summaryrefslogtreecommitdiffstats
path: root/media/libyuv/libyuv/source/planar_functions.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libyuv/libyuv/source/planar_functions.cc')
-rw-r--r--media/libyuv/libyuv/source/planar_functions.cc5498
1 files changed, 5498 insertions, 0 deletions
diff --git a/media/libyuv/libyuv/source/planar_functions.cc b/media/libyuv/libyuv/source/planar_functions.cc
new file mode 100644
index 0000000000..e08a44f6f6
--- /dev/null
+++ b/media/libyuv/libyuv/source/planar_functions.cc
@@ -0,0 +1,5498 @@
+/*
+ * Copyright 2011 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/planar_functions.h"
+
+#include <assert.h>
+#include <string.h> // for memset()
+
+#include "libyuv/cpu_id.h"
+#ifdef HAVE_JPEG
+#include "libyuv/mjpeg_decoder.h"
+#endif
+#include "libyuv/row.h"
+#include "libyuv/scale_row.h" // for ScaleRowDown2
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+// Copy a plane of data
+LIBYUV_API
+void CopyPlane(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ int y;
+ void (*CopyRow)(const uint8_t* src, uint8_t* dst, int width) = CopyRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+ // Nothing to do.
+ if (src_y == dst_y && src_stride_y == dst_stride_y) {
+ return;
+ }
+
+#if defined(HAS_COPYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
+ }
+#endif
+#if defined(HAS_COPYROW_AVX)
+ if (TestCpuFlag(kCpuHasAVX)) {
+ CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
+ }
+#endif
+#if defined(HAS_COPYROW_ERMS)
+ if (TestCpuFlag(kCpuHasERMS)) {
+ CopyRow = CopyRow_ERMS;
+ }
+#endif
+#if defined(HAS_COPYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
+ }
+#endif
+
+ // Copy plane
+ for (y = 0; y < height; ++y) {
+ CopyRow(src_y, dst_y, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+LIBYUV_API
+void CopyPlane_16(const uint16_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ CopyPlane((const uint8_t*)src_y, src_stride_y * 2, (uint8_t*)dst_y,
+ dst_stride_y * 2, width * 2, height);
+}
+
+// Convert a plane of 16 bit data to 8 bit
+LIBYUV_API
+void Convert16To8Plane(const uint16_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int scale, // 16384 for 10 bits
+ int width,
+ int height) {
+ int y;
+ void (*Convert16To8Row)(const uint16_t* src_y, uint8_t* dst_y, int scale,
+ int width) = Convert16To8Row_C;
+
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+#if defined(HAS_CONVERT16TO8ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ Convert16To8Row = Convert16To8Row_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ Convert16To8Row = Convert16To8Row_NEON;
+ }
+ }
+#endif
+#if defined(HAS_CONVERT16TO8ROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ Convert16To8Row = Convert16To8Row_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ Convert16To8Row = Convert16To8Row_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_CONVERT16TO8ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ Convert16To8Row = Convert16To8Row_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ Convert16To8Row = Convert16To8Row_AVX2;
+ }
+ }
+#endif
+
+ // Convert plane
+ for (y = 0; y < height; ++y) {
+ Convert16To8Row(src_y, dst_y, scale, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Convert a plane of 8 bit data to 16 bit
+LIBYUV_API
+void Convert8To16Plane(const uint8_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ int scale, // 16384 for 10 bits
+ int width,
+ int height) {
+ int y;
+ void (*Convert8To16Row)(const uint8_t* src_y, uint16_t* dst_y, int scale,
+ int width) = Convert8To16Row_C;
+
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+#if defined(HAS_CONVERT8TO16ROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ Convert8To16Row = Convert8To16Row_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ Convert8To16Row = Convert8To16Row_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_CONVERT8TO16ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ Convert8To16Row = Convert8To16Row_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ Convert8To16Row = Convert8To16Row_AVX2;
+ }
+ }
+#endif
+
+ // Convert plane
+ for (y = 0; y < height; ++y) {
+ Convert8To16Row(src_y, dst_y, scale, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Copy I422.
+LIBYUV_API
+int I422Copy(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+
+ if ((!src_y && dst_y) || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
+ height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
+ CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
+ return 0;
+}
+
+// Copy I444.
+LIBYUV_API
+int I444Copy(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ if ((!src_y && dst_y) || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
+ height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
+ CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
+ return 0;
+}
+
+// Copy I210.
+LIBYUV_API
+int I210Copy(const uint16_t* src_y,
+ int src_stride_y,
+ const uint16_t* src_u,
+ int src_stride_u,
+ const uint16_t* src_v,
+ int src_stride_v,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ uint16_t* dst_u,
+ int dst_stride_u,
+ uint16_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+
+ if ((!src_y && dst_y) || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
+ height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ CopyPlane_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ // Copy UV planes.
+ CopyPlane_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
+ CopyPlane_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
+ return 0;
+}
+
+// Copy I410.
+LIBYUV_API
+int I410Copy(const uint16_t* src_y,
+ int src_stride_y,
+ const uint16_t* src_u,
+ int src_stride_u,
+ const uint16_t* src_v,
+ int src_stride_v,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ uint16_t* dst_u,
+ int dst_stride_u,
+ uint16_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ if ((!src_y && dst_y) || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
+ height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ CopyPlane_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ CopyPlane_16(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
+ CopyPlane_16(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
+ return 0;
+}
+
+// Copy I400.
+LIBYUV_API
+int I400ToI400(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Convert I420 to I400.
+LIBYUV_API
+int I420ToI400(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ (void)src_u;
+ (void)src_stride_u;
+ (void)src_v;
+ (void)src_stride_v;
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Copy NV12. Supports inverting.
+LIBYUV_API
+int NV12Copy(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+
+ if (!src_y || !dst_y || !src_uv || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ halfheight = (height + 1) >> 1;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_uv = src_uv + (halfheight - 1) * src_stride_uv;
+ src_stride_y = -src_stride_y;
+ src_stride_uv = -src_stride_uv;
+ }
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ CopyPlane(src_uv, src_stride_uv, dst_uv, dst_stride_uv, halfwidth * 2,
+ halfheight);
+ return 0;
+}
+
+// Copy NV21. Supports inverting.
+LIBYUV_API
+int NV21Copy(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_vu,
+ int src_stride_vu,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_vu,
+ int dst_stride_vu,
+ int width,
+ int height) {
+ return NV12Copy(src_y, src_stride_y, src_vu, src_stride_vu, dst_y,
+ dst_stride_y, dst_vu, dst_stride_vu, width, height);
+}
+
+// Support function for NV12 etc UV channels.
+// Width and height are plane sizes (typically half pixel width).
+LIBYUV_API
+void SplitUVPlane(const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int y;
+ void (*SplitUVRow)(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v,
+ int width) = SplitUVRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_u = dst_u + (height - 1) * dst_stride_u;
+ dst_v = dst_v + (height - 1) * dst_stride_v;
+ dst_stride_u = -dst_stride_u;
+ dst_stride_v = -dst_stride_v;
+ }
+ // Coalesce rows.
+ if (src_stride_uv == width * 2 && dst_stride_u == width &&
+ dst_stride_v == width) {
+ width *= height;
+ height = 1;
+ src_stride_uv = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_SPLITUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitUVRow = SplitUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitUVRow = SplitUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitUVRow = SplitUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SplitUVRow = SplitUVRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SplitUVRow = SplitUVRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Copy a row of UV.
+ SplitUVRow(src_uv, dst_u, dst_v, width);
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ src_uv += src_stride_uv;
+ }
+}
+
+LIBYUV_API
+void MergeUVPlane(const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int y;
+ void (*MergeUVRow)(const uint8_t* src_u, const uint8_t* src_v,
+ uint8_t* dst_uv, int width) = MergeUVRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_uv = dst_uv + (height - 1) * dst_stride_uv;
+ dst_stride_uv = -dst_stride_uv;
+ }
+ // Coalesce rows.
+ if (src_stride_u == width && src_stride_v == width &&
+ dst_stride_uv == width * 2) {
+ width *= height;
+ height = 1;
+ src_stride_u = src_stride_v = dst_stride_uv = 0;
+ }
+#if defined(HAS_MERGEUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ MergeUVRow = MergeUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeUVRow = MergeUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeUVRow = MergeUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ MergeUVRow = MergeUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeUVRow = MergeUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MergeUVRow = MergeUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_MERGEUVROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ MergeUVRow = MergeUVRow_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ MergeUVRow = MergeUVRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_MERGEUVROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ MergeUVRow = MergeUVRow_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ MergeUVRow = MergeUVRow_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Merge a row of U and V into a row of UV.
+ MergeUVRow(src_u, src_v, dst_uv, width);
+ src_u += src_stride_u;
+ src_v += src_stride_v;
+ dst_uv += dst_stride_uv;
+ }
+}
+
+// Support function for P010 etc UV channels.
+// Width and height are plane sizes (typically half pixel width).
+LIBYUV_API
+void SplitUVPlane_16(const uint16_t* src_uv,
+ int src_stride_uv,
+ uint16_t* dst_u,
+ int dst_stride_u,
+ uint16_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*SplitUVRow_16)(const uint16_t* src_uv, uint16_t* dst_u,
+ uint16_t* dst_v, int depth, int width) =
+ SplitUVRow_16_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_u = dst_u + (height - 1) * dst_stride_u;
+ dst_v = dst_v + (height - 1) * dst_stride_v;
+ dst_stride_u = -dst_stride_u;
+ dst_stride_v = -dst_stride_v;
+ }
+ // Coalesce rows.
+ if (src_stride_uv == width * 2 && dst_stride_u == width &&
+ dst_stride_v == width) {
+ width *= height;
+ height = 1;
+ src_stride_uv = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_SPLITUVROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitUVRow_16 = SplitUVRow_16_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow_16 = SplitUVRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitUVRow_16 = SplitUVRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ SplitUVRow_16 = SplitUVRow_16_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Copy a row of UV.
+ SplitUVRow_16(src_uv, dst_u, dst_v, depth, width);
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ src_uv += src_stride_uv;
+ }
+}
+
+LIBYUV_API
+void MergeUVPlane_16(const uint16_t* src_u,
+ int src_stride_u,
+ const uint16_t* src_v,
+ int src_stride_v,
+ uint16_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeUVRow_16)(const uint16_t* src_u, const uint16_t* src_v,
+ uint16_t* dst_uv, int depth, int width) =
+ MergeUVRow_16_C;
+ assert(depth >= 8);
+ assert(depth <= 16);
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_uv = dst_uv + (height - 1) * dst_stride_uv;
+ dst_stride_uv = -dst_stride_uv;
+ }
+ // Coalesce rows.
+ if (src_stride_u == width && src_stride_v == width &&
+ dst_stride_uv == width * 2) {
+ width *= height;
+ height = 1;
+ src_stride_u = src_stride_v = dst_stride_uv = 0;
+ }
+#if defined(HAS_MERGEUVROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeUVRow_16 = MergeUVRow_16_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeUVRow_16 = MergeUVRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEUVROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeUVRow_16 = MergeUVRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeUVRow_16 = MergeUVRow_16_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Merge a row of U and V into a row of UV.
+ MergeUVRow_16(src_u, src_v, dst_uv, depth, width);
+ src_u += src_stride_u;
+ src_v += src_stride_v;
+ dst_uv += dst_stride_uv;
+ }
+}
+
+// Convert plane from lsb to msb
+LIBYUV_API
+void ConvertToMSBPlane_16(const uint16_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ int scale = 1 << (16 - depth);
+ void (*MultiplyRow_16)(const uint16_t* src_y, uint16_t* dst_y, int scale,
+ int width) = MultiplyRow_16_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+
+#if defined(HAS_MULTIPLYROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MultiplyRow_16 = MultiplyRow_16_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ MultiplyRow_16 = MultiplyRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MULTIPLYROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MultiplyRow_16 = MultiplyRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MultiplyRow_16 = MultiplyRow_16_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MultiplyRow_16(src_y, dst_y, scale, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Convert plane from msb to lsb
+LIBYUV_API
+void ConvertToLSBPlane_16(const uint16_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ int scale = 1 << depth;
+ void (*DivideRow)(const uint16_t* src_y, uint16_t* dst_y, int scale,
+ int width) = DivideRow_16_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+
+#if defined(HAS_DIVIDEROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ DivideRow = DivideRow_16_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ DivideRow = DivideRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_DIVIDEROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ DivideRow = DivideRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ DivideRow = DivideRow_16_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ DivideRow(src_y, dst_y, scale, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Swap U and V channels in interleaved UV plane.
+LIBYUV_API
+void SwapUVPlane(const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_vu,
+ int dst_stride_vu,
+ int width,
+ int height) {
+ int y;
+ void (*SwapUVRow)(const uint8_t* src_uv, uint8_t* dst_vu, int width) =
+ SwapUVRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uv = src_uv + (height - 1) * src_stride_uv;
+ src_stride_uv = -src_stride_uv;
+ }
+ // Coalesce rows.
+ if (src_stride_uv == width * 2 && dst_stride_vu == width * 2) {
+ width *= height;
+ height = 1;
+ src_stride_uv = dst_stride_vu = 0;
+ }
+
+#if defined(HAS_SWAPUVROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ SwapUVRow = SwapUVRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ SwapUVRow = SwapUVRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SWAPUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SwapUVRow = SwapUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ SwapUVRow = SwapUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SWAPUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SwapUVRow = SwapUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SwapUVRow = SwapUVRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ SwapUVRow(src_uv, dst_vu, width);
+ src_uv += src_stride_uv;
+ dst_vu += dst_stride_vu;
+ }
+}
+
+// Convert NV21 to NV12.
+LIBYUV_API
+int NV21ToNV12(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_vu,
+ int src_stride_vu,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+
+ if (!src_vu || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ if (dst_y) {
+ CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ halfheight = (height + 1) >> 1;
+ src_vu = src_vu + (halfheight - 1) * src_stride_vu;
+ src_stride_vu = -src_stride_vu;
+ }
+
+ SwapUVPlane(src_vu, src_stride_vu, dst_uv, dst_stride_uv, halfwidth,
+ halfheight);
+ return 0;
+}
+
+// Test if tile_height is a power of 2 (16 or 32)
+#define IS_POWEROFTWO(x) (!((x) & ((x)-1)))
+
+// Detile a plane of data
+// tile width is 16 and assumed.
+// tile_height is 16 or 32 for MM21.
+// src_stride_y is bytes per row of source ignoring tiling. e.g. 640
+// TODO: More detile row functions.
+LIBYUV_API
+int DetilePlane(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height,
+ int tile_height) {
+ const ptrdiff_t src_tile_stride = 16 * tile_height;
+ int y;
+ void (*DetileRow)(const uint8_t* src, ptrdiff_t src_tile_stride, uint8_t* dst,
+ int width) = DetileRow_C;
+ if (!src_y || !dst_y || width <= 0 || height == 0 ||
+ !IS_POWEROFTWO(tile_height)) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+#if defined(HAS_DETILEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ DetileRow = DetileRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ DetileRow = DetileRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_DETILEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ DetileRow = DetileRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ DetileRow = DetileRow_NEON;
+ }
+ }
+#endif
+
+ // Detile plane
+ for (y = 0; y < height; ++y) {
+ DetileRow(src_y, src_tile_stride, dst_y, width);
+ dst_y += dst_stride_y;
+ src_y += 16;
+ // Advance to next row of tiles.
+ if ((y & (tile_height - 1)) == (tile_height - 1)) {
+ src_y = src_y - src_tile_stride + src_stride_y * tile_height;
+ }
+ }
+ return 0;
+}
+
+// Convert a plane of 16 bit tiles of 16 x H to linear.
+// tile width is 16 and assumed.
+// tile_height is 16 or 32 for MT2T.
+LIBYUV_API
+int DetilePlane_16(const uint16_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height,
+ int tile_height) {
+ const ptrdiff_t src_tile_stride = 16 * tile_height;
+ int y;
+ void (*DetileRow_16)(const uint16_t* src, ptrdiff_t src_tile_stride,
+ uint16_t* dst, int width) = DetileRow_16_C;
+ if (!src_y || !dst_y || width <= 0 || height == 0 ||
+ !IS_POWEROFTWO(tile_height)) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+#if defined(HAS_DETILEROW_16_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ DetileRow_16 = DetileRow_16_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ DetileRow_16 = DetileRow_16_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_DETILEROW_16_AVX)
+ if (TestCpuFlag(kCpuHasAVX)) {
+ DetileRow_16 = DetileRow_16_Any_AVX;
+ if (IS_ALIGNED(width, 16)) {
+ DetileRow_16 = DetileRow_16_AVX;
+ }
+ }
+#endif
+#if defined(HAS_DETILEROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ DetileRow_16 = DetileRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ DetileRow_16 = DetileRow_16_NEON;
+ }
+ }
+#endif
+
+ // Detile plane
+ for (y = 0; y < height; ++y) {
+ DetileRow_16(src_y, src_tile_stride, dst_y, width);
+ dst_y += dst_stride_y;
+ src_y += 16;
+ // Advance to next row of tiles.
+ if ((y & (tile_height - 1)) == (tile_height - 1)) {
+ src_y = src_y - src_tile_stride + src_stride_y * tile_height;
+ }
+ }
+ return 0;
+}
+
+LIBYUV_API
+void DetileSplitUVPlane(const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height,
+ int tile_height) {
+ const ptrdiff_t src_tile_stride = 16 * tile_height;
+ int y;
+ void (*DetileSplitUVRow)(const uint8_t* src, ptrdiff_t src_tile_stride,
+ uint8_t* dst_u, uint8_t* dst_v, int width) =
+ DetileSplitUVRow_C;
+ assert(src_stride_uv >= 0);
+ assert(tile_height > 0);
+ assert(src_stride_uv > 0);
+
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_u = dst_u + (height - 1) * dst_stride_u;
+ dst_stride_u = -dst_stride_u;
+ dst_v = dst_v + (height - 1) * dst_stride_v;
+ dst_stride_v = -dst_stride_v;
+ }
+
+#if defined(HAS_DETILESPLITUVROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ DetileSplitUVRow = DetileSplitUVRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ DetileSplitUVRow = DetileSplitUVRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_DETILESPLITUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ DetileSplitUVRow = DetileSplitUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ DetileSplitUVRow = DetileSplitUVRow_NEON;
+ }
+ }
+#endif
+
+ // Detile plane
+ for (y = 0; y < height; ++y) {
+ DetileSplitUVRow(src_uv, src_tile_stride, dst_u, dst_v, width);
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ src_uv += 16;
+ // Advance to next row of tiles.
+ if ((y & (tile_height - 1)) == (tile_height - 1)) {
+ src_uv = src_uv - src_tile_stride + src_stride_uv * tile_height;
+ }
+ }
+}
+
+LIBYUV_API
+void DetileToYUY2(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_yuy2,
+ int dst_stride_yuy2,
+ int width,
+ int height,
+ int tile_height) {
+ const ptrdiff_t src_y_tile_stride = 16 * tile_height;
+ const ptrdiff_t src_uv_tile_stride = src_y_tile_stride / 2;
+ int y;
+ void (*DetileToYUY2)(const uint8_t* src_y, ptrdiff_t src_y_tile_stride,
+ const uint8_t* src_uv, ptrdiff_t src_uv_tile_stride,
+ uint8_t* dst_yuy2, int width) = DetileToYUY2_C;
+ assert(src_stride_y >= 0);
+ assert(src_stride_y > 0);
+ assert(src_stride_uv >= 0);
+ assert(src_stride_uv > 0);
+ assert(tile_height > 0);
+
+ if (width <= 0 || height == 0 || tile_height <= 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_yuy2 = dst_yuy2 + (height - 1) * dst_stride_yuy2;
+ dst_stride_yuy2 = -dst_stride_yuy2;
+ }
+
+#if defined(HAS_DETILETOYUY2_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ DetileToYUY2 = DetileToYUY2_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ DetileToYUY2 = DetileToYUY2_NEON;
+ }
+ }
+#endif
+
+#if defined(HAS_DETILETOYUY2_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ DetileToYUY2 = DetileToYUY2_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ DetileToYUY2 = DetileToYUY2_SSE2;
+ }
+ }
+#endif
+
+ // Detile plane
+ for (y = 0; y < height; ++y) {
+ DetileToYUY2(src_y, src_y_tile_stride, src_uv, src_uv_tile_stride, dst_yuy2,
+ width);
+ dst_yuy2 += dst_stride_yuy2;
+ src_y += 16;
+
+ if (y & 0x1)
+ src_uv += 16;
+
+ // Advance to next row of tiles.
+ if ((y & (tile_height - 1)) == (tile_height - 1)) {
+ src_y = src_y - src_y_tile_stride + src_stride_y * tile_height;
+ src_uv = src_uv - src_uv_tile_stride + src_stride_uv * (tile_height / 2);
+ }
+ }
+}
+
+// Support function for NV12 etc RGB channels.
+// Width and height are plane sizes (typically half pixel width).
+LIBYUV_API
+void SplitRGBPlane(const uint8_t* src_rgb,
+ int src_stride_rgb,
+ uint8_t* dst_r,
+ int dst_stride_r,
+ uint8_t* dst_g,
+ int dst_stride_g,
+ uint8_t* dst_b,
+ int dst_stride_b,
+ int width,
+ int height) {
+ int y;
+ void (*SplitRGBRow)(const uint8_t* src_rgb, uint8_t* dst_r, uint8_t* dst_g,
+ uint8_t* dst_b, int width) = SplitRGBRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_r = dst_r + (height - 1) * dst_stride_r;
+ dst_g = dst_g + (height - 1) * dst_stride_g;
+ dst_b = dst_b + (height - 1) * dst_stride_b;
+ dst_stride_r = -dst_stride_r;
+ dst_stride_g = -dst_stride_g;
+ dst_stride_b = -dst_stride_b;
+ }
+ // Coalesce rows.
+ if (src_stride_rgb == width * 3 && dst_stride_r == width &&
+ dst_stride_g == width && dst_stride_b == width) {
+ width *= height;
+ height = 1;
+ src_stride_rgb = dst_stride_r = dst_stride_g = dst_stride_b = 0;
+ }
+#if defined(HAS_SPLITRGBROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ SplitRGBRow = SplitRGBRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ SplitRGBRow = SplitRGBRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SPLITRGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitRGBRow = SplitRGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitRGBRow = SplitRGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Copy a row of RGB.
+ SplitRGBRow(src_rgb, dst_r, dst_g, dst_b, width);
+ dst_r += dst_stride_r;
+ dst_g += dst_stride_g;
+ dst_b += dst_stride_b;
+ src_rgb += src_stride_rgb;
+ }
+}
+
+LIBYUV_API
+void MergeRGBPlane(const uint8_t* src_r,
+ int src_stride_r,
+ const uint8_t* src_g,
+ int src_stride_g,
+ const uint8_t* src_b,
+ int src_stride_b,
+ uint8_t* dst_rgb,
+ int dst_stride_rgb,
+ int width,
+ int height) {
+ int y;
+ void (*MergeRGBRow)(const uint8_t* src_r, const uint8_t* src_g,
+ const uint8_t* src_b, uint8_t* dst_rgb, int width) =
+ MergeRGBRow_C;
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ // Coalesce rows.
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_rgb = dst_rgb + (height - 1) * dst_stride_rgb;
+ dst_stride_rgb = -dst_stride_rgb;
+ }
+ // Coalesce rows.
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ dst_stride_rgb == width * 3) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = dst_stride_rgb = 0;
+ }
+#if defined(HAS_MERGERGBROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ MergeRGBRow = MergeRGBRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ MergeRGBRow = MergeRGBRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_MERGERGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeRGBRow = MergeRGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MergeRGBRow = MergeRGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ // Merge a row of U and V into a row of RGB.
+ MergeRGBRow(src_r, src_g, src_b, dst_rgb, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ dst_rgb += dst_stride_rgb;
+ }
+}
+
+LIBYUV_NOINLINE
+static void SplitARGBPlaneAlpha(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_r,
+ int dst_stride_r,
+ uint8_t* dst_g,
+ int dst_stride_g,
+ uint8_t* dst_b,
+ int dst_stride_b,
+ uint8_t* dst_a,
+ int dst_stride_a,
+ int width,
+ int height) {
+ int y;
+ void (*SplitARGBRow)(const uint8_t* src_rgb, uint8_t* dst_r, uint8_t* dst_g,
+ uint8_t* dst_b, uint8_t* dst_a, int width) =
+ SplitARGBRow_C;
+
+ assert(height > 0);
+
+ if (src_stride_argb == width * 4 && dst_stride_r == width &&
+ dst_stride_g == width && dst_stride_b == width && dst_stride_a == width) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_r = dst_stride_g = dst_stride_b =
+ dst_stride_a = 0;
+ }
+
+#if defined(HAS_SPLITARGBROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitARGBRow = SplitARGBRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ SplitARGBRow = SplitARGBRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITARGBROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ SplitARGBRow = SplitARGBRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ SplitARGBRow = SplitARGBRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SPLITARGBROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitARGBRow = SplitARGBRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitARGBRow = SplitARGBRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITARGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitARGBRow = SplitARGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitARGBRow = SplitARGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ SplitARGBRow(src_argb, dst_r, dst_g, dst_b, dst_a, width);
+ dst_r += dst_stride_r;
+ dst_g += dst_stride_g;
+ dst_b += dst_stride_b;
+ dst_a += dst_stride_a;
+ src_argb += src_stride_argb;
+ }
+}
+
+LIBYUV_NOINLINE
+static void SplitARGBPlaneOpaque(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_r,
+ int dst_stride_r,
+ uint8_t* dst_g,
+ int dst_stride_g,
+ uint8_t* dst_b,
+ int dst_stride_b,
+ int width,
+ int height) {
+ int y;
+ void (*SplitXRGBRow)(const uint8_t* src_rgb, uint8_t* dst_r, uint8_t* dst_g,
+ uint8_t* dst_b, int width) = SplitXRGBRow_C;
+ assert(height > 0);
+
+ if (src_stride_argb == width * 4 && dst_stride_r == width &&
+ dst_stride_g == width && dst_stride_b == width) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_r = dst_stride_g = dst_stride_b = 0;
+ }
+
+#if defined(HAS_SPLITXRGBROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitXRGBRow = SplitXRGBRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ SplitXRGBRow = SplitXRGBRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITXRGBROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ SplitXRGBRow = SplitXRGBRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ SplitXRGBRow = SplitXRGBRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SPLITXRGBROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitXRGBRow = SplitXRGBRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitXRGBRow = SplitXRGBRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITXRGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitXRGBRow = SplitXRGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitXRGBRow = SplitXRGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ SplitXRGBRow(src_argb, dst_r, dst_g, dst_b, width);
+ dst_r += dst_stride_r;
+ dst_g += dst_stride_g;
+ dst_b += dst_stride_b;
+ src_argb += src_stride_argb;
+ }
+}
+
+LIBYUV_API
+void SplitARGBPlane(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_r,
+ int dst_stride_r,
+ uint8_t* dst_g,
+ int dst_stride_g,
+ uint8_t* dst_b,
+ int dst_stride_b,
+ uint8_t* dst_a,
+ int dst_stride_a,
+ int width,
+ int height) {
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_r = dst_r + (height - 1) * dst_stride_r;
+ dst_g = dst_g + (height - 1) * dst_stride_g;
+ dst_b = dst_b + (height - 1) * dst_stride_b;
+ dst_a = dst_a + (height - 1) * dst_stride_a;
+ dst_stride_r = -dst_stride_r;
+ dst_stride_g = -dst_stride_g;
+ dst_stride_b = -dst_stride_b;
+ dst_stride_a = -dst_stride_a;
+ }
+
+ if (dst_a == NULL) {
+ SplitARGBPlaneOpaque(src_argb, src_stride_argb, dst_r, dst_stride_r, dst_g,
+ dst_stride_g, dst_b, dst_stride_b, width, height);
+ } else {
+ SplitARGBPlaneAlpha(src_argb, src_stride_argb, dst_r, dst_stride_r, dst_g,
+ dst_stride_g, dst_b, dst_stride_b, dst_a, dst_stride_a,
+ width, height);
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeARGBPlaneAlpha(const uint8_t* src_r,
+ int src_stride_r,
+ const uint8_t* src_g,
+ int src_stride_g,
+ const uint8_t* src_b,
+ int src_stride_b,
+ const uint8_t* src_a,
+ int src_stride_a,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*MergeARGBRow)(const uint8_t* src_r, const uint8_t* src_g,
+ const uint8_t* src_b, const uint8_t* src_a,
+ uint8_t* dst_argb, int width) = MergeARGBRow_C;
+
+ assert(height > 0);
+
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ src_stride_a == width && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = src_stride_a =
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_MERGEARGBROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ MergeARGBRow = MergeARGBRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ MergeARGBRow = MergeARGBRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEARGBROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeARGBRow = MergeARGBRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeARGBRow = MergeARGBRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEARGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeARGBRow = MergeARGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MergeARGBRow = MergeARGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeARGBRow(src_r, src_g, src_b, src_a, dst_argb, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ src_a += src_stride_a;
+ dst_argb += dst_stride_argb;
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeARGBPlaneOpaque(const uint8_t* src_r,
+ int src_stride_r,
+ const uint8_t* src_g,
+ int src_stride_g,
+ const uint8_t* src_b,
+ int src_stride_b,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*MergeXRGBRow)(const uint8_t* src_r, const uint8_t* src_g,
+ const uint8_t* src_b, uint8_t* dst_argb, int width) =
+ MergeXRGBRow_C;
+
+ assert(height > 0);
+
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = dst_stride_argb = 0;
+ }
+#if defined(HAS_MERGEXRGBROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ MergeXRGBRow = MergeXRGBRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ MergeXRGBRow = MergeXRGBRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEXRGBROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeXRGBRow = MergeXRGBRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeXRGBRow = MergeXRGBRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEXRGBROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeXRGBRow = MergeXRGBRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ MergeXRGBRow = MergeXRGBRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeXRGBRow(src_r, src_g, src_b, dst_argb, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ dst_argb += dst_stride_argb;
+ }
+}
+
+LIBYUV_API
+void MergeARGBPlane(const uint8_t* src_r,
+ int src_stride_r,
+ const uint8_t* src_g,
+ int src_stride_g,
+ const uint8_t* src_b,
+ int src_stride_b,
+ const uint8_t* src_a,
+ int src_stride_a,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+
+ if (src_a == NULL) {
+ MergeARGBPlaneOpaque(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, dst_argb, dst_stride_argb, width,
+ height);
+ } else {
+ MergeARGBPlaneAlpha(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, src_a, src_stride_a, dst_argb,
+ dst_stride_argb, width, height);
+ }
+}
+
+// TODO(yuan): Support 2 bit alpha channel.
+LIBYUV_API
+void MergeXR30Plane(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ uint8_t* dst_ar30,
+ int dst_stride_ar30,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeXR30Row)(const uint16_t* src_r, const uint16_t* src_g,
+ const uint16_t* src_b, uint8_t* dst_ar30, int depth,
+ int width) = MergeXR30Row_C;
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_ar30 = dst_ar30 + (height - 1) * dst_stride_ar30;
+ dst_stride_ar30 = -dst_stride_ar30;
+ }
+ // Coalesce rows.
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ dst_stride_ar30 == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = dst_stride_ar30 = 0;
+ }
+#if defined(HAS_MERGEXR30ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeXR30Row = MergeXR30Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeXR30Row = MergeXR30Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEXR30ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ if (depth == 10) {
+ MergeXR30Row = MergeXR30Row_10_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeXR30Row = MergeXR30Row_10_NEON;
+ }
+ } else {
+ MergeXR30Row = MergeXR30Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeXR30Row = MergeXR30Row_NEON;
+ }
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeXR30Row(src_r, src_g, src_b, dst_ar30, depth, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ dst_ar30 += dst_stride_ar30;
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeAR64PlaneAlpha(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ const uint16_t* src_a,
+ int src_stride_a,
+ uint16_t* dst_ar64,
+ int dst_stride_ar64,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeAR64Row)(const uint16_t* src_r, const uint16_t* src_g,
+ const uint16_t* src_b, const uint16_t* src_a,
+ uint16_t* dst_argb, int depth, int width) =
+ MergeAR64Row_C;
+
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ src_stride_a == width && dst_stride_ar64 == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = src_stride_a =
+ dst_stride_ar64 = 0;
+ }
+#if defined(HAS_MERGEAR64ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeAR64Row = MergeAR64Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeAR64Row = MergeAR64Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEAR64ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeAR64Row = MergeAR64Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeAR64Row = MergeAR64Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeAR64Row(src_r, src_g, src_b, src_a, dst_ar64, depth, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ src_a += src_stride_a;
+ dst_ar64 += dst_stride_ar64;
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeAR64PlaneOpaque(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ uint16_t* dst_ar64,
+ int dst_stride_ar64,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeXR64Row)(const uint16_t* src_r, const uint16_t* src_g,
+ const uint16_t* src_b, uint16_t* dst_argb, int depth,
+ int width) = MergeXR64Row_C;
+
+ // Coalesce rows.
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ dst_stride_ar64 == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = dst_stride_ar64 = 0;
+ }
+#if defined(HAS_MERGEXR64ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeXR64Row = MergeXR64Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeXR64Row = MergeXR64Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEXR64ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeXR64Row = MergeXR64Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeXR64Row = MergeXR64Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeXR64Row(src_r, src_g, src_b, dst_ar64, depth, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ dst_ar64 += dst_stride_ar64;
+ }
+}
+
+LIBYUV_API
+void MergeAR64Plane(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ const uint16_t* src_a,
+ int src_stride_a,
+ uint16_t* dst_ar64,
+ int dst_stride_ar64,
+ int width,
+ int height,
+ int depth) {
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_ar64 = dst_ar64 + (height - 1) * dst_stride_ar64;
+ dst_stride_ar64 = -dst_stride_ar64;
+ }
+
+ if (src_a == NULL) {
+ MergeAR64PlaneOpaque(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, dst_ar64, dst_stride_ar64, width, height,
+ depth);
+ } else {
+ MergeAR64PlaneAlpha(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, src_a, src_stride_a, dst_ar64,
+ dst_stride_ar64, width, height, depth);
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeARGB16To8PlaneAlpha(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ const uint16_t* src_a,
+ int src_stride_a,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeARGB16To8Row)(const uint16_t* src_r, const uint16_t* src_g,
+ const uint16_t* src_b, const uint16_t* src_a,
+ uint8_t* dst_argb, int depth, int width) =
+ MergeARGB16To8Row_C;
+
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ src_stride_a == width && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = src_stride_a =
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_MERGEARGB16TO8ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeARGB16To8Row = MergeARGB16To8Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeARGB16To8Row = MergeARGB16To8Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEARGB16TO8ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeARGB16To8Row = MergeARGB16To8Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeARGB16To8Row = MergeARGB16To8Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeARGB16To8Row(src_r, src_g, src_b, src_a, dst_argb, depth, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ src_a += src_stride_a;
+ dst_argb += dst_stride_argb;
+ }
+}
+
+LIBYUV_NOINLINE
+static void MergeARGB16To8PlaneOpaque(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ int depth) {
+ int y;
+ void (*MergeXRGB16To8Row)(const uint16_t* src_r, const uint16_t* src_g,
+ const uint16_t* src_b, uint8_t* dst_argb, int depth,
+ int width) = MergeXRGB16To8Row_C;
+
+ // Coalesce rows.
+ if (src_stride_r == width && src_stride_g == width && src_stride_b == width &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_r = src_stride_g = src_stride_b = dst_stride_argb = 0;
+ }
+#if defined(HAS_MERGEXRGB16TO8ROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MergeXRGB16To8Row = MergeXRGB16To8Row_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MergeXRGB16To8Row = MergeXRGB16To8Row_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MERGEXRGB16TO8ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MergeXRGB16To8Row = MergeXRGB16To8Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ MergeXRGB16To8Row = MergeXRGB16To8Row_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ MergeXRGB16To8Row(src_r, src_g, src_b, dst_argb, depth, width);
+ src_r += src_stride_r;
+ src_g += src_stride_g;
+ src_b += src_stride_b;
+ dst_argb += dst_stride_argb;
+ }
+}
+
+LIBYUV_API
+void MergeARGB16To8Plane(const uint16_t* src_r,
+ int src_stride_r,
+ const uint16_t* src_g,
+ int src_stride_g,
+ const uint16_t* src_b,
+ int src_stride_b,
+ const uint16_t* src_a,
+ int src_stride_a,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ int depth) {
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+
+ if (src_a == NULL) {
+ MergeARGB16To8PlaneOpaque(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, dst_argb, dst_stride_argb, width,
+ height, depth);
+ } else {
+ MergeARGB16To8PlaneAlpha(src_r, src_stride_r, src_g, src_stride_g, src_b,
+ src_stride_b, src_a, src_stride_a, dst_argb,
+ dst_stride_argb, width, height, depth);
+ }
+}
+
+// Convert YUY2 to I422.
+LIBYUV_API
+int YUY2ToI422(const uint8_t* src_yuy2,
+ int src_stride_yuy2,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int y;
+ void (*YUY2ToUV422Row)(const uint8_t* src_yuy2, uint8_t* dst_u,
+ uint8_t* dst_v, int width) = YUY2ToUV422Row_C;
+ void (*YUY2ToYRow)(const uint8_t* src_yuy2, uint8_t* dst_y, int width) =
+ YUY2ToYRow_C;
+ if (!src_yuy2 || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
+ src_stride_yuy2 = -src_stride_yuy2;
+ }
+ // Coalesce rows.
+ if (src_stride_yuy2 == width * 2 && dst_stride_y == width &&
+ dst_stride_u * 2 == width && dst_stride_v * 2 == width &&
+ width * height <= 32768) {
+ width *= height;
+ height = 1;
+ src_stride_yuy2 = dst_stride_y = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_YUY2TOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_SSE2;
+ YUY2ToYRow = YUY2ToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_SSE2;
+ YUY2ToYRow = YUY2ToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_AVX2;
+ YUY2ToYRow = YUY2ToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToUV422Row = YUY2ToUV422Row_AVX2;
+ YUY2ToYRow = YUY2ToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ YUY2ToYRow = YUY2ToYRow_Any_NEON;
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_NEON;
+ YUY2ToUV422Row = YUY2ToUV422Row_NEON;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_MSA) && defined(HAS_YUY2TOUV422ROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ YUY2ToYRow = YUY2ToYRow_Any_MSA;
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_MSA;
+ YUY2ToUV422Row = YUY2ToUV422Row_MSA;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_LASX) && defined(HAS_YUY2TOUV422ROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ YUY2ToYRow = YUY2ToYRow_Any_LASX;
+ YUY2ToUV422Row = YUY2ToUV422Row_Any_LASX;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_LASX;
+ YUY2ToUV422Row = YUY2ToUV422Row_LASX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ YUY2ToUV422Row(src_yuy2, dst_u, dst_v, width);
+ YUY2ToYRow(src_yuy2, dst_y, width);
+ src_yuy2 += src_stride_yuy2;
+ dst_y += dst_stride_y;
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ }
+ return 0;
+}
+
+// Convert UYVY to I422.
+LIBYUV_API
+int UYVYToI422(const uint8_t* src_uyvy,
+ int src_stride_uyvy,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int y;
+ void (*UYVYToUV422Row)(const uint8_t* src_uyvy, uint8_t* dst_u,
+ uint8_t* dst_v, int width) = UYVYToUV422Row_C;
+ void (*UYVYToYRow)(const uint8_t* src_uyvy, uint8_t* dst_y, int width) =
+ UYVYToYRow_C;
+ if (!src_uyvy || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
+ src_stride_uyvy = -src_stride_uyvy;
+ }
+ // Coalesce rows.
+ if (src_stride_uyvy == width * 2 && dst_stride_y == width &&
+ dst_stride_u * 2 == width && dst_stride_v * 2 == width &&
+ width * height <= 32768) {
+ width *= height;
+ height = 1;
+ src_stride_uyvy = dst_stride_y = dst_stride_u = dst_stride_v = 0;
+ }
+#if defined(HAS_UYVYTOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ UYVYToUV422Row = UYVYToUV422Row_Any_SSE2;
+ UYVYToYRow = UYVYToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToUV422Row = UYVYToUV422Row_SSE2;
+ UYVYToYRow = UYVYToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ UYVYToUV422Row = UYVYToUV422Row_Any_AVX2;
+ UYVYToYRow = UYVYToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToUV422Row = UYVYToUV422Row_AVX2;
+ UYVYToYRow = UYVYToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ UYVYToYRow = UYVYToYRow_Any_NEON;
+ UYVYToUV422Row = UYVYToUV422Row_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToYRow = UYVYToYRow_NEON;
+ UYVYToUV422Row = UYVYToUV422Row_NEON;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_MSA) && defined(HAS_UYVYTOUV422ROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ UYVYToYRow = UYVYToYRow_Any_MSA;
+ UYVYToUV422Row = UYVYToUV422Row_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToYRow = UYVYToYRow_MSA;
+ UYVYToUV422Row = UYVYToUV422Row_MSA;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_LASX) && defined(HAS_UYVYTOUV422ROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ UYVYToYRow = UYVYToYRow_Any_LASX;
+ UYVYToUV422Row = UYVYToUV422Row_Any_LASX;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToYRow = UYVYToYRow_LASX;
+ UYVYToUV422Row = UYVYToUV422Row_LASX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ UYVYToUV422Row(src_uyvy, dst_u, dst_v, width);
+ UYVYToYRow(src_uyvy, dst_y, width);
+ src_uyvy += src_stride_uyvy;
+ dst_y += dst_stride_y;
+ dst_u += dst_stride_u;
+ dst_v += dst_stride_v;
+ }
+ return 0;
+}
+
+// Convert YUY2 to Y.
+LIBYUV_API
+int YUY2ToY(const uint8_t* src_yuy2,
+ int src_stride_yuy2,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ int y;
+ void (*YUY2ToYRow)(const uint8_t* src_yuy2, uint8_t* dst_y, int width) =
+ YUY2ToYRow_C;
+ if (!src_yuy2 || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
+ src_stride_yuy2 = -src_stride_yuy2;
+ }
+ // Coalesce rows.
+ if (src_stride_yuy2 == width * 2 && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_yuy2 = dst_stride_y = 0;
+ }
+#if defined(HAS_YUY2TOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ YUY2ToYRow = YUY2ToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ YUY2ToYRow = YUY2ToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ YUY2ToYRow = YUY2ToYRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ YUY2ToYRow = YUY2ToYRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_MSA;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ YUY2ToYRow(src_yuy2, dst_y, width);
+ src_yuy2 += src_stride_yuy2;
+ dst_y += dst_stride_y;
+ }
+ return 0;
+}
+
+// Convert UYVY to Y.
+LIBYUV_API
+int UYVYToY(const uint8_t* src_uyvy,
+ int src_stride_uyvy,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ int y;
+ void (*UYVYToYRow)(const uint8_t* src_uyvy, uint8_t* dst_y, int width) =
+ UYVYToYRow_C;
+ if (!src_uyvy || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
+ src_stride_uyvy = -src_stride_uyvy;
+ }
+ // Coalesce rows.
+ if (src_stride_uyvy == width * 2 && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_uyvy = dst_stride_y = 0;
+ }
+#if defined(HAS_UYVYTOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ UYVYToYRow = UYVYToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToYRow = UYVYToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ UYVYToYRow = UYVYToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToYRow = UYVYToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ UYVYToYRow = UYVYToYRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ UYVYToYRow = UYVYToYRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_UYVYTOYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ UYVYToYRow = UYVYToYRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ UYVYToYRow = UYVYToYRow_MSA;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ UYVYToYRow(src_uyvy, dst_y, width);
+ src_uyvy += src_stride_uyvy;
+ dst_y += dst_stride_y;
+ }
+ return 0;
+}
+
+// Mirror a plane of data.
+// See Also I400Mirror
+LIBYUV_API
+void MirrorPlane(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ int y;
+ void (*MirrorRow)(const uint8_t* src, uint8_t* dst, int width) = MirrorRow_C;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+#if defined(HAS_MIRRORROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MirrorRow = MirrorRow_Any_NEON;
+ if (IS_ALIGNED(width, 32)) {
+ MirrorRow = MirrorRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ MirrorRow = MirrorRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ MirrorRow = MirrorRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MirrorRow = MirrorRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ MirrorRow = MirrorRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ MirrorRow = MirrorRow_Any_MSA;
+ if (IS_ALIGNED(width, 64)) {
+ MirrorRow = MirrorRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ MirrorRow = MirrorRow_Any_LASX;
+ if (IS_ALIGNED(width, 64)) {
+ MirrorRow = MirrorRow_LASX;
+ }
+ }
+#endif
+
+ // Mirror plane
+ for (y = 0; y < height; ++y) {
+ MirrorRow(src_y, dst_y, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+}
+
+// Mirror a plane of UV data.
+LIBYUV_API
+void MirrorUVPlane(const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int y;
+ void (*MirrorUVRow)(const uint8_t* src, uint8_t* dst, int width) =
+ MirrorUVRow_C;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uv = src_uv + (height - 1) * src_stride_uv;
+ src_stride_uv = -src_stride_uv;
+ }
+#if defined(HAS_MIRRORUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ MirrorUVRow = MirrorUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 32)) {
+ MirrorUVRow = MirrorUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORUVROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ MirrorUVRow = MirrorUVRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ MirrorUVRow = MirrorUVRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ MirrorUVRow = MirrorUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ MirrorUVRow = MirrorUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORUVROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ MirrorUVRow = MirrorUVRow_Any_MSA;
+ if (IS_ALIGNED(width, 8)) {
+ MirrorUVRow = MirrorUVRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_MIRRORUVROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ MirrorUVRow = MirrorUVRow_Any_LASX;
+ if (IS_ALIGNED(width, 16)) {
+ MirrorUVRow = MirrorUVRow_LASX;
+ }
+ }
+#endif
+
+ // MirrorUV plane
+ for (y = 0; y < height; ++y) {
+ MirrorUVRow(src_uv, dst_uv, width);
+ src_uv += src_stride_uv;
+ dst_uv += dst_stride_uv;
+ }
+}
+
+// Mirror I400 with optional flipping
+LIBYUV_API
+int I400Mirror(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+
+ MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ return 0;
+}
+
+// Mirror I420 with optional flipping
+LIBYUV_API
+int I420Mirror(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+
+ if (!src_y || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
+ height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ halfheight = (height + 1) >> 1;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_u = src_u + (halfheight - 1) * src_stride_u;
+ src_v = src_v + (halfheight - 1) * src_stride_v;
+ src_stride_y = -src_stride_y;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+
+ if (dst_y) {
+ MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ MirrorPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight);
+ MirrorPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight);
+ return 0;
+}
+
+// NV12 mirror.
+LIBYUV_API
+int NV12Mirror(const uint8_t* src_y,
+ int src_stride_y,
+ const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+
+ if (!src_y || !src_uv || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ halfheight = (height + 1) >> 1;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_uv = src_uv + (halfheight - 1) * src_stride_uv;
+ src_stride_y = -src_stride_y;
+ src_stride_uv = -src_stride_uv;
+ }
+
+ if (dst_y) {
+ MirrorPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
+ }
+ MirrorUVPlane(src_uv, src_stride_uv, dst_uv, dst_stride_uv, halfwidth,
+ halfheight);
+ return 0;
+}
+
+// ARGB mirror.
+LIBYUV_API
+int ARGBMirror(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBMirrorRow)(const uint8_t* src, uint8_t* dst, int width) =
+ ARGBMirrorRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+#if defined(HAS_ARGBMIRRORROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMirrorRow = ARGBMirrorRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMirrorRow = ARGBMirrorRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMirrorRow = ARGBMirrorRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBMirrorRow = ARGBMirrorRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMIRRORROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBMirrorRow = ARGBMirrorRow_Any_LASX;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBMirrorRow = ARGBMirrorRow_LASX;
+ }
+ }
+#endif
+
+ // Mirror plane
+ for (y = 0; y < height; ++y) {
+ ARGBMirrorRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// RGB24 mirror.
+LIBYUV_API
+int RGB24Mirror(const uint8_t* src_rgb24,
+ int src_stride_rgb24,
+ uint8_t* dst_rgb24,
+ int dst_stride_rgb24,
+ int width,
+ int height) {
+ int y;
+ void (*RGB24MirrorRow)(const uint8_t* src, uint8_t* dst, int width) =
+ RGB24MirrorRow_C;
+ if (!src_rgb24 || !dst_rgb24 || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_rgb24 = src_rgb24 + (height - 1) * src_stride_rgb24;
+ src_stride_rgb24 = -src_stride_rgb24;
+ }
+#if defined(HAS_RGB24MIRRORROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ RGB24MirrorRow = RGB24MirrorRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ RGB24MirrorRow = RGB24MirrorRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_RGB24MIRRORROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ RGB24MirrorRow = RGB24MirrorRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ RGB24MirrorRow = RGB24MirrorRow_SSSE3;
+ }
+ }
+#endif
+
+ // Mirror plane
+ for (y = 0; y < height; ++y) {
+ RGB24MirrorRow(src_rgb24, dst_rgb24, width);
+ src_rgb24 += src_stride_rgb24;
+ dst_rgb24 += dst_stride_rgb24;
+ }
+ return 0;
+}
+
+// Get a blender that optimized for the CPU and pixel count.
+// As there are 6 blenders to choose from, the caller should try to use
+// the same blend function for all pixels if possible.
+LIBYUV_API
+ARGBBlendRow GetARGBBlend() {
+ void (*ARGBBlendRow)(const uint8_t* src_argb, const uint8_t* src_argb1,
+ uint8_t* dst_argb, int width) = ARGBBlendRow_C;
+#if defined(HAS_ARGBBLENDROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBBlendRow = ARGBBlendRow_SSSE3;
+ return ARGBBlendRow;
+ }
+#endif
+#if defined(HAS_ARGBBLENDROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBBlendRow = ARGBBlendRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBBLENDROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBBlendRow = ARGBBlendRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBBLENDROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ ARGBBlendRow = ARGBBlendRow_LSX;
+ }
+#endif
+ return ARGBBlendRow;
+}
+
+// Alpha Blend 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBBlend(const uint8_t* src_argb0,
+ int src_stride_argb0,
+ const uint8_t* src_argb1,
+ int src_stride_argb1,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBBlendRow)(const uint8_t* src_argb, const uint8_t* src_argb1,
+ uint8_t* dst_argb, int width) = GetARGBBlend();
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+
+ for (y = 0; y < height; ++y) {
+ ARGBBlendRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Alpha Blend plane and store to destination.
+LIBYUV_API
+int BlendPlane(const uint8_t* src_y0,
+ int src_stride_y0,
+ const uint8_t* src_y1,
+ int src_stride_y1,
+ const uint8_t* alpha,
+ int alpha_stride,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ int y;
+ void (*BlendPlaneRow)(const uint8_t* src0, const uint8_t* src1,
+ const uint8_t* alpha, uint8_t* dst, int width) =
+ BlendPlaneRow_C;
+ if (!src_y0 || !src_y1 || !alpha || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+ // Coalesce rows for Y plane.
+ if (src_stride_y0 == width && src_stride_y1 == width &&
+ alpha_stride == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y0 = src_stride_y1 = alpha_stride = dst_stride_y = 0;
+ }
+
+#if defined(HAS_BLENDPLANEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ BlendPlaneRow = BlendPlaneRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_BLENDPLANEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ BlendPlaneRow = BlendPlaneRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ BlendPlaneRow = BlendPlaneRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ BlendPlaneRow(src_y0, src_y1, alpha, dst_y, width);
+ src_y0 += src_stride_y0;
+ src_y1 += src_stride_y1;
+ alpha += alpha_stride;
+ dst_y += dst_stride_y;
+ }
+ return 0;
+}
+
+#define MAXTWIDTH 2048
+// Alpha Blend YUV images and store to destination.
+LIBYUV_API
+int I420Blend(const uint8_t* src_y0,
+ int src_stride_y0,
+ const uint8_t* src_u0,
+ int src_stride_u0,
+ const uint8_t* src_v0,
+ int src_stride_v0,
+ const uint8_t* src_y1,
+ int src_stride_y1,
+ const uint8_t* src_u1,
+ int src_stride_u1,
+ const uint8_t* src_v1,
+ int src_stride_v1,
+ const uint8_t* alpha,
+ int alpha_stride,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height) {
+ int y;
+ // Half width/height for UV.
+ int halfwidth = (width + 1) >> 1;
+ void (*BlendPlaneRow)(const uint8_t* src0, const uint8_t* src1,
+ const uint8_t* alpha, uint8_t* dst, int width) =
+ BlendPlaneRow_C;
+ void (*ScaleRowDown2)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, int dst_width) = ScaleRowDown2Box_C;
+
+ if (!src_y0 || !src_u0 || !src_v0 || !src_y1 || !src_u1 || !src_v1 ||
+ !alpha || !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+
+ // Blend Y plane.
+ BlendPlane(src_y0, src_stride_y0, src_y1, src_stride_y1, alpha, alpha_stride,
+ dst_y, dst_stride_y, width, height);
+
+#if defined(HAS_BLENDPLANEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ BlendPlaneRow = BlendPlaneRow_Any_SSSE3;
+ if (IS_ALIGNED(halfwidth, 8)) {
+ BlendPlaneRow = BlendPlaneRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_BLENDPLANEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ BlendPlaneRow = BlendPlaneRow_Any_AVX2;
+ if (IS_ALIGNED(halfwidth, 32)) {
+ BlendPlaneRow = BlendPlaneRow_AVX2;
+ }
+ }
+#endif
+ if (!IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_C;
+ }
+#if defined(HAS_SCALEROWDOWN2_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_NEON;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_NEON;
+ if (IS_ALIGNED(halfwidth, 16)) {
+ ScaleRowDown2 = ScaleRowDown2Box_NEON;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_SSSE3;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_SSSE3;
+ if (IS_ALIGNED(halfwidth, 16)) {
+ ScaleRowDown2 = ScaleRowDown2Box_SSSE3;
+ }
+ }
+ }
+#endif
+#if defined(HAS_SCALEROWDOWN2_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Odd_AVX2;
+ if (IS_ALIGNED(width, 2)) {
+ ScaleRowDown2 = ScaleRowDown2Box_Any_AVX2;
+ if (IS_ALIGNED(halfwidth, 32)) {
+ ScaleRowDown2 = ScaleRowDown2Box_AVX2;
+ }
+ }
+ }
+#endif
+
+ // Row buffer for intermediate alpha pixels.
+ align_buffer_64(halfalpha, halfwidth);
+ for (y = 0; y < height; y += 2) {
+ // last row of odd height image use 1 row of alpha instead of 2.
+ if (y == (height - 1)) {
+ alpha_stride = 0;
+ }
+ // Subsample 2 rows of UV to half width and half height.
+ ScaleRowDown2(alpha, alpha_stride, halfalpha, halfwidth);
+ alpha += alpha_stride * 2;
+ BlendPlaneRow(src_u0, src_u1, halfalpha, dst_u, halfwidth);
+ BlendPlaneRow(src_v0, src_v1, halfalpha, dst_v, halfwidth);
+ src_u0 += src_stride_u0;
+ src_u1 += src_stride_u1;
+ dst_u += dst_stride_u;
+ src_v0 += src_stride_v0;
+ src_v1 += src_stride_v1;
+ dst_v += dst_stride_v;
+ }
+ free_aligned_buffer_64(halfalpha);
+ return 0;
+}
+
+// Multiply 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBMultiply(const uint8_t* src_argb0,
+ int src_stride_argb0,
+ const uint8_t* src_argb1,
+ int src_stride_argb1,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBMultiplyRow)(const uint8_t* src0, const uint8_t* src1,
+ uint8_t* dst, int width) = ARGBMultiplyRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBMULTIPLYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_MSA;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBMULTIPLYROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_Any_LASX;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBMultiplyRow = ARGBMultiplyRow_LASX;
+ }
+ }
+#endif
+
+ // Multiply plane
+ for (y = 0; y < height; ++y) {
+ ARGBMultiplyRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Add 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBAdd(const uint8_t* src_argb0,
+ int src_stride_argb0,
+ const uint8_t* src_argb1,
+ int src_stride_argb1,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBAddRow)(const uint8_t* src0, const uint8_t* src1, uint8_t* dst,
+ int width) = ARGBAddRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBADDROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBAddRow = ARGBAddRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBADDROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBAddRow = ARGBAddRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBAddRow = ARGBAddRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBAddRow = ARGBAddRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBAddRow = ARGBAddRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBAddRow = ARGBAddRow_Any_MSA;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBADDROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBAddRow = ARGBAddRow_Any_LASX;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAddRow = ARGBAddRow_LASX;
+ }
+ }
+#endif
+
+ // Add plane
+ for (y = 0; y < height; ++y) {
+ ARGBAddRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Subtract 2 ARGB images and store to destination.
+LIBYUV_API
+int ARGBSubtract(const uint8_t* src_argb0,
+ int src_stride_argb0,
+ const uint8_t* src_argb1,
+ int src_stride_argb1,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBSubtractRow)(const uint8_t* src0, const uint8_t* src1,
+ uint8_t* dst, int width) = ARGBSubtractRow_C;
+ if (!src_argb0 || !src_argb1 || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb0 == width * 4 && src_stride_argb1 == width * 4 &&
+ dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb0 = src_stride_argb1 = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSUBTRACTROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSubtractRow = ARGBSubtractRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_MSA;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSUBTRACTROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBSubtractRow = ARGBSubtractRow_Any_LASX;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBSubtractRow = ARGBSubtractRow_LASX;
+ }
+ }
+#endif
+
+ // Subtract plane
+ for (y = 0; y < height; ++y) {
+ ARGBSubtractRow(src_argb0, src_argb1, dst_argb, width);
+ src_argb0 += src_stride_argb0;
+ src_argb1 += src_stride_argb1;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert RAW to RGB24.
+LIBYUV_API
+int RAWToRGB24(const uint8_t* src_raw,
+ int src_stride_raw,
+ uint8_t* dst_rgb24,
+ int dst_stride_rgb24,
+ int width,
+ int height) {
+ int y;
+ void (*RAWToRGB24Row)(const uint8_t* src_rgb, uint8_t* dst_rgb24, int width) =
+ RAWToRGB24Row_C;
+ if (!src_raw || !dst_rgb24 || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_raw = src_raw + (height - 1) * src_stride_raw;
+ src_stride_raw = -src_stride_raw;
+ }
+ // Coalesce rows.
+ if (src_stride_raw == width * 3 && dst_stride_rgb24 == width * 3) {
+ width *= height;
+ height = 1;
+ src_stride_raw = dst_stride_rgb24 = 0;
+ }
+#if defined(HAS_RAWTORGB24ROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ RAWToRGB24Row = RAWToRGB24Row_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_RAWTORGB24ROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ RAWToRGB24Row = RAWToRGB24Row_NEON;
+ }
+ }
+#endif
+#if defined(HAS_RAWTORGB24ROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ RAWToRGB24Row = RAWToRGB24Row_MSA;
+ }
+ }
+#endif
+#if defined(HAS_RAWTORGB24ROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ RAWToRGB24Row = RAWToRGB24Row_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ RAWToRGB24Row = RAWToRGB24Row_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ RAWToRGB24Row(src_raw, dst_rgb24, width);
+ src_raw += src_stride_raw;
+ dst_rgb24 += dst_stride_rgb24;
+ }
+ return 0;
+}
+
+// TODO(fbarchard): Consider uint8_t value
+LIBYUV_API
+void SetPlane(uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height,
+ uint32_t value) {
+ int y;
+ void (*SetRow)(uint8_t* dst, uint8_t value, int width) = SetRow_C;
+
+ if (width <= 0 || height == 0) {
+ return;
+ }
+ if (height < 0) {
+ height = -height;
+ dst_y = dst_y + (height - 1) * dst_stride_y;
+ dst_stride_y = -dst_stride_y;
+ }
+ // Coalesce rows.
+ if (dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ dst_stride_y = 0;
+ }
+#if defined(HAS_SETROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SetRow = SetRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SetRow = SetRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SETROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ SetRow = SetRow_Any_X86;
+ if (IS_ALIGNED(width, 4)) {
+ SetRow = SetRow_X86;
+ }
+ }
+#endif
+#if defined(HAS_SETROW_ERMS)
+ if (TestCpuFlag(kCpuHasERMS)) {
+ SetRow = SetRow_ERMS;
+ }
+#endif
+#if defined(HAS_SETROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 16)) {
+ SetRow = SetRow_MSA;
+ }
+#endif
+#if defined(HAS_SETROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SetRow = SetRow_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ SetRow = SetRow_LSX;
+ }
+ }
+#endif
+
+ // Set plane
+ for (y = 0; y < height; ++y) {
+ SetRow(dst_y, (uint8_t)value, width);
+ dst_y += dst_stride_y;
+ }
+}
+
+// Draw a rectangle into I420
+LIBYUV_API
+int I420Rect(uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int x,
+ int y,
+ int width,
+ int height,
+ int value_y,
+ int value_u,
+ int value_v) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+ uint8_t* start_y = dst_y + y * dst_stride_y + x;
+ uint8_t* start_u = dst_u + (y / 2) * dst_stride_u + (x / 2);
+ uint8_t* start_v = dst_v + (y / 2) * dst_stride_v + (x / 2);
+
+ if (!dst_y || !dst_u || !dst_v || width <= 0 || height == 0 || x < 0 ||
+ y < 0 || value_y < 0 || value_y > 255 || value_u < 0 || value_u > 255 ||
+ value_v < 0 || value_v > 255) {
+ return -1;
+ }
+
+ SetPlane(start_y, dst_stride_y, width, height, value_y);
+ SetPlane(start_u, dst_stride_u, halfwidth, halfheight, value_u);
+ SetPlane(start_v, dst_stride_v, halfwidth, halfheight, value_v);
+ return 0;
+}
+
+// Draw a rectangle into ARGB
+LIBYUV_API
+int ARGBRect(uint8_t* dst_argb,
+ int dst_stride_argb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height,
+ uint32_t value) {
+ int y;
+ void (*ARGBSetRow)(uint8_t* dst_argb, uint32_t value, int width) =
+ ARGBSetRow_C;
+ if (!dst_argb || width <= 0 || height == 0 || dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ dst_argb = dst_argb + (height - 1) * dst_stride_argb;
+ dst_stride_argb = -dst_stride_argb;
+ }
+ dst_argb += dst_y * dst_stride_argb + dst_x * 4;
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+
+#if defined(HAS_ARGBSETROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBSetRow = ARGBSetRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSetRow = ARGBSetRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSETROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ ARGBSetRow = ARGBSetRow_X86;
+ }
+#endif
+#if defined(HAS_ARGBSETROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBSetRow = ARGBSetRow_Any_MSA;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSetRow = ARGBSetRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSETROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ ARGBSetRow = ARGBSetRow_Any_LSX;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBSetRow = ARGBSetRow_LSX;
+ }
+ }
+#endif
+
+ // Set plane
+ for (y = 0; y < height; ++y) {
+ ARGBSetRow(dst_argb, value, width);
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert unattentuated ARGB to preattenuated ARGB.
+// An unattenutated ARGB alpha blend uses the formula
+// p = a * f + (1 - a) * b
+// where
+// p is output pixel
+// f is foreground pixel
+// b is background pixel
+// a is alpha value from foreground pixel
+// An preattenutated ARGB alpha blend uses the formula
+// p = f + (1 - a) * b
+// where
+// f is foreground pixel premultiplied by alpha
+
+LIBYUV_API
+int ARGBAttenuate(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBAttenuateRow)(const uint8_t* src_argb, uint8_t* dst_argb,
+ int width) = ARGBAttenuateRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBATTENUATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_MSA;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBATTENUATEROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_Any_LASX;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBAttenuateRow = ARGBAttenuateRow_LASX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBAttenuateRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert preattentuated ARGB to unattenuated ARGB.
+LIBYUV_API
+int ARGBUnattenuate(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBUnattenuateRow)(const uint8_t* src_argb, uint8_t* dst_argb,
+ int width) = ARGBUnattenuateRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBUNATTENUATEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_Any_SSE2;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBUNATTENUATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBUnattenuateRow = ARGBUnattenuateRow_AVX2;
+ }
+ }
+#endif
+ // TODO(fbarchard): Neon version.
+
+ for (y = 0; y < height; ++y) {
+ ARGBUnattenuateRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert ARGB to Grayed ARGB.
+LIBYUV_API
+int ARGBGrayTo(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBGrayRow)(const uint8_t* src_argb, uint8_t* dst_argb, int width) =
+ ARGBGrayRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBGRAYROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX) && IS_ALIGNED(width, 16)) {
+ ARGBGrayRow = ARGBGrayRow_LASX;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBGrayRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Make a rectangle of ARGB gray scale.
+LIBYUV_API
+int ARGBGray(uint8_t* dst_argb,
+ int dst_stride_argb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBGrayRow)(const uint8_t* src_argb, uint8_t* dst_argb, int width) =
+ ARGBGrayRow_C;
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBGRAYROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) {
+ ARGBGrayRow = ARGBGrayRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBGRAYROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX) && IS_ALIGNED(width, 16)) {
+ ARGBGrayRow = ARGBGrayRow_LASX;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBGrayRow(dst, dst, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Make a rectangle of ARGB Sepia tone.
+LIBYUV_API
+int ARGBSepia(uint8_t* dst_argb,
+ int dst_stride_argb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBSepiaRow)(uint8_t* dst_argb, int width) = ARGBSepiaRow_C;
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSEPIAROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBSepiaRow = ARGBSepiaRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBSEPIAROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBSepiaRow = ARGBSepiaRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBSEPIAROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) {
+ ARGBSepiaRow = ARGBSepiaRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBSEPIAROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX) && IS_ALIGNED(width, 16)) {
+ ARGBSepiaRow = ARGBSepiaRow_LASX;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBSepiaRow(dst, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a 4x4 matrix to each ARGB pixel.
+// Note: Normally for shading, but can be used to swizzle or invert.
+LIBYUV_API
+int ARGBColorMatrix(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ const int8_t* matrix_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBColorMatrixRow)(const uint8_t* src_argb, uint8_t* dst_argb,
+ const int8_t* matrix_argb, int width) =
+ ARGBColorMatrixRow_C;
+ if (!src_argb || !dst_argb || !matrix_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOLORMATRIXROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_SSSE3;
+ }
+#endif
+#if defined(HAS_ARGBCOLORMATRIXROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBCOLORMATRIXROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBCOLORMATRIXROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX) && IS_ALIGNED(width, 8)) {
+ ARGBColorMatrixRow = ARGBColorMatrixRow_LSX;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBColorMatrixRow(src_argb, dst_argb, matrix_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a 4x3 matrix to each ARGB pixel.
+// Deprecated.
+LIBYUV_API
+int RGBColorMatrix(uint8_t* dst_argb,
+ int dst_stride_argb,
+ const int8_t* matrix_rgb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ SIMD_ALIGNED(int8_t matrix_argb[16]);
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !matrix_rgb || width <= 0 || height <= 0 || dst_x < 0 ||
+ dst_y < 0) {
+ return -1;
+ }
+
+ // Convert 4x3 7 bit matrix to 4x4 6 bit matrix.
+ matrix_argb[0] = matrix_rgb[0] / 2;
+ matrix_argb[1] = matrix_rgb[1] / 2;
+ matrix_argb[2] = matrix_rgb[2] / 2;
+ matrix_argb[3] = matrix_rgb[3] / 2;
+ matrix_argb[4] = matrix_rgb[4] / 2;
+ matrix_argb[5] = matrix_rgb[5] / 2;
+ matrix_argb[6] = matrix_rgb[6] / 2;
+ matrix_argb[7] = matrix_rgb[7] / 2;
+ matrix_argb[8] = matrix_rgb[8] / 2;
+ matrix_argb[9] = matrix_rgb[9] / 2;
+ matrix_argb[10] = matrix_rgb[10] / 2;
+ matrix_argb[11] = matrix_rgb[11] / 2;
+ matrix_argb[14] = matrix_argb[13] = matrix_argb[12] = 0;
+ matrix_argb[15] = 64; // 1.0
+
+ return ARGBColorMatrix((const uint8_t*)(dst), dst_stride_argb, dst,
+ dst_stride_argb, &matrix_argb[0], width, height);
+}
+
+// Apply a color table each ARGB pixel.
+// Table contains 256 ARGB values.
+LIBYUV_API
+int ARGBColorTable(uint8_t* dst_argb,
+ int dst_stride_argb,
+ const uint8_t* table_argb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBColorTableRow)(uint8_t* dst_argb, const uint8_t* table_argb,
+ int width) = ARGBColorTableRow_C;
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 ||
+ dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOLORTABLEROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ ARGBColorTableRow = ARGBColorTableRow_X86;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBColorTableRow(dst, table_argb, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Apply a color table each ARGB pixel but preserve destination alpha.
+// Table contains 256 ARGB values.
+LIBYUV_API
+int RGBColorTable(uint8_t* dst_argb,
+ int dst_stride_argb,
+ const uint8_t* table_argb,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ int y;
+ void (*RGBColorTableRow)(uint8_t* dst_argb, const uint8_t* table_argb,
+ int width) = RGBColorTableRow_C;
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || !table_argb || width <= 0 || height <= 0 || dst_x < 0 ||
+ dst_y < 0) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_RGBCOLORTABLEROW_X86)
+ if (TestCpuFlag(kCpuHasX86)) {
+ RGBColorTableRow = RGBColorTableRow_X86;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ RGBColorTableRow(dst, table_argb, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// ARGBQuantize is used to posterize art.
+// e.g. rgb / qvalue * qvalue + qvalue / 2
+// But the low levels implement efficiently with 3 parameters, and could be
+// used for other high level operations.
+// dst_argb[0] = (b * scale >> 16) * interval_size + interval_offset;
+// where scale is 1 / interval_size as a fixed point value.
+// The divide is replaces with a multiply by reciprocal fixed point multiply.
+// Caveat - although SSE2 saturates, the C function does not and should be used
+// with care if doing anything but quantization.
+LIBYUV_API
+int ARGBQuantize(uint8_t* dst_argb,
+ int dst_stride_argb,
+ int scale,
+ int interval_size,
+ int interval_offset,
+ int dst_x,
+ int dst_y,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBQuantizeRow)(uint8_t* dst_argb, int scale, int interval_size,
+ int interval_offset, int width) = ARGBQuantizeRow_C;
+ uint8_t* dst = dst_argb + dst_y * dst_stride_argb + dst_x * 4;
+ if (!dst_argb || width <= 0 || height <= 0 || dst_x < 0 || dst_y < 0 ||
+ interval_size < 1 || interval_size > 255) {
+ return -1;
+ }
+ // Coalesce rows.
+ if (dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBQUANTIZEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBQUANTIZEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBQUANTIZEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 8)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBQUANTIZEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX) && IS_ALIGNED(width, 8)) {
+ ARGBQuantizeRow = ARGBQuantizeRow_LSX;
+ }
+#endif
+ for (y = 0; y < height; ++y) {
+ ARGBQuantizeRow(dst, scale, interval_size, interval_offset, width);
+ dst += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Computes table of cumulative sum for image where the value is the sum
+// of all values above and to the left of the entry. Used by ARGBBlur.
+LIBYUV_API
+int ARGBComputeCumulativeSum(const uint8_t* src_argb,
+ int src_stride_argb,
+ int32_t* dst_cumsum,
+ int dst_stride32_cumsum,
+ int width,
+ int height) {
+ int y;
+ void (*ComputeCumulativeSumRow)(const uint8_t* row, int32_t* cumsum,
+ const int32_t* previous_cumsum, int width) =
+ ComputeCumulativeSumRow_C;
+ int32_t* previous_cumsum = dst_cumsum;
+ if (!dst_cumsum || !src_argb || width <= 0 || height <= 0) {
+ return -1;
+ }
+#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
+ }
+#endif
+
+ memset(dst_cumsum, 0, width * sizeof(dst_cumsum[0]) * 4); // 4 int per pixel.
+ for (y = 0; y < height; ++y) {
+ ComputeCumulativeSumRow(src_argb, dst_cumsum, previous_cumsum, width);
+ previous_cumsum = dst_cumsum;
+ dst_cumsum += dst_stride32_cumsum;
+ src_argb += src_stride_argb;
+ }
+ return 0;
+}
+
+// Blur ARGB image.
+// Caller should allocate CumulativeSum table of width * height * 16 bytes
+// aligned to 16 byte boundary. height can be radius * 2 + 2 to save memory
+// as the buffer is treated as circular.
+LIBYUV_API
+int ARGBBlur(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int32_t* dst_cumsum,
+ int dst_stride32_cumsum,
+ int width,
+ int height,
+ int radius) {
+ int y;
+ void (*ComputeCumulativeSumRow)(const uint8_t* row, int32_t* cumsum,
+ const int32_t* previous_cumsum, int width) =
+ ComputeCumulativeSumRow_C;
+ void (*CumulativeSumToAverageRow)(
+ const int32_t* topleft, const int32_t* botleft, int width, int area,
+ uint8_t* dst, int count) = CumulativeSumToAverageRow_C;
+ int32_t* cumsum_bot_row;
+ int32_t* max_cumsum_bot_row;
+ int32_t* cumsum_top_row;
+
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ if (radius > height) {
+ radius = height;
+ }
+ if (radius > (width / 2 - 1)) {
+ radius = width / 2 - 1;
+ }
+ if (radius <= 0 || height <= 1) {
+ return -1;
+ }
+#if defined(HAS_CUMULATIVESUMTOAVERAGEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ComputeCumulativeSumRow = ComputeCumulativeSumRow_SSE2;
+ CumulativeSumToAverageRow = CumulativeSumToAverageRow_SSE2;
+ }
+#endif
+ // Compute enough CumulativeSum for first row to be blurred. After this
+ // one row of CumulativeSum is updated at a time.
+ ARGBComputeCumulativeSum(src_argb, src_stride_argb, dst_cumsum,
+ dst_stride32_cumsum, width, radius);
+
+ src_argb = src_argb + radius * src_stride_argb;
+ cumsum_bot_row = &dst_cumsum[(radius - 1) * dst_stride32_cumsum];
+
+ max_cumsum_bot_row = &dst_cumsum[(radius * 2 + 2) * dst_stride32_cumsum];
+ cumsum_top_row = &dst_cumsum[0];
+
+ for (y = 0; y < height; ++y) {
+ int top_y = ((y - radius - 1) >= 0) ? (y - radius - 1) : 0;
+ int bot_y = ((y + radius) < height) ? (y + radius) : (height - 1);
+ int area = radius * (bot_y - top_y);
+ int boxwidth = radius * 4;
+ int x;
+ int n;
+
+ // Increment cumsum_top_row pointer with circular buffer wrap around.
+ if (top_y) {
+ cumsum_top_row += dst_stride32_cumsum;
+ if (cumsum_top_row >= max_cumsum_bot_row) {
+ cumsum_top_row = dst_cumsum;
+ }
+ }
+ // Increment cumsum_bot_row pointer with circular buffer wrap around and
+ // then fill in a row of CumulativeSum.
+ if ((y + radius) < height) {
+ const int32_t* prev_cumsum_bot_row = cumsum_bot_row;
+ cumsum_bot_row += dst_stride32_cumsum;
+ if (cumsum_bot_row >= max_cumsum_bot_row) {
+ cumsum_bot_row = dst_cumsum;
+ }
+ ComputeCumulativeSumRow(src_argb, cumsum_bot_row, prev_cumsum_bot_row,
+ width);
+ src_argb += src_stride_argb;
+ }
+
+ // Left clipped.
+ for (x = 0; x < radius + 1; ++x) {
+ CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area,
+ &dst_argb[x * 4], 1);
+ area += (bot_y - top_y);
+ boxwidth += 4;
+ }
+
+ // Middle unclipped.
+ n = (width - 1) - radius - x + 1;
+ CumulativeSumToAverageRow(cumsum_top_row, cumsum_bot_row, boxwidth, area,
+ &dst_argb[x * 4], n);
+
+ // Right clipped.
+ for (x += n; x <= width - 1; ++x) {
+ area -= (bot_y - top_y);
+ boxwidth -= 4;
+ CumulativeSumToAverageRow(cumsum_top_row + (x - radius - 1) * 4,
+ cumsum_bot_row + (x - radius - 1) * 4, boxwidth,
+ area, &dst_argb[x * 4], 1);
+ }
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Multiply ARGB image by a specified ARGB value.
+LIBYUV_API
+int ARGBShade(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ uint32_t value) {
+ int y;
+ void (*ARGBShadeRow)(const uint8_t* src_argb, uint8_t* dst_argb, int width,
+ uint32_t value) = ARGBShadeRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0 || value == 0u) {
+ return -1;
+ }
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSHADEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 4)) {
+ ARGBShadeRow = ARGBShadeRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBSHADEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ ARGBShadeRow = ARGBShadeRow_NEON;
+ }
+#endif
+#if defined(HAS_ARGBSHADEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 4)) {
+ ARGBShadeRow = ARGBShadeRow_MSA;
+ }
+#endif
+#if defined(HAS_ARGBSHADEROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX) && IS_ALIGNED(width, 8)) {
+ ARGBShadeRow = ARGBShadeRow_LASX;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBShadeRow(src_argb, dst_argb, width, value);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Interpolate 2 planes by specified amount (0 to 255).
+LIBYUV_API
+int InterpolatePlane(const uint8_t* src0,
+ int src_stride0,
+ const uint8_t* src1,
+ int src_stride1,
+ uint8_t* dst,
+ int dst_stride,
+ int width,
+ int height,
+ int interpolation) {
+ int y;
+ void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ if (!src0 || !src1 || !dst || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst = dst + (height - 1) * dst_stride;
+ dst_stride = -dst_stride;
+ }
+ // Coalesce rows.
+ if (src_stride0 == width && src_stride1 == width && dst_stride == width) {
+ width *= height;
+ height = 1;
+ src_stride0 = src_stride1 = dst_stride = 0;
+ }
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow = InterpolateRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ InterpolateRow = InterpolateRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ InterpolateRow(dst, src0, src1 - src0, width, interpolation);
+ src0 += src_stride0;
+ src1 += src_stride1;
+ dst += dst_stride;
+ }
+ return 0;
+}
+
+// Interpolate 2 planes by specified amount (0 to 255).
+LIBYUV_API
+int InterpolatePlane_16(const uint16_t* src0,
+ int src_stride0,
+ const uint16_t* src1,
+ int src_stride1,
+ uint16_t* dst,
+ int dst_stride,
+ int width,
+ int height,
+ int interpolation) {
+ int y;
+ void (*InterpolateRow_16)(uint16_t* dst_ptr, const uint16_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_16_C;
+ if (!src0 || !src1 || !dst || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ dst = dst + (height - 1) * dst_stride;
+ dst_stride = -dst_stride;
+ }
+ // Coalesce rows.
+ if (src_stride0 == width && src_stride1 == width && dst_stride == width) {
+ width *= height;
+ height = 1;
+ src_stride0 = src_stride1 = dst_stride = 0;
+ }
+#if defined(HAS_INTERPOLATEROW_16_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow_16 = InterpolateRow_16_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow_16 = InterpolateRow_16_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow_16 = InterpolateRow_16_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow_16 = InterpolateRow_16_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow_16 = InterpolateRow_16_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ InterpolateRow_16 = InterpolateRow_16_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow_16 = InterpolateRow_16_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow_16 = InterpolateRow_16_MSA;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_16_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ InterpolateRow_16 = InterpolateRow_16_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow_16 = InterpolateRow_16_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ InterpolateRow_16(dst, src0, src1 - src0, width, interpolation);
+ src0 += src_stride0;
+ src1 += src_stride1;
+ dst += dst_stride;
+ }
+ return 0;
+}
+
+// Interpolate 2 ARGB images by specified amount (0 to 255).
+LIBYUV_API
+int ARGBInterpolate(const uint8_t* src_argb0,
+ int src_stride_argb0,
+ const uint8_t* src_argb1,
+ int src_stride_argb1,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ int interpolation) {
+ return InterpolatePlane(src_argb0, src_stride_argb0, src_argb1,
+ src_stride_argb1, dst_argb, dst_stride_argb,
+ width * 4, height, interpolation);
+}
+
+// Interpolate 2 YUV images by specified amount (0 to 255).
+LIBYUV_API
+int I420Interpolate(const uint8_t* src0_y,
+ int src0_stride_y,
+ const uint8_t* src0_u,
+ int src0_stride_u,
+ const uint8_t* src0_v,
+ int src0_stride_v,
+ const uint8_t* src1_y,
+ int src1_stride_y,
+ const uint8_t* src1_u,
+ int src1_stride_u,
+ const uint8_t* src1_v,
+ int src1_stride_v,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_u,
+ int dst_stride_u,
+ uint8_t* dst_v,
+ int dst_stride_v,
+ int width,
+ int height,
+ int interpolation) {
+ int halfwidth = (width + 1) >> 1;
+ int halfheight = (height + 1) >> 1;
+
+ if (!src0_y || !src0_u || !src0_v || !src1_y || !src1_u || !src1_v ||
+ !dst_y || !dst_u || !dst_v || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ InterpolatePlane(src0_y, src0_stride_y, src1_y, src1_stride_y, dst_y,
+ dst_stride_y, width, height, interpolation);
+ InterpolatePlane(src0_u, src0_stride_u, src1_u, src1_stride_u, dst_u,
+ dst_stride_u, halfwidth, halfheight, interpolation);
+ InterpolatePlane(src0_v, src0_stride_v, src1_v, src1_stride_v, dst_v,
+ dst_stride_v, halfwidth, halfheight, interpolation);
+ return 0;
+}
+
+// Shuffle ARGB channel order. e.g. BGRA to ARGB.
+LIBYUV_API
+int ARGBShuffle(const uint8_t* src_bgra,
+ int src_stride_bgra,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ const uint8_t* shuffler,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBShuffleRow)(const uint8_t* src_bgra, uint8_t* dst_argb,
+ const uint8_t* shuffler, int width) = ARGBShuffleRow_C;
+ if (!src_bgra || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_bgra = src_bgra + (height - 1) * src_stride_bgra;
+ src_stride_bgra = -src_stride_bgra;
+ }
+ // Coalesce rows.
+ if (src_stride_bgra == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_bgra = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBSHUFFLEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBShuffleRow = ARGBShuffleRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBShuffleRow = ARGBShuffleRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ ARGBShuffleRow = ARGBShuffleRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_MSA;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBShuffleRow = ARGBShuffleRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBShuffleRow = ARGBShuffleRow_Any_LASX;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBShuffleRow = ARGBShuffleRow_LASX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBShuffleRow(src_bgra, dst_argb, shuffler, width);
+ src_bgra += src_stride_bgra;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Shuffle AR64 channel order. e.g. AR64 to AB64.
+LIBYUV_API
+int AR64Shuffle(const uint16_t* src_ar64,
+ int src_stride_ar64,
+ uint16_t* dst_ar64,
+ int dst_stride_ar64,
+ const uint8_t* shuffler,
+ int width,
+ int height) {
+ int y;
+ void (*AR64ShuffleRow)(const uint8_t* src_ar64, uint8_t* dst_ar64,
+ const uint8_t* shuffler, int width) = AR64ShuffleRow_C;
+ if (!src_ar64 || !dst_ar64 || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_ar64 = src_ar64 + (height - 1) * src_stride_ar64;
+ src_stride_ar64 = -src_stride_ar64;
+ }
+ // Coalesce rows.
+ if (src_stride_ar64 == width * 4 && dst_stride_ar64 == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_ar64 = dst_stride_ar64 = 0;
+ }
+ // Assembly versions can be reused if it's implemented with shuffle.
+#if defined(HAS_ARGBSHUFFLEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ AR64ShuffleRow = ARGBShuffleRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 8)) {
+ AR64ShuffleRow = ARGBShuffleRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ AR64ShuffleRow = ARGBShuffleRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ AR64ShuffleRow = ARGBShuffleRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBSHUFFLEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ AR64ShuffleRow = ARGBShuffleRow_Any_NEON;
+ if (IS_ALIGNED(width, 4)) {
+ AR64ShuffleRow = ARGBShuffleRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ AR64ShuffleRow((uint8_t*)(src_ar64), (uint8_t*)(dst_ar64), shuffler,
+ width * 2);
+ src_ar64 += src_stride_ar64;
+ dst_ar64 += dst_stride_ar64;
+ }
+ return 0;
+}
+
+// Gauss blur a float plane using Gaussian 5x5 filter with
+// coefficients of 1, 4, 6, 4, 1.
+// Each destination pixel is a blur of the 5x5
+// pixels from the source.
+// Source edges are clamped.
+// Edge is 2 pixels on each side, and interior is multiple of 4.
+LIBYUV_API
+int GaussPlane_F32(const float* src,
+ int src_stride,
+ float* dst,
+ int dst_stride,
+ int width,
+ int height) {
+ int y;
+ void (*GaussCol_F32)(const float* src0, const float* src1, const float* src2,
+ const float* src3, const float* src4, float* dst,
+ int width) = GaussCol_F32_C;
+ void (*GaussRow_F32)(const float* src, float* dst, int width) =
+ GaussRow_F32_C;
+ if (!src || !dst || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src = src + (height - 1) * src_stride;
+ src_stride = -src_stride;
+ }
+
+#if defined(HAS_GAUSSCOL_F32_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ GaussCol_F32 = GaussCol_F32_NEON;
+ }
+#endif
+#if defined(HAS_GAUSSROW_F32_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 8)) {
+ GaussRow_F32 = GaussRow_F32_NEON;
+ }
+#endif
+ {
+ // 2 pixels on each side, but aligned out to 16 bytes.
+ align_buffer_64(rowbuf, (4 + width + 4) * 4);
+ memset(rowbuf, 0, 16);
+ memset(rowbuf + (4 + width) * 4, 0, 16);
+ float* row = (float*)(rowbuf + 16);
+ const float* src0 = src;
+ const float* src1 = src;
+ const float* src2 = src;
+ const float* src3 = src2 + ((height > 1) ? src_stride : 0);
+ const float* src4 = src3 + ((height > 2) ? src_stride : 0);
+
+ for (y = 0; y < height; ++y) {
+ GaussCol_F32(src0, src1, src2, src3, src4, row, width);
+
+ // Extrude edge by 2 floats
+ row[-2] = row[-1] = row[0];
+ row[width + 1] = row[width] = row[width - 1];
+
+ GaussRow_F32(row - 2, dst, width);
+
+ src0 = src1;
+ src1 = src2;
+ src2 = src3;
+ src3 = src4;
+ if ((y + 2) < (height - 1)) {
+ src4 += src_stride;
+ }
+ dst += dst_stride;
+ }
+ free_aligned_buffer_64(rowbuf);
+ }
+ return 0;
+}
+
+// Sobel ARGB effect.
+static int ARGBSobelize(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height,
+ void (*SobelRow)(const uint8_t* src_sobelx,
+ const uint8_t* src_sobely,
+ uint8_t* dst,
+ int width)) {
+ int y;
+ void (*ARGBToYJRow)(const uint8_t* src_argb, uint8_t* dst_g, int width) =
+ ARGBToYJRow_C;
+ void (*SobelYRow)(const uint8_t* src_y0, const uint8_t* src_y1,
+ uint8_t* dst_sobely, int width) = SobelYRow_C;
+ void (*SobelXRow)(const uint8_t* src_y0, const uint8_t* src_y1,
+ const uint8_t* src_y2, uint8_t* dst_sobely, int width) =
+ SobelXRow_C;
+ const int kEdge = 16; // Extra pixels at start of row for extrude/align.
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+
+#if defined(HAS_ARGBTOYJROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ARGBToYJRow = ARGBToYJRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBToYJRow = ARGBToYJRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBToYJRow = ARGBToYJRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ ARGBToYJRow = ARGBToYJRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBToYJRow = ARGBToYJRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBToYJRow = ARGBToYJRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBToYJRow = ARGBToYJRow_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBToYJRow = ARGBToYJRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ ARGBToYJRow = ARGBToYJRow_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBToYJRow = ARGBToYJRow_LSX;
+ }
+ }
+#endif
+#if defined(HAS_ARGBTOYJROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ ARGBToYJRow = ARGBToYJRow_Any_LASX;
+ if (IS_ALIGNED(width, 32)) {
+ ARGBToYJRow = ARGBToYJRow_LASX;
+ }
+ }
+#endif
+
+#if defined(HAS_SOBELYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelYRow = SobelYRow_SSE2;
+ }
+#endif
+#if defined(HAS_SOBELYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelYRow = SobelYRow_NEON;
+ }
+#endif
+#if defined(HAS_SOBELYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SobelYRow = SobelYRow_MSA;
+ }
+#endif
+#if defined(HAS_SOBELXROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelXRow = SobelXRow_SSE2;
+ }
+#endif
+#if defined(HAS_SOBELXROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelXRow = SobelXRow_NEON;
+ }
+#endif
+#if defined(HAS_SOBELXROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SobelXRow = SobelXRow_MSA;
+ }
+#endif
+ {
+ // 3 rows with edges before/after.
+ const int row_size = (width + kEdge + 31) & ~31;
+ align_buffer_64(rows, row_size * 2 + (kEdge + row_size * 3 + kEdge));
+ uint8_t* row_sobelx = rows;
+ uint8_t* row_sobely = rows + row_size;
+ uint8_t* row_y = rows + row_size * 2;
+
+ // Convert first row.
+ uint8_t* row_y0 = row_y + kEdge;
+ uint8_t* row_y1 = row_y0 + row_size;
+ uint8_t* row_y2 = row_y1 + row_size;
+ ARGBToYJRow(src_argb, row_y0, width);
+ row_y0[-1] = row_y0[0];
+ memset(row_y0 + width, row_y0[width - 1], 16); // Extrude 16 for valgrind.
+ ARGBToYJRow(src_argb, row_y1, width);
+ row_y1[-1] = row_y1[0];
+ memset(row_y1 + width, row_y1[width - 1], 16);
+ memset(row_y2 + width, 0, 16);
+
+ for (y = 0; y < height; ++y) {
+ // Convert next row of ARGB to G.
+ if (y < (height - 1)) {
+ src_argb += src_stride_argb;
+ }
+ ARGBToYJRow(src_argb, row_y2, width);
+ row_y2[-1] = row_y2[0];
+ row_y2[width] = row_y2[width - 1];
+
+ SobelXRow(row_y0 - 1, row_y1 - 1, row_y2 - 1, row_sobelx, width);
+ SobelYRow(row_y0 - 1, row_y2 - 1, row_sobely, width);
+ SobelRow(row_sobelx, row_sobely, dst_argb, width);
+
+ // Cycle thru circular queue of 3 row_y buffers.
+ {
+ uint8_t* row_yt = row_y0;
+ row_y0 = row_y1;
+ row_y1 = row_y2;
+ row_y2 = row_yt;
+ }
+
+ dst_argb += dst_stride_argb;
+ }
+ free_aligned_buffer_64(rows);
+ }
+ return 0;
+}
+
+// Sobel ARGB effect.
+LIBYUV_API
+int ARGBSobel(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ void (*SobelRow)(const uint8_t* src_sobelx, const uint8_t* src_sobely,
+ uint8_t* dst_argb, int width) = SobelRow_C;
+#if defined(HAS_SOBELROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelRow = SobelRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelRow = SobelRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelRow = SobelRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ SobelRow = SobelRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SOBELROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SobelRow = SobelRow_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ SobelRow = SobelRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SOBELROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SobelRow = SobelRow_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ SobelRow = SobelRow_LSX;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
+ width, height, SobelRow);
+}
+
+// Sobel ARGB effect with planar output.
+LIBYUV_API
+int ARGBSobelToPlane(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ int width,
+ int height) {
+ void (*SobelToPlaneRow)(const uint8_t* src_sobelx, const uint8_t* src_sobely,
+ uint8_t* dst_, int width) = SobelToPlaneRow_C;
+#if defined(HAS_SOBELTOPLANEROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelToPlaneRow = SobelToPlaneRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELTOPLANEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SobelToPlaneRow = SobelToPlaneRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SOBELTOPLANEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ SobelToPlaneRow = SobelToPlaneRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SOBELTOPLANEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SobelToPlaneRow = SobelToPlaneRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ SobelToPlaneRow = SobelToPlaneRow_LSX;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_y, dst_stride_y, width,
+ height, SobelToPlaneRow);
+}
+
+// SobelXY ARGB effect.
+// Similar to Sobel, but also stores Sobel X in R and Sobel Y in B. G = Sobel.
+LIBYUV_API
+int ARGBSobelXY(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ void (*SobelXYRow)(const uint8_t* src_sobelx, const uint8_t* src_sobely,
+ uint8_t* dst_argb, int width) = SobelXYRow_C;
+#if defined(HAS_SOBELXYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SobelXYRow = SobelXYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SobelXYRow = SobelXYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SOBELXYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SobelXYRow = SobelXYRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ SobelXYRow = SobelXYRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SOBELXYROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SobelXYRow = SobelXYRow_Any_MSA;
+ if (IS_ALIGNED(width, 16)) {
+ SobelXYRow = SobelXYRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SOBELXYROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SobelXYRow = SobelXYRow_Any_LSX;
+ if (IS_ALIGNED(width, 16)) {
+ SobelXYRow = SobelXYRow_LSX;
+ }
+ }
+#endif
+ return ARGBSobelize(src_argb, src_stride_argb, dst_argb, dst_stride_argb,
+ width, height, SobelXYRow);
+}
+
+// Apply a 4x4 polynomial to each ARGB pixel.
+LIBYUV_API
+int ARGBPolynomial(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ const float* poly,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBPolynomialRow)(const uint8_t* src_argb, uint8_t* dst_argb,
+ const float* poly, int width) = ARGBPolynomialRow_C;
+ if (!src_argb || !dst_argb || !poly || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBPOLYNOMIALROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(width, 2)) {
+ ARGBPolynomialRow = ARGBPolynomialRow_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBPOLYNOMIALROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasFMA3) &&
+ IS_ALIGNED(width, 2)) {
+ ARGBPolynomialRow = ARGBPolynomialRow_AVX2;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBPolynomialRow(src_argb, dst_argb, poly, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Convert plane of 16 bit shorts to half floats.
+// Source values are multiplied by scale before storing as half float.
+LIBYUV_API
+int HalfFloatPlane(const uint16_t* src_y,
+ int src_stride_y,
+ uint16_t* dst_y,
+ int dst_stride_y,
+ float scale,
+ int width,
+ int height) {
+ int y;
+ void (*HalfFloatRow)(const uint16_t* src, uint16_t* dst, float scale,
+ int width) = HalfFloatRow_C;
+ if (!src_y || !dst_y || width <= 0 || height == 0) {
+ return -1;
+ }
+ src_stride_y >>= 1;
+ dst_stride_y >>= 1;
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_y == width) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_y = 0;
+ }
+#if defined(HAS_HALFFLOATROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ HalfFloatRow = HalfFloatRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ HalfFloatRow = HalfFloatRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_HALFFLOATROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ HalfFloatRow = HalfFloatRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ HalfFloatRow = HalfFloatRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_HALFFLOATROW_F16C)
+ if (TestCpuFlag(kCpuHasAVX2) && TestCpuFlag(kCpuHasF16C)) {
+ HalfFloatRow =
+ (scale == 1.0f) ? HalfFloat1Row_Any_F16C : HalfFloatRow_Any_F16C;
+ if (IS_ALIGNED(width, 16)) {
+ HalfFloatRow = (scale == 1.0f) ? HalfFloat1Row_F16C : HalfFloatRow_F16C;
+ }
+ }
+#endif
+#if defined(HAS_HALFFLOATROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ HalfFloatRow =
+ (scale == 1.0f) ? HalfFloat1Row_Any_NEON : HalfFloatRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ HalfFloatRow = (scale == 1.0f) ? HalfFloat1Row_NEON : HalfFloatRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_HALFFLOATROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ HalfFloatRow = HalfFloatRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ HalfFloatRow = HalfFloatRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_HALFFLOATROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ HalfFloatRow = HalfFloatRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ HalfFloatRow = HalfFloatRow_LSX;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ HalfFloatRow(src_y, dst_y, scale, width);
+ src_y += src_stride_y;
+ dst_y += dst_stride_y;
+ }
+ return 0;
+}
+
+// Convert a buffer of bytes to floats, scale the values and store as floats.
+LIBYUV_API
+int ByteToFloat(const uint8_t* src_y, float* dst_y, float scale, int width) {
+ void (*ByteToFloatRow)(const uint8_t* src, float* dst, float scale,
+ int width) = ByteToFloatRow_C;
+ if (!src_y || !dst_y || width <= 0) {
+ return -1;
+ }
+#if defined(HAS_BYTETOFLOATROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ByteToFloatRow = ByteToFloatRow_Any_NEON;
+ if (IS_ALIGNED(width, 8)) {
+ ByteToFloatRow = ByteToFloatRow_NEON;
+ }
+ }
+#endif
+
+ ByteToFloatRow(src_y, dst_y, scale, width);
+ return 0;
+}
+
+// Apply a lumacolortable to each ARGB pixel.
+LIBYUV_API
+int ARGBLumaColorTable(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ const uint8_t* luma,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBLumaColorTableRow)(
+ const uint8_t* src_argb, uint8_t* dst_argb, int width,
+ const uint8_t* luma, const uint32_t lumacoeff) = ARGBLumaColorTableRow_C;
+ if (!src_argb || !dst_argb || !luma || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBLUMACOLORTABLEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 4)) {
+ ARGBLumaColorTableRow = ARGBLumaColorTableRow_SSSE3;
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBLumaColorTableRow(src_argb, dst_argb, width, luma, 0x00264b0f);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Copy Alpha from one ARGB image to another.
+LIBYUV_API
+int ARGBCopyAlpha(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBCopyAlphaRow)(const uint8_t* src_argb, uint8_t* dst_argb,
+ int width) = ARGBCopyAlphaRow_C;
+ if (!src_argb || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb = src_argb + (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOPYALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBCOPYALPHAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBCopyAlphaRow = ARGBCopyAlphaRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBCopyAlphaRow(src_argb, dst_argb, width);
+ src_argb += src_stride_argb;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+// Extract just the alpha channel from ARGB.
+LIBYUV_API
+int ARGBExtractAlpha(const uint8_t* src_argb,
+ int src_stride_argb,
+ uint8_t* dst_a,
+ int dst_stride_a,
+ int width,
+ int height) {
+ if (!src_argb || !dst_a || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_argb += (height - 1) * src_stride_argb;
+ src_stride_argb = -src_stride_argb;
+ }
+ // Coalesce rows.
+ if (src_stride_argb == width * 4 && dst_stride_a == width) {
+ width *= height;
+ height = 1;
+ src_stride_argb = dst_stride_a = 0;
+ }
+ void (*ARGBExtractAlphaRow)(const uint8_t* src_argb, uint8_t* dst_a,
+ int width) = ARGBExtractAlphaRow_C;
+#if defined(HAS_ARGBEXTRACTALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 8) ? ARGBExtractAlphaRow_SSE2
+ : ARGBExtractAlphaRow_Any_SSE2;
+ }
+#endif
+#if defined(HAS_ARGBEXTRACTALPHAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 32) ? ARGBExtractAlphaRow_AVX2
+ : ARGBExtractAlphaRow_Any_AVX2;
+ }
+#endif
+#if defined(HAS_ARGBEXTRACTALPHAROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_NEON
+ : ARGBExtractAlphaRow_Any_NEON;
+ }
+#endif
+#if defined(HAS_ARGBEXTRACTALPHAROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_MSA
+ : ARGBExtractAlphaRow_Any_MSA;
+ }
+#endif
+#if defined(HAS_ARGBEXTRACTALPHAROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ ARGBExtractAlphaRow = IS_ALIGNED(width, 16) ? ARGBExtractAlphaRow_LSX
+ : ARGBExtractAlphaRow_Any_LSX;
+ }
+#endif
+
+ for (int y = 0; y < height; ++y) {
+ ARGBExtractAlphaRow(src_argb, dst_a, width);
+ src_argb += src_stride_argb;
+ dst_a += dst_stride_a;
+ }
+ return 0;
+}
+
+// Copy a planar Y channel to the alpha channel of a destination ARGB image.
+LIBYUV_API
+int ARGBCopyYToAlpha(const uint8_t* src_y,
+ int src_stride_y,
+ uint8_t* dst_argb,
+ int dst_stride_argb,
+ int width,
+ int height) {
+ int y;
+ void (*ARGBCopyYToAlphaRow)(const uint8_t* src_y, uint8_t* dst_argb,
+ int width) = ARGBCopyYToAlphaRow_C;
+ if (!src_y || !dst_argb || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_y = src_y + (height - 1) * src_stride_y;
+ src_stride_y = -src_stride_y;
+ }
+ // Coalesce rows.
+ if (src_stride_y == width && dst_stride_argb == width * 4) {
+ width *= height;
+ height = 1;
+ src_stride_y = dst_stride_argb = 0;
+ }
+#if defined(HAS_ARGBCOPYYTOALPHAROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_SSE2;
+ if (IS_ALIGNED(width, 8)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_ARGBCOPYYTOALPHAROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_Any_AVX2;
+ if (IS_ALIGNED(width, 16)) {
+ ARGBCopyYToAlphaRow = ARGBCopyYToAlphaRow_AVX2;
+ }
+ }
+#endif
+
+ for (y = 0; y < height; ++y) {
+ ARGBCopyYToAlphaRow(src_y, dst_argb, width);
+ src_y += src_stride_y;
+ dst_argb += dst_stride_argb;
+ }
+ return 0;
+}
+
+LIBYUV_API
+int YUY2ToNV12(const uint8_t* src_yuy2,
+ int src_stride_yuy2,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int y;
+ void (*YUY2ToYRow)(const uint8_t* src_yuy2, uint8_t* dst_y, int width) =
+ YUY2ToYRow_C;
+ void (*YUY2ToNVUVRow)(const uint8_t* src_yuy2, int stride_yuy2,
+ uint8_t* dst_uv, int width) = YUY2ToNVUVRow_C;
+ if (!src_yuy2 || !dst_y || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_yuy2 = src_yuy2 + (height - 1) * src_stride_yuy2;
+ src_stride_yuy2 = -src_stride_yuy2;
+ }
+#if defined(HAS_YUY2TOYROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ YUY2ToYRow = YUY2ToYRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ YUY2ToYRow = YUY2ToYRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ YUY2ToYRow = YUY2ToYRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToYRow = YUY2ToYRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_MSA) && defined(HAS_YUY2TOUV422ROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ YUY2ToYRow = YUY2ToYRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TOYROW_LASX) && defined(HAS_YUY2TOUV422ROW_LASX)
+ if (TestCpuFlag(kCpuHasLASX)) {
+ YUY2ToYRow = YUY2ToYRow_Any_LASX;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToYRow = YUY2ToYRow_LASX;
+ }
+ }
+#endif
+
+#if defined(HAS_YUY2TONVUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TONVUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_YUY2TONVUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ YUY2ToNVUVRow = YUY2ToNVUVRow_NEON;
+ }
+ }
+#endif
+
+ for (y = 0; y < height - 1; y += 2) {
+ YUY2ToYRow(src_yuy2, dst_y, width);
+ YUY2ToYRow(src_yuy2 + src_stride_yuy2, dst_y + dst_stride_y, width);
+ YUY2ToNVUVRow(src_yuy2, src_stride_yuy2, dst_uv, width);
+ src_yuy2 += src_stride_yuy2 * 2;
+ dst_y += dst_stride_y * 2;
+ dst_uv += dst_stride_uv;
+ }
+ if (height & 1) {
+ YUY2ToYRow(src_yuy2, dst_y, width);
+ YUY2ToNVUVRow(src_yuy2, 0, dst_uv, width);
+ }
+ return 0;
+}
+
+LIBYUV_API
+int UYVYToNV12(const uint8_t* src_uyvy,
+ int src_stride_uyvy,
+ uint8_t* dst_y,
+ int dst_stride_y,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int y;
+ int halfwidth = (width + 1) >> 1;
+ void (*SplitUVRow)(const uint8_t* src_uv, uint8_t* dst_u, uint8_t* dst_v,
+ int width) = SplitUVRow_C;
+ void (*InterpolateRow)(uint8_t* dst_ptr, const uint8_t* src_ptr,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+
+ if (!src_uyvy || !dst_y || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uyvy = src_uyvy + (height - 1) * src_stride_uyvy;
+ src_stride_uyvy = -src_stride_uyvy;
+ }
+#if defined(HAS_SPLITUVROW_SSE2)
+ if (TestCpuFlag(kCpuHasSSE2)) {
+ SplitUVRow = SplitUVRow_Any_SSE2;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_SSE2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ SplitUVRow = SplitUVRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ SplitUVRow = SplitUVRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ SplitUVRow = SplitUVRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ SplitUVRow = SplitUVRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SPLITUVROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ SplitUVRow = SplitUVRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ SplitUVRow = SplitUVRow_LSX;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow = InterpolateRow_Any_MSA;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ InterpolateRow = InterpolateRow_Any_LSX;
+ if (IS_ALIGNED(width, 32)) {
+ InterpolateRow = InterpolateRow_LSX;
+ }
+ }
+#endif
+
+ {
+ int awidth = halfwidth * 2;
+ // row of y and 2 rows of uv
+ align_buffer_64(rows, awidth * 3);
+
+ for (y = 0; y < height - 1; y += 2) {
+ // Split Y from UV.
+ SplitUVRow(src_uyvy, rows + awidth, rows, awidth);
+ memcpy(dst_y, rows, width);
+ SplitUVRow(src_uyvy + src_stride_uyvy, rows + awidth * 2, rows, awidth);
+ memcpy(dst_y + dst_stride_y, rows, width);
+ InterpolateRow(dst_uv, rows + awidth, awidth, awidth, 128);
+ src_uyvy += src_stride_uyvy * 2;
+ dst_y += dst_stride_y * 2;
+ dst_uv += dst_stride_uv;
+ }
+ if (height & 1) {
+ // Split Y from UV.
+ SplitUVRow(src_uyvy, dst_uv, rows, awidth);
+ memcpy(dst_y, rows, width);
+ }
+ free_aligned_buffer_64(rows);
+ }
+ return 0;
+}
+
+// width and height are src size allowing odd size handling.
+LIBYUV_API
+void HalfMergeUVPlane(const uint8_t* src_u,
+ int src_stride_u,
+ const uint8_t* src_v,
+ int src_stride_v,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ int y;
+ void (*HalfMergeUVRow)(const uint8_t* src_u, int src_stride_u,
+ const uint8_t* src_v, int src_stride_v,
+ uint8_t* dst_uv, int width) = HalfMergeUVRow_C;
+
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_u = src_u + (height - 1) * src_stride_u;
+ src_v = src_v + (height - 1) * src_stride_v;
+ src_stride_u = -src_stride_u;
+ src_stride_v = -src_stride_v;
+ }
+#if defined(HAS_HALFMERGEUVROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
+ HalfMergeUVRow = HalfMergeUVRow_NEON;
+ }
+#endif
+#if defined(HAS_HALFMERGEUVROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16)) {
+ HalfMergeUVRow = HalfMergeUVRow_SSSE3;
+ }
+#endif
+#if defined(HAS_HALFMERGEUVROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2) && IS_ALIGNED(width, 32)) {
+ HalfMergeUVRow = HalfMergeUVRow_AVX2;
+ }
+#endif
+ for (y = 0; y < height - 1; y += 2) {
+ // Merge a row of U and V into a row of UV.
+ HalfMergeUVRow(src_u, src_stride_u, src_v, src_stride_v, dst_uv, width);
+ src_u += src_stride_u * 2;
+ src_v += src_stride_v * 2;
+ dst_uv += dst_stride_uv;
+ }
+ if (height & 1) {
+ HalfMergeUVRow(src_u, 0, src_v, 0, dst_uv, width);
+ }
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif