summaryrefslogtreecommitdiffstats
path: root/media/libyuv/libyuv/source/scale_uv.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libyuv/libyuv/source/scale_uv.cc')
-rw-r--r--media/libyuv/libyuv/source/scale_uv.cc1161
1 files changed, 1161 insertions, 0 deletions
diff --git a/media/libyuv/libyuv/source/scale_uv.cc b/media/libyuv/libyuv/source/scale_uv.cc
new file mode 100644
index 0000000000..5b92d04321
--- /dev/null
+++ b/media/libyuv/libyuv/source/scale_uv.cc
@@ -0,0 +1,1161 @@
+/*
+ * Copyright 2020 The LibYuv Project Authors. All rights reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "libyuv/scale.h"
+
+#include <assert.h>
+#include <string.h>
+
+#include "libyuv/cpu_id.h"
+#include "libyuv/planar_functions.h" // For CopyUV
+#include "libyuv/row.h"
+#include "libyuv/scale_row.h"
+
+#ifdef __cplusplus
+namespace libyuv {
+extern "C" {
+#endif
+
+// Macros to enable specialized scalers
+
+#ifndef HAS_SCALEUVDOWN2
+#define HAS_SCALEUVDOWN2 1
+#endif
+#ifndef HAS_SCALEUVDOWN4BOX
+#define HAS_SCALEUVDOWN4BOX 1
+#endif
+#ifndef HAS_SCALEUVDOWNEVEN
+#define HAS_SCALEUVDOWNEVEN 1
+#endif
+#ifndef HAS_SCALEUVBILINEARDOWN
+#define HAS_SCALEUVBILINEARDOWN 1
+#endif
+#ifndef HAS_SCALEUVBILINEARUP
+#define HAS_SCALEUVBILINEARUP 1
+#endif
+#ifndef HAS_UVCOPY
+#define HAS_UVCOPY 1
+#endif
+#ifndef HAS_SCALEPLANEVERTICAL
+#define HAS_SCALEPLANEVERTICAL 1
+#endif
+
+static __inline int Abs(int v) {
+ return v >= 0 ? v : -v;
+}
+
+// ScaleUV, 1/2
+// This is an optimized version for scaling down a UV to 1/2 of
+// its original size.
+#if HAS_SCALEUVDOWN2
+static void ScaleUVDown2(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy,
+ enum FilterMode filtering) {
+ int j;
+ int row_stride = src_stride * (dy >> 16);
+ void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride,
+ uint8_t* dst_uv, int dst_width) =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_C
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_C
+ : ScaleUVRowDown2Box_C);
+ (void)src_width;
+ (void)src_height;
+ (void)dx;
+ assert(dx == 65536 * 2); // Test scale factor of 2.
+ assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2.
+ // Advance to odd row, even column.
+ if (filtering == kFilterBilinear) {
+ src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
+ } else {
+ src_uv += (y >> 16) * (intptr_t)src_stride + ((x >> 16) - 1) * 2;
+ }
+
+#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && filtering) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2) && filtering) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWN2BOX_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && filtering) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON;
+ }
+ }
+#endif
+
+// This code is not enabled. Only box filter is available at this time.
+#if defined(HAS_SCALEUVROWDOWN2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_Any_SSSE3
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_SSSE3
+ : ScaleUVRowDown2Box_Any_SSSE3);
+ if (IS_ALIGNED(dst_width, 2)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_SSSE3
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_SSSE3
+ : ScaleUVRowDown2Box_SSSE3);
+ }
+ }
+#endif
+// This code is not enabled. Only box filter is available at this time.
+#if defined(HAS_SCALEUVROWDOWN2_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_Any_NEON
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_NEON
+ : ScaleUVRowDown2Box_Any_NEON);
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_NEON
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_NEON
+ : ScaleUVRowDown2Box_NEON);
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWN2_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_Any_MSA
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_Any_MSA
+ : ScaleUVRowDown2Box_Any_MSA);
+ if (IS_ALIGNED(dst_width, 2)) {
+ ScaleUVRowDown2 =
+ filtering == kFilterNone
+ ? ScaleUVRowDown2_MSA
+ : (filtering == kFilterLinear ? ScaleUVRowDown2Linear_MSA
+ : ScaleUVRowDown2Box_MSA);
+ }
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ for (j = 0; j < dst_height; ++j) {
+ ScaleUVRowDown2(src_uv, src_stride, dst_uv, dst_width);
+ src_uv += row_stride;
+ dst_uv += dst_stride;
+ }
+}
+#endif // HAS_SCALEUVDOWN2
+
+// ScaleUV, 1/4
+// This is an optimized version for scaling down a UV to 1/4 of
+// its original size.
+#if HAS_SCALEUVDOWN4BOX
+static void ScaleUVDown4Box(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy) {
+ int j;
+ // Allocate 2 rows of UV.
+ const int row_size = (dst_width * 2 * 2 + 15) & ~15;
+ align_buffer_64(row, row_size * 2);
+ int row_stride = src_stride * (dy >> 16);
+ void (*ScaleUVRowDown2)(const uint8_t* src_uv, ptrdiff_t src_stride,
+ uint8_t* dst_uv, int dst_width) =
+ ScaleUVRowDown2Box_C;
+ // Advance to odd row, even column.
+ src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
+ (void)src_width;
+ (void)src_height;
+ (void)dx;
+ assert(dx == 65536 * 4); // Test scale factor of 4.
+ assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4.
+
+#if defined(HAS_SCALEUVROWDOWN2BOX_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWN2BOX_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_AVX2;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWN2BOX_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVRowDown2 = ScaleUVRowDown2Box_NEON;
+ }
+ }
+#endif
+
+ for (j = 0; j < dst_height; ++j) {
+ ScaleUVRowDown2(src_uv, src_stride, row, dst_width * 2);
+ ScaleUVRowDown2(src_uv + src_stride * 2, src_stride, row + row_size,
+ dst_width * 2);
+ ScaleUVRowDown2(row, row_size, dst_uv, dst_width);
+ src_uv += row_stride;
+ dst_uv += dst_stride;
+ }
+ free_aligned_buffer_64(row);
+}
+#endif // HAS_SCALEUVDOWN4BOX
+
+// ScaleUV Even
+// This is an optimized version for scaling down a UV to even
+// multiple of its original size.
+#if HAS_SCALEUVDOWNEVEN
+static void ScaleUVDownEven(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy,
+ enum FilterMode filtering) {
+ int j;
+ int col_step = dx >> 16;
+ ptrdiff_t row_stride = (ptrdiff_t)((dy >> 16) * (intptr_t)src_stride);
+ void (*ScaleUVRowDownEven)(const uint8_t* src_uv, ptrdiff_t src_stride,
+ int src_step, uint8_t* dst_uv, int dst_width) =
+ filtering ? ScaleUVRowDownEvenBox_C : ScaleUVRowDownEven_C;
+ (void)src_width;
+ (void)src_height;
+ assert(IS_ALIGNED(src_width, 2));
+ assert(IS_ALIGNED(src_height, 2));
+ src_uv += (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2;
+#if defined(HAS_SCALEUVROWDOWNEVEN_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_SSSE3
+ : ScaleUVRowDownEven_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDownEven =
+ filtering ? ScaleUVRowDownEvenBox_SSE2 : ScaleUVRowDownEven_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWNEVEN_NEON)
+ if (TestCpuFlag(kCpuHasNEON) && !filtering) {
+ ScaleUVRowDownEven = ScaleUVRowDownEven_Any_NEON;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDownEven = ScaleUVRowDownEven_NEON;
+ }
+ }
+#endif // TODO(fbarchard): Enable Box filter
+#if defined(HAS_SCALEUVROWDOWNEVENBOX_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVRowDownEven = filtering ? ScaleUVRowDownEvenBox_Any_NEON
+ : ScaleUVRowDownEven_Any_NEON;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDownEven =
+ filtering ? ScaleUVRowDownEvenBox_NEON : ScaleUVRowDownEven_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVROWDOWNEVEN_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVRowDownEven =
+ filtering ? ScaleUVRowDownEvenBox_Any_MSA : ScaleUVRowDownEven_Any_MSA;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVRowDownEven =
+ filtering ? ScaleUVRowDownEvenBox_MSA : ScaleUVRowDownEven_MSA;
+ }
+ }
+#endif
+
+ if (filtering == kFilterLinear) {
+ src_stride = 0;
+ }
+ for (j = 0; j < dst_height; ++j) {
+ ScaleUVRowDownEven(src_uv, src_stride, col_step, dst_uv, dst_width);
+ src_uv += row_stride;
+ dst_uv += dst_stride;
+ }
+}
+#endif
+
+// Scale UV down with bilinear interpolation.
+#if HAS_SCALEUVBILINEARDOWN
+static void ScaleUVBilinearDown(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy,
+ enum FilterMode filtering) {
+ int j;
+ void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv,
+ int dst_width, int x, int dx) =
+ (src_width >= 32768) ? ScaleUVFilterCols64_C : ScaleUVFilterCols_C;
+ int64_t xlast = x + (int64_t)(dst_width - 1) * dx;
+ int64_t xl = (dx >= 0) ? x : xlast;
+ int64_t xr = (dx >= 0) ? xlast : x;
+ int clip_src_width;
+ xl = (xl >> 16) & ~3; // Left edge aligned.
+ xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels.
+ xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel.
+ if (xr > src_width) {
+ xr = src_width;
+ }
+ clip_src_width = (int)(xr - xl) * 2; // Width aligned to 2.
+ src_uv += xl * 2;
+ x -= (int)(xl << 16);
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(clip_src_width, 16)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(clip_src_width, 32)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(clip_src_width, 16)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow = InterpolateRow_Any_MSA;
+ if (IS_ALIGNED(clip_src_width, 32)) {
+ InterpolateRow = InterpolateRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ InterpolateRow = InterpolateRow_Any_LSX;
+ if (IS_ALIGNED(clip_src_width, 32)) {
+ InterpolateRow = InterpolateRow_LSX;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVFILTERCOLS_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleUVFilterCols = ScaleUVFilterCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEUVFILTERCOLS_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVFILTERCOLS_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_MSA;
+ }
+ }
+#endif
+ // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
+ // Allocate a row of UV.
+ {
+ align_buffer_64(row, clip_src_width * 2);
+
+ const int max_y = (src_height - 1) << 16;
+ if (y > max_y) {
+ y = max_y;
+ }
+ for (j = 0; j < dst_height; ++j) {
+ int yi = y >> 16;
+ const uint8_t* src = src_uv + yi * (intptr_t)src_stride;
+ if (filtering == kFilterLinear) {
+ ScaleUVFilterCols(dst_uv, src, dst_width, x, dx);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow(row, src, src_stride, clip_src_width, yf);
+ ScaleUVFilterCols(dst_uv, row, dst_width, x, dx);
+ }
+ dst_uv += dst_stride;
+ y += dy;
+ if (y > max_y) {
+ y = max_y;
+ }
+ }
+ free_aligned_buffer_64(row);
+ }
+}
+#endif
+
+// Scale UV up with bilinear interpolation.
+#if HAS_SCALEUVBILINEARUP
+static void ScaleUVBilinearUp(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy,
+ enum FilterMode filtering) {
+ int j;
+ void (*InterpolateRow)(uint8_t* dst_uv, const uint8_t* src_uv,
+ ptrdiff_t src_stride, int dst_width,
+ int source_y_fraction) = InterpolateRow_C;
+ void (*ScaleUVFilterCols)(uint8_t* dst_uv, const uint8_t* src_uv,
+ int dst_width, int x, int dx) =
+ filtering ? ScaleUVFilterCols_C : ScaleUVCols_C;
+ const int max_y = (src_height - 1) << 16;
+#if defined(HAS_INTERPOLATEROW_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ InterpolateRow = InterpolateRow_Any_SSSE3;
+ if (IS_ALIGNED(dst_width, 8)) {
+ InterpolateRow = InterpolateRow_SSSE3;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_AVX2)
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ InterpolateRow = InterpolateRow_Any_AVX2;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_AVX2;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ InterpolateRow = InterpolateRow_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ InterpolateRow = InterpolateRow_NEON;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ InterpolateRow = InterpolateRow_Any_MSA;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_MSA;
+ }
+ }
+#endif
+#if defined(HAS_INTERPOLATEROW_LSX)
+ if (TestCpuFlag(kCpuHasLSX)) {
+ InterpolateRow = InterpolateRow_Any_LSX;
+ if (IS_ALIGNED(dst_width, 16)) {
+ InterpolateRow = InterpolateRow_LSX;
+ }
+ }
+#endif
+ if (src_width >= 32768) {
+ ScaleUVFilterCols = filtering ? ScaleUVFilterCols64_C : ScaleUVCols64_C;
+ }
+#if defined(HAS_SCALEUVFILTERCOLS_SSSE3)
+ if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleUVFilterCols = ScaleUVFilterCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEUVFILTERCOLS_NEON)
+ if (filtering && TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVFILTERCOLS_MSA)
+ if (filtering && TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleUVFilterCols = ScaleUVFilterCols_MSA;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVCOLS_SSSE3)
+ if (!filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleUVFilterCols = ScaleUVCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEUVCOLS_NEON)
+ if (!filtering && TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVFilterCols = ScaleUVCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 16)) {
+ ScaleUVFilterCols = ScaleUVCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVCOLS_MSA)
+ if (!filtering && TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVFilterCols = ScaleUVCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVFilterCols = ScaleUVCols_MSA;
+ }
+ }
+#endif
+ if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
+ ScaleUVFilterCols = ScaleUVColsUp2_C;
+#if defined(HAS_SCALEUVCOLSUP2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) {
+ ScaleUVFilterCols = ScaleUVColsUp2_SSSE3;
+ }
+#endif
+ }
+
+ if (y > max_y) {
+ y = max_y;
+ }
+
+ {
+ int yi = y >> 16;
+ const uint8_t* src = src_uv + yi * (intptr_t)src_stride;
+
+ // Allocate 2 rows of UV.
+ const int row_size = (dst_width * 2 + 15) & ~15;
+ align_buffer_64(row, row_size * 2);
+
+ uint8_t* rowptr = row;
+ int rowstride = row_size;
+ int lasty = yi;
+
+ ScaleUVFilterCols(rowptr, src, dst_width, x, dx);
+ if (src_height > 1) {
+ src += src_stride;
+ }
+ ScaleUVFilterCols(rowptr + rowstride, src, dst_width, x, dx);
+ if (src_height > 2) {
+ src += src_stride;
+ }
+
+ for (j = 0; j < dst_height; ++j) {
+ yi = y >> 16;
+ if (yi != lasty) {
+ if (y > max_y) {
+ y = max_y;
+ yi = y >> 16;
+ src = src_uv + yi * (intptr_t)src_stride;
+ }
+ if (yi != lasty) {
+ ScaleUVFilterCols(rowptr, src, dst_width, x, dx);
+ rowptr += rowstride;
+ rowstride = -rowstride;
+ lasty = yi;
+ if ((y + 65536) < max_y) {
+ src += src_stride;
+ }
+ }
+ }
+ if (filtering == kFilterLinear) {
+ InterpolateRow(dst_uv, rowptr, 0, dst_width * 2, 0);
+ } else {
+ int yf = (y >> 8) & 255;
+ InterpolateRow(dst_uv, rowptr, rowstride, dst_width * 2, yf);
+ }
+ dst_uv += dst_stride;
+ y += dy;
+ }
+ free_aligned_buffer_64(row);
+ }
+}
+#endif // HAS_SCALEUVBILINEARUP
+
+// Scale UV, horizontally up by 2 times.
+// Uses linear filter horizontally, nearest vertically.
+// This is an optimized version for scaling up a plane to 2 times of
+// its original width, using linear interpolation.
+// This is used to scale U and V planes of NV16 to NV24.
+void ScaleUVLinearUp2(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv) {
+ void (*ScaleRowUp)(const uint8_t* src_uv, uint8_t* dst_uv, int dst_width) =
+ ScaleUVRowUp2_Linear_Any_C;
+ int i;
+ int y;
+ int dy;
+
+ // This function can only scale up by 2 times horizontally.
+ assert(src_width == ((dst_width + 1) / 2));
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_SSSE3
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_Any_SSSE3;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_AVX2
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_Any_AVX2;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_NEON
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_Any_NEON;
+ }
+#endif
+
+ if (dst_height == 1) {
+ ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv,
+ dst_width);
+ } else {
+ dy = FixedDiv(src_height - 1, dst_height - 1);
+ y = (1 << 15) - 1;
+ for (i = 0; i < dst_height; ++i) {
+ ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width);
+ dst_uv += dst_stride;
+ y += dy;
+ }
+ }
+}
+
+// Scale plane, up by 2 times.
+// This is an optimized version for scaling up a plane to 2 times of
+// its original size, using bilinear interpolation.
+// This is used to scale U and V planes of NV12 to NV24.
+void ScaleUVBilinearUp2(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_ptr,
+ uint8_t* dst_ptr) {
+ void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride,
+ uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
+ ScaleUVRowUp2_Bilinear_Any_C;
+ int x;
+
+ // This function can only scale up by 2 times.
+ assert(src_width == ((dst_width + 1) / 2));
+ assert(src_height == ((dst_height + 1) / 2));
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_SSSE3
+ if (TestCpuFlag(kCpuHasSSSE3)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_SSSE3;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_AVX2
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_AVX2;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_NEON
+ if (TestCpuFlag(kCpuHasNEON)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_Any_NEON;
+ }
+#endif
+
+ Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
+ dst_ptr += dst_stride;
+ for (x = 0; x < src_height - 1; ++x) {
+ Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
+ src_ptr += src_stride;
+ // TODO(fbarchard): Test performance of writing one row of destination at a
+ // time.
+ dst_ptr += 2 * dst_stride;
+ }
+ if (!(dst_height & 1)) {
+ Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
+ }
+}
+
+// Scale 16 bit UV, horizontally up by 2 times.
+// Uses linear filter horizontally, nearest vertically.
+// This is an optimized version for scaling up a plane to 2 times of
+// its original width, using linear interpolation.
+// This is used to scale U and V planes of P210 to P410.
+void ScaleUVLinearUp2_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_uv,
+ uint16_t* dst_uv) {
+ void (*ScaleRowUp)(const uint16_t* src_uv, uint16_t* dst_uv, int dst_width) =
+ ScaleUVRowUp2_Linear_16_Any_C;
+ int i;
+ int y;
+ int dy;
+
+ // This function can only scale up by 2 times horizontally.
+ assert(src_width == ((dst_width + 1) / 2));
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_16_SSE41
+ if (TestCpuFlag(kCpuHasSSE41)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_SSE41;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_16_AVX2
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_AVX2;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2LINEAR_16_NEON
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleRowUp = ScaleUVRowUp2_Linear_16_Any_NEON;
+ }
+#endif
+
+ if (dst_height == 1) {
+ ScaleRowUp(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride, dst_uv,
+ dst_width);
+ } else {
+ dy = FixedDiv(src_height - 1, dst_height - 1);
+ y = (1 << 15) - 1;
+ for (i = 0; i < dst_height; ++i) {
+ ScaleRowUp(src_uv + (y >> 16) * (intptr_t)src_stride, dst_uv, dst_width);
+ dst_uv += dst_stride;
+ y += dy;
+ }
+ }
+}
+
+// Scale 16 bit UV, up by 2 times.
+// This is an optimized version for scaling up a plane to 2 times of
+// its original size, using bilinear interpolation.
+// This is used to scale U and V planes of P010 to P410.
+void ScaleUVBilinearUp2_16(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint16_t* src_ptr,
+ uint16_t* dst_ptr) {
+ void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
+ uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
+ ScaleUVRowUp2_Bilinear_16_Any_C;
+ int x;
+
+ // This function can only scale up by 2 times.
+ assert(src_width == ((dst_width + 1) / 2));
+ assert(src_height == ((dst_height + 1) / 2));
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_16_SSE41
+ if (TestCpuFlag(kCpuHasSSE41)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_SSE41;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_16_AVX2
+ if (TestCpuFlag(kCpuHasAVX2)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_AVX2;
+ }
+#endif
+
+#ifdef HAS_SCALEUVROWUP2BILINEAR_16_NEON
+ if (TestCpuFlag(kCpuHasNEON)) {
+ Scale2RowUp = ScaleUVRowUp2_Bilinear_16_Any_NEON;
+ }
+#endif
+
+ Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
+ dst_ptr += dst_stride;
+ for (x = 0; x < src_height - 1; ++x) {
+ Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
+ src_ptr += src_stride;
+ // TODO(fbarchard): Test performance of writing one row of destination at a
+ // time.
+ dst_ptr += 2 * dst_stride;
+ }
+ if (!(dst_height & 1)) {
+ Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
+ }
+}
+
+// Scale UV to/from any dimensions, without interpolation.
+// Fixed point math is used for performance: The upper 16 bits
+// of x and dx is the integer part of the source position and
+// the lower 16 bits are the fixed decimal part.
+
+static void ScaleUVSimple(int src_width,
+ int src_height,
+ int dst_width,
+ int dst_height,
+ int src_stride,
+ int dst_stride,
+ const uint8_t* src_uv,
+ uint8_t* dst_uv,
+ int x,
+ int dx,
+ int y,
+ int dy) {
+ int j;
+ void (*ScaleUVCols)(uint8_t* dst_uv, const uint8_t* src_uv, int dst_width,
+ int x, int dx) =
+ (src_width >= 32768) ? ScaleUVCols64_C : ScaleUVCols_C;
+ (void)src_height;
+#if defined(HAS_SCALEUVCOLS_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
+ ScaleUVCols = ScaleUVCols_SSSE3;
+ }
+#endif
+#if defined(HAS_SCALEUVCOLS_NEON)
+ if (TestCpuFlag(kCpuHasNEON)) {
+ ScaleUVCols = ScaleUVCols_Any_NEON;
+ if (IS_ALIGNED(dst_width, 8)) {
+ ScaleUVCols = ScaleUVCols_NEON;
+ }
+ }
+#endif
+#if defined(HAS_SCALEUVCOLS_MSA)
+ if (TestCpuFlag(kCpuHasMSA)) {
+ ScaleUVCols = ScaleUVCols_Any_MSA;
+ if (IS_ALIGNED(dst_width, 4)) {
+ ScaleUVCols = ScaleUVCols_MSA;
+ }
+ }
+#endif
+ if (src_width * 2 == dst_width && x < 0x8000) {
+ ScaleUVCols = ScaleUVColsUp2_C;
+#if defined(HAS_SCALEUVCOLSUP2_SSSE3)
+ if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(dst_width, 8)) {
+ ScaleUVCols = ScaleUVColsUp2_SSSE3;
+ }
+#endif
+ }
+
+ for (j = 0; j < dst_height; ++j) {
+ ScaleUVCols(dst_uv, src_uv + (y >> 16) * (intptr_t)src_stride, dst_width, x,
+ dx);
+ dst_uv += dst_stride;
+ y += dy;
+ }
+}
+
+// Copy UV with optional flipping
+#if HAS_UVCOPY
+static int UVCopy(const uint8_t* src_uv,
+ int src_stride_uv,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ if (!src_uv || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv;
+ src_stride_uv = -src_stride_uv;
+ }
+
+ CopyPlane(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height);
+ return 0;
+}
+
+static int UVCopy_16(const uint16_t* src_uv,
+ int src_stride_uv,
+ uint16_t* dst_uv,
+ int dst_stride_uv,
+ int width,
+ int height) {
+ if (!src_uv || !dst_uv || width <= 0 || height == 0) {
+ return -1;
+ }
+ // Negative height means invert the image.
+ if (height < 0) {
+ height = -height;
+ src_uv = src_uv + (height - 1) * (intptr_t)src_stride_uv;
+ src_stride_uv = -src_stride_uv;
+ }
+
+ CopyPlane_16(src_uv, src_stride_uv, dst_uv, dst_stride_uv, width * 2, height);
+ return 0;
+}
+#endif // HAS_UVCOPY
+
+// Scale a UV plane (from NV12)
+// This function in turn calls a scaling function
+// suitable for handling the desired resolutions.
+static void ScaleUV(const uint8_t* src,
+ int src_stride,
+ int src_width,
+ int src_height,
+ uint8_t* dst,
+ int dst_stride,
+ int dst_width,
+ int dst_height,
+ int clip_x,
+ int clip_y,
+ int clip_width,
+ int clip_height,
+ enum FilterMode filtering) {
+ // Initial source x/y coordinate and step values as 16.16 fixed point.
+ int x = 0;
+ int y = 0;
+ int dx = 0;
+ int dy = 0;
+ // UV does not support box filter yet, but allow the user to pass it.
+ // Simplify filtering when possible.
+ filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
+ filtering);
+
+ // Negative src_height means invert the image.
+ if (src_height < 0) {
+ src_height = -src_height;
+ src = src + (src_height - 1) * (intptr_t)src_stride;
+ src_stride = -src_stride;
+ }
+ ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
+ &dx, &dy);
+ src_width = Abs(src_width);
+ if (clip_x) {
+ int64_t clipf = (int64_t)(clip_x)*dx;
+ x += (clipf & 0xffff);
+ src += (clipf >> 16) * 2;
+ dst += clip_x * 2;
+ }
+ if (clip_y) {
+ int64_t clipf = (int64_t)(clip_y)*dy;
+ y += (clipf & 0xffff);
+ src += (clipf >> 16) * (intptr_t)src_stride;
+ dst += clip_y * dst_stride;
+ }
+
+ // Special case for integer step values.
+ if (((dx | dy) & 0xffff) == 0) {
+ if (!dx || !dy) { // 1 pixel wide and/or tall.
+ filtering = kFilterNone;
+ } else {
+ // Optimized even scale down. ie 2, 4, 6, 8, 10x.
+ if (!(dx & 0x10000) && !(dy & 0x10000)) {
+#if HAS_SCALEUVDOWN2
+ if (dx == 0x20000) {
+ // Optimized 1/2 downsample.
+ ScaleUVDown2(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst, x, dx, y, dy,
+ filtering);
+ return;
+ }
+#endif
+#if HAS_SCALEUVDOWN4BOX
+ if (dx == 0x40000 && filtering == kFilterBox) {
+ // Optimized 1/4 box downsample.
+ ScaleUVDown4Box(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst, x, dx, y, dy);
+ return;
+ }
+#endif
+#if HAS_SCALEUVDOWNEVEN
+ ScaleUVDownEven(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst, x, dx, y, dy,
+ filtering);
+ return;
+#endif
+ }
+ // Optimized odd scale down. ie 3, 5, 7, 9x.
+ if ((dx & 0x10000) && (dy & 0x10000)) {
+ filtering = kFilterNone;
+#ifdef HAS_UVCOPY
+ if (dx == 0x10000 && dy == 0x10000) {
+ // Straight copy.
+ UVCopy(src + (y >> 16) * (intptr_t)src_stride + (x >> 16) * 2,
+ src_stride, dst, dst_stride, clip_width, clip_height);
+ return;
+ }
+#endif
+ }
+ }
+ }
+ // HAS_SCALEPLANEVERTICAL
+ if (dx == 0x10000 && (x & 0xffff) == 0) {
+ // Arbitrary scale vertically, but unscaled horizontally.
+ ScalePlaneVertical(src_height, clip_width, clip_height, src_stride,
+ dst_stride, src, dst, x, y, dy, /*bpp=*/2, filtering);
+ return;
+ }
+ if (filtering && (dst_width + 1) / 2 == src_width) {
+ ScaleUVLinearUp2(src_width, src_height, clip_width, clip_height, src_stride,
+ dst_stride, src, dst);
+ return;
+ }
+ if ((clip_height + 1) / 2 == src_height &&
+ (clip_width + 1) / 2 == src_width &&
+ (filtering == kFilterBilinear || filtering == kFilterBox)) {
+ ScaleUVBilinearUp2(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst);
+ return;
+ }
+#if HAS_SCALEUVBILINEARUP
+ if (filtering && dy < 65536) {
+ ScaleUVBilinearUp(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst, x, dx, y, dy,
+ filtering);
+ return;
+ }
+#endif
+#if HAS_SCALEUVBILINEARDOWN
+ if (filtering) {
+ ScaleUVBilinearDown(src_width, src_height, clip_width, clip_height,
+ src_stride, dst_stride, src, dst, x, dx, y, dy,
+ filtering);
+ return;
+ }
+#endif
+ ScaleUVSimple(src_width, src_height, clip_width, clip_height, src_stride,
+ dst_stride, src, dst, x, dx, y, dy);
+}
+
+// Scale an UV image.
+LIBYUV_API
+int UVScale(const uint8_t* src_uv,
+ int src_stride_uv,
+ int src_width,
+ int src_height,
+ uint8_t* dst_uv,
+ int dst_stride_uv,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 ||
+ src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) {
+ return -1;
+ }
+ ScaleUV(src_uv, src_stride_uv, src_width, src_height, dst_uv, dst_stride_uv,
+ dst_width, dst_height, 0, 0, dst_width, dst_height, filtering);
+ return 0;
+}
+
+// Scale a 16 bit UV image.
+// This function is currently incomplete, it can't handle all cases.
+LIBYUV_API
+int UVScale_16(const uint16_t* src_uv,
+ int src_stride_uv,
+ int src_width,
+ int src_height,
+ uint16_t* dst_uv,
+ int dst_stride_uv,
+ int dst_width,
+ int dst_height,
+ enum FilterMode filtering) {
+ int dy = 0;
+
+ if (!src_uv || src_width <= 0 || src_height == 0 || src_width > 32768 ||
+ src_height > 32768 || !dst_uv || dst_width <= 0 || dst_height <= 0) {
+ return -1;
+ }
+
+ // UV does not support box filter yet, but allow the user to pass it.
+ // Simplify filtering when possible.
+ filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
+ filtering);
+
+ // Negative src_height means invert the image.
+ if (src_height < 0) {
+ src_height = -src_height;
+ src_uv = src_uv + (src_height - 1) * (intptr_t)src_stride_uv;
+ src_stride_uv = -src_stride_uv;
+ }
+ src_width = Abs(src_width);
+
+#ifdef HAS_UVCOPY
+ if (!filtering && src_width == dst_width && (src_height % dst_height == 0)) {
+ if (dst_height == 1) {
+ UVCopy_16(src_uv + ((src_height - 1) / 2) * (intptr_t)src_stride_uv,
+ src_stride_uv, dst_uv, dst_stride_uv, dst_width, dst_height);
+ } else {
+ dy = src_height / dst_height;
+ UVCopy_16(src_uv + ((dy - 1) / 2) * (intptr_t)src_stride_uv,
+ (int)(dy * (intptr_t)src_stride_uv), dst_uv, dst_stride_uv,
+ dst_width, dst_height);
+ }
+
+ return 0;
+ }
+#endif
+
+ if (filtering && (dst_width + 1) / 2 == src_width) {
+ ScaleUVLinearUp2_16(src_width, src_height, dst_width, dst_height,
+ src_stride_uv, dst_stride_uv, src_uv, dst_uv);
+ return 0;
+ }
+
+ if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
+ (filtering == kFilterBilinear || filtering == kFilterBox)) {
+ ScaleUVBilinearUp2_16(src_width, src_height, dst_width, dst_height,
+ src_stride_uv, dst_stride_uv, src_uv, dst_uv);
+ return 0;
+ }
+
+ return -1;
+}
+
+#ifdef __cplusplus
+} // extern "C"
+} // namespace libyuv
+#endif