * 2 < src_height) {
+ ScalePlaneBox_16(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst);
+ return;
+ }
+ if (filtering && dst_height > src_height) {
+ ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ if (filtering) {
+ ScalePlaneBilinearDown_16(src_width, src_height, dst_width, dst_height,
+ src_stride, dst_stride, src, dst, filtering);
+ return;
+ }
+ ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, src_stride,
+ dst_stride, src, dst);
+}
+
+// Scale an I420 image.
+// This function in turn calls a scaling function for each plane.
+
+LIBYUV_API
+int I420Scale(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ int src_width,
+ int src_height,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
+ int src_halfheight = SUBSAMPLE(src_height, 1, 1);
+ int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
+ int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
+ if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 ||
+ src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
+ dst_width <= 0 || dst_height <= 0) {
+ return -1;
+ }
+
+ ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
+ dst_width, dst_height, filtering);
+ ScalePlane(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u,
+ dst_stride_u, dst_halfwidth, dst_halfheight, filtering);
+ ScalePlane(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v,
+ dst_stride_v, dst_halfwidth, dst_halfheight, filtering);
+ return 0;
+}
+
+LIBYUV_API
+int I420Scale_16(const uint16_t* src_y,
+ int src_stride_y,
+ const uint16_t* src_u,
+ int src_stride_u,
+ const uint16_t* src_v,
+ int src_stride_v,
+ int src_width,
+ int src_height,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ uint16_t* dst_u,
+ int dst_stride_u,
+ uint16_t* dst_v,
+ int dst_stride_v,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
+ int src_halfheight = SUBSAMPLE(src_height, 1, 1);
+ int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
+ int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
+ if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 ||
+ src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
+ dst_width <= 0 || dst_height <= 0) {
+ return -1;
+ }
+
+ ScalePlane_16(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
+ dst_width, dst_height, filtering);
+ ScalePlane_16(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u,
+ dst_stride_u, dst_halfwidth, dst_halfheight, filtering);
+ ScalePlane_16(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v,
+ dst_stride_v, dst_halfwidth, dst_halfheight, filtering);
+ return 0;
+}
+
+// Deprecated api
+LIBYUV_API
+int Scale(const uint8_t* src_y,
+ const uint8_t* src_u,
+ const uint8_t* src_v,
+ int src_stride_y,
+ int src_stride_u,
+ int src_stride_v,
+ int src_width,
+ int src_height,
+ uint8_t* dst_y,
+ uint8_t* dst_u,
+ uint8_t* dst_v,
+ int dst_stride_y,
+ int dst_stride_u,
+ int dst_stride_v,
+ int dst_width,
+ int dst_height,
+ LIBYUV_BOOL interpolate) {
+ return I420Scale(src_y, src_stride_y, src_u, src_stride_u, src_v,
+ src_stride_v, src_width, src_height, dst_y, dst_stride_y,
+ dst_u, dst_stride_u, dst_v, dst_stride_v, dst_width,
+ dst_height, interpolate ? kFilterBox : kFilterNone);
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif