summaryrefslogtreecommitdiffstats
path: root/nsprpub/pr/src/misc/prtime.c
diff options
context:
space:
mode:
Diffstat (limited to 'nsprpub/pr/src/misc/prtime.c')
-rw-r--r--nsprpub/pr/src/misc/prtime.c2150
1 files changed, 2150 insertions, 0 deletions
diff --git a/nsprpub/pr/src/misc/prtime.c b/nsprpub/pr/src/misc/prtime.c
new file mode 100644
index 0000000000..6d711a6b8d
--- /dev/null
+++ b/nsprpub/pr/src/misc/prtime.c
@@ -0,0 +1,2150 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * prtime.c --
+ *
+ * NSPR date and time functions
+ *
+ */
+
+#include "prinit.h"
+#include "prtime.h"
+#include "prlock.h"
+#include "prprf.h"
+#include "prlog.h"
+
+#include <string.h>
+#include <ctype.h>
+#include <errno.h> /* for EINVAL */
+#include <time.h>
+
+/*
+ * The COUNT_LEAPS macro counts the number of leap years passed by
+ * till the start of the given year Y. At the start of the year 4
+ * A.D. the number of leap years passed by is 0, while at the start of
+ * the year 5 A.D. this count is 1. The number of years divisible by
+ * 100 but not divisible by 400 (the non-leap years) is deducted from
+ * the count to get the correct number of leap years.
+ *
+ * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
+ * start of the given year Y. The number of days at the start of the year
+ * 1 is 0 while the number of days at the start of the year 2 is 365
+ * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
+ * midnight 00:00:00.
+ */
+
+#define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
+#define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
+#define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
+
+/*
+ * Static variables used by functions in this file
+ */
+
+/*
+ * The following array contains the day of year for the last day of
+ * each month, where index 1 is January, and day 0 is January 1.
+ */
+
+static const int lastDayOfMonth[2][13] = {
+ {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
+ {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
+};
+
+/*
+ * The number of days in a month
+ */
+
+static const PRInt8 nDays[2][12] = {
+ {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
+ {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
+};
+
+/*
+ * Declarations for internal functions defined later in this file.
+ */
+
+static void ComputeGMT(PRTime time, PRExplodedTime *gmt);
+static int IsLeapYear(PRInt16 year);
+static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset);
+
+/*
+ *------------------------------------------------------------------------
+ *
+ * ComputeGMT --
+ *
+ * Caveats:
+ * - we ignore leap seconds
+ *
+ *------------------------------------------------------------------------
+ */
+
+static void
+ComputeGMT(PRTime time, PRExplodedTime *gmt)
+{
+ PRInt32 tmp, rem;
+ PRInt32 numDays;
+ PRInt64 numDays64, rem64;
+ int isLeap;
+ PRInt64 sec;
+ PRInt64 usec;
+ PRInt64 usecPerSec;
+ PRInt64 secPerDay;
+
+ /*
+ * We first do the usec, sec, min, hour thing so that we do not
+ * have to do LL arithmetic.
+ */
+
+ LL_I2L(usecPerSec, 1000000L);
+ LL_DIV(sec, time, usecPerSec);
+ LL_MOD(usec, time, usecPerSec);
+ LL_L2I(gmt->tm_usec, usec);
+ /* Correct for weird mod semantics so the remainder is always positive */
+ if (gmt->tm_usec < 0) {
+ PRInt64 one;
+
+ LL_I2L(one, 1L);
+ LL_SUB(sec, sec, one);
+ gmt->tm_usec += 1000000L;
+ }
+
+ LL_I2L(secPerDay, 86400L);
+ LL_DIV(numDays64, sec, secPerDay);
+ LL_MOD(rem64, sec, secPerDay);
+ /* We are sure both of these numbers can fit into PRInt32 */
+ LL_L2I(numDays, numDays64);
+ LL_L2I(rem, rem64);
+ if (rem < 0) {
+ numDays--;
+ rem += 86400L;
+ }
+
+ /* Compute day of week. Epoch started on a Thursday. */
+
+ gmt->tm_wday = (numDays + 4) % 7;
+ if (gmt->tm_wday < 0) {
+ gmt->tm_wday += 7;
+ }
+
+ /* Compute the time of day. */
+
+ gmt->tm_hour = rem / 3600;
+ rem %= 3600;
+ gmt->tm_min = rem / 60;
+ gmt->tm_sec = rem % 60;
+
+ /*
+ * Compute the year by finding the 400 year period, then working
+ * down from there.
+ *
+ * Since numDays is originally the number of days since January 1, 1970,
+ * we must change it to be the number of days from January 1, 0001.
+ */
+
+ numDays += 719162; /* 719162 = days from year 1 up to 1970 */
+ tmp = numDays / 146097; /* 146097 = days in 400 years */
+ rem = numDays % 146097;
+ gmt->tm_year = tmp * 400 + 1;
+
+ /* Compute the 100 year period. */
+
+ tmp = rem / 36524; /* 36524 = days in 100 years */
+ rem %= 36524;
+ if (tmp == 4) { /* the 400th year is a leap year */
+ tmp = 3;
+ rem = 36524;
+ }
+ gmt->tm_year += tmp * 100;
+
+ /* Compute the 4 year period. */
+
+ tmp = rem / 1461; /* 1461 = days in 4 years */
+ rem %= 1461;
+ gmt->tm_year += tmp * 4;
+
+ /* Compute which year in the 4. */
+
+ tmp = rem / 365;
+ rem %= 365;
+ if (tmp == 4) { /* the 4th year is a leap year */
+ tmp = 3;
+ rem = 365;
+ }
+
+ gmt->tm_year += tmp;
+ gmt->tm_yday = rem;
+ isLeap = IsLeapYear(gmt->tm_year);
+
+ /* Compute the month and day of month. */
+
+ for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
+ }
+ gmt->tm_month = --tmp;
+ gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
+
+ gmt->tm_params.tp_gmt_offset = 0;
+ gmt->tm_params.tp_dst_offset = 0;
+}
+
+
+/*
+ *------------------------------------------------------------------------
+ *
+ * PR_ExplodeTime --
+ *
+ * Cf. struct tm *gmtime(const time_t *tp) and
+ * struct tm *localtime(const time_t *tp)
+ *
+ *------------------------------------------------------------------------
+ */
+
+PR_IMPLEMENT(void)
+PR_ExplodeTime(
+ PRTime usecs,
+ PRTimeParamFn params,
+ PRExplodedTime *exploded)
+{
+ ComputeGMT(usecs, exploded);
+ exploded->tm_params = params(exploded);
+ ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset
+ + exploded->tm_params.tp_dst_offset);
+}
+
+
+/*
+ *------------------------------------------------------------------------
+ *
+ * PR_ImplodeTime --
+ *
+ * Cf. time_t mktime(struct tm *tp)
+ * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
+ *
+ *------------------------------------------------------------------------
+ */
+PR_IMPLEMENT(PRTime)
+PR_ImplodeTime(const PRExplodedTime *exploded)
+{
+ PRExplodedTime copy;
+ PRTime retVal;
+ PRInt64 secPerDay, usecPerSec;
+ PRInt64 temp;
+ PRInt64 numSecs64;
+ PRInt32 numDays;
+ PRInt32 numSecs;
+
+ /* Normalize first. Do this on our copy */
+ copy = *exploded;
+ PR_NormalizeTime(&copy, PR_GMTParameters);
+
+ numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
+
+ numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600
+ + copy.tm_min * 60 + copy.tm_sec;
+
+ LL_I2L(temp, numDays);
+ LL_I2L(secPerDay, 86400);
+ LL_MUL(temp, temp, secPerDay);
+ LL_I2L(numSecs64, numSecs);
+ LL_ADD(numSecs64, numSecs64, temp);
+
+ /* apply the GMT and DST offsets */
+ LL_I2L(temp, copy.tm_params.tp_gmt_offset);
+ LL_SUB(numSecs64, numSecs64, temp);
+ LL_I2L(temp, copy.tm_params.tp_dst_offset);
+ LL_SUB(numSecs64, numSecs64, temp);
+
+ LL_I2L(usecPerSec, 1000000L);
+ LL_MUL(temp, numSecs64, usecPerSec);
+ LL_I2L(retVal, copy.tm_usec);
+ LL_ADD(retVal, retVal, temp);
+
+ return retVal;
+}
+
+/*
+ *-------------------------------------------------------------------------
+ *
+ * IsLeapYear --
+ *
+ * Returns 1 if the year is a leap year, 0 otherwise.
+ *
+ *-------------------------------------------------------------------------
+ */
+
+static int IsLeapYear(PRInt16 year)
+{
+ if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) {
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * 'secOffset' should be less than 86400 (i.e., a day).
+ * 'time' should point to a normalized PRExplodedTime.
+ */
+
+static void
+ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
+{
+ time->tm_sec += secOffset;
+
+ /* Note that in this implementation we do not count leap seconds */
+ if (time->tm_sec < 0 || time->tm_sec >= 60) {
+ time->tm_min += time->tm_sec / 60;
+ time->tm_sec %= 60;
+ if (time->tm_sec < 0) {
+ time->tm_sec += 60;
+ time->tm_min--;
+ }
+ }
+
+ if (time->tm_min < 0 || time->tm_min >= 60) {
+ time->tm_hour += time->tm_min / 60;
+ time->tm_min %= 60;
+ if (time->tm_min < 0) {
+ time->tm_min += 60;
+ time->tm_hour--;
+ }
+ }
+
+ if (time->tm_hour < 0) {
+ /* Decrement mday, yday, and wday */
+ time->tm_hour += 24;
+ time->tm_mday--;
+ time->tm_yday--;
+ if (time->tm_mday < 1) {
+ time->tm_month--;
+ if (time->tm_month < 0) {
+ time->tm_month = 11;
+ time->tm_year--;
+ if (IsLeapYear(time->tm_year)) {
+ time->tm_yday = 365;
+ }
+ else {
+ time->tm_yday = 364;
+ }
+ }
+ time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
+ }
+ time->tm_wday--;
+ if (time->tm_wday < 0) {
+ time->tm_wday = 6;
+ }
+ } else if (time->tm_hour > 23) {
+ /* Increment mday, yday, and wday */
+ time->tm_hour -= 24;
+ time->tm_mday++;
+ time->tm_yday++;
+ if (time->tm_mday >
+ nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
+ time->tm_mday = 1;
+ time->tm_month++;
+ if (time->tm_month > 11) {
+ time->tm_month = 0;
+ time->tm_year++;
+ time->tm_yday = 0;
+ }
+ }
+ time->tm_wday++;
+ if (time->tm_wday > 6) {
+ time->tm_wday = 0;
+ }
+ }
+}
+
+PR_IMPLEMENT(void)
+PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
+{
+ int daysInMonth;
+ PRInt32 numDays;
+
+ /* Get back to GMT */
+ time->tm_sec -= time->tm_params.tp_gmt_offset
+ + time->tm_params.tp_dst_offset;
+ time->tm_params.tp_gmt_offset = 0;
+ time->tm_params.tp_dst_offset = 0;
+
+ /* Now normalize GMT */
+
+ if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
+ time->tm_sec += time->tm_usec / 1000000;
+ time->tm_usec %= 1000000;
+ if (time->tm_usec < 0) {
+ time->tm_usec += 1000000;
+ time->tm_sec--;
+ }
+ }
+
+ /* Note that we do not count leap seconds in this implementation */
+ if (time->tm_sec < 0 || time->tm_sec >= 60) {
+ time->tm_min += time->tm_sec / 60;
+ time->tm_sec %= 60;
+ if (time->tm_sec < 0) {
+ time->tm_sec += 60;
+ time->tm_min--;
+ }
+ }
+
+ if (time->tm_min < 0 || time->tm_min >= 60) {
+ time->tm_hour += time->tm_min / 60;
+ time->tm_min %= 60;
+ if (time->tm_min < 0) {
+ time->tm_min += 60;
+ time->tm_hour--;
+ }
+ }
+
+ if (time->tm_hour < 0 || time->tm_hour >= 24) {
+ time->tm_mday += time->tm_hour / 24;
+ time->tm_hour %= 24;
+ if (time->tm_hour < 0) {
+ time->tm_hour += 24;
+ time->tm_mday--;
+ }
+ }
+
+ /* Normalize month and year before mday */
+ if (time->tm_month < 0 || time->tm_month >= 12) {
+ time->tm_year += time->tm_month / 12;
+ time->tm_month %= 12;
+ if (time->tm_month < 0) {
+ time->tm_month += 12;
+ time->tm_year--;
+ }
+ }
+
+ /* Now that month and year are in proper range, normalize mday */
+
+ if (time->tm_mday < 1) {
+ /* mday too small */
+ do {
+ /* the previous month */
+ time->tm_month--;
+ if (time->tm_month < 0) {
+ time->tm_month = 11;
+ time->tm_year--;
+ }
+ time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
+ } while (time->tm_mday < 1);
+ } else {
+ daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
+ while (time->tm_mday > daysInMonth) {
+ /* mday too large */
+ time->tm_mday -= daysInMonth;
+ time->tm_month++;
+ if (time->tm_month > 11) {
+ time->tm_month = 0;
+ time->tm_year++;
+ }
+ daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
+ }
+ }
+
+ /* Recompute yday and wday */
+ time->tm_yday = time->tm_mday +
+ lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
+
+ numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
+ time->tm_wday = (numDays + 4) % 7;
+ if (time->tm_wday < 0) {
+ time->tm_wday += 7;
+ }
+
+ /* Recompute time parameters */
+
+ time->tm_params = params(time);
+
+ ApplySecOffset(time, time->tm_params.tp_gmt_offset
+ + time->tm_params.tp_dst_offset);
+}
+
+
+/*
+ *-------------------------------------------------------------------------
+ *
+ * PR_LocalTimeParameters --
+ *
+ * returns the time parameters for the local time zone
+ *
+ * The following uses localtime() from the standard C library.
+ * (time.h) This is our fallback implementation. Unix, PC, and BeOS
+ * use this version. A platform may have its own machine-dependent
+ * implementation of this function.
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#if defined(HAVE_INT_LOCALTIME_R)
+
+/*
+ * In this case we could define the macro as
+ * #define MT_safe_localtime(timer, result) \
+ * (localtime_r(timer, result) == 0 ? result : NULL)
+ * I chose to compare the return value of localtime_r with -1 so
+ * that I can catch the cases where localtime_r returns a pointer
+ * to struct tm. The macro definition above would not be able to
+ * detect such mistakes because it is legal to compare a pointer
+ * with 0.
+ */
+
+#define MT_safe_localtime(timer, result) \
+ (localtime_r(timer, result) == -1 ? NULL: result)
+
+#elif defined(HAVE_POINTER_LOCALTIME_R)
+
+#define MT_safe_localtime localtime_r
+
+#elif defined(_MSC_VER)
+
+/* Visual C++ has had localtime_s() since Visual C++ 2005. */
+
+static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result)
+{
+ errno_t err = localtime_s(result, clock);
+ if (err != 0) {
+ errno = err;
+ return NULL;
+ }
+ return result;
+}
+
+#else
+
+#define HAVE_LOCALTIME_MONITOR 1 /* We use 'monitor' to serialize our calls
+ * to localtime(). */
+static PRLock *monitor = NULL;
+
+static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result)
+{
+ struct tm *tmPtr;
+ int needLock = PR_Initialized(); /* We need to use a lock to protect
+ * against NSPR threads only when the
+ * NSPR thread system is activated. */
+
+ if (needLock) {
+ PR_Lock(monitor);
+ }
+
+ /*
+ * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
+ * represents a time before midnight January 1, 1970. In
+ * that case, we also return a NULL pointer and the struct tm
+ * object pointed to by 'result' is not modified.
+ *
+ * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long
+ * hence, does not recognize negative values of clock as pre-1/1/70.
+ * We have to manually check (WIN16 only) for negative value of
+ * clock and return NULL.
+ *
+ * With negative values of clock, OS/2 returns the struct tm for
+ * clock plus ULONG_MAX. So we also have to check for the invalid
+ * structs returned for timezones west of Greenwich when clock == 0.
+ */
+
+ tmPtr = localtime(clock);
+
+#if defined(WIN16) || defined(XP_OS2)
+ if ( (PRInt32) *clock < 0 ||
+ ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70)) {
+ result = NULL;
+ }
+ else {
+ *result = *tmPtr;
+ }
+#else
+ if (tmPtr) {
+ *result = *tmPtr;
+ } else {
+ result = NULL;
+ }
+#endif /* WIN16 */
+
+ if (needLock) {
+ PR_Unlock(monitor);
+ }
+
+ return result;
+}
+
+#endif /* definition of MT_safe_localtime() */
+
+void _PR_InitTime(void)
+{
+#ifdef HAVE_LOCALTIME_MONITOR
+ monitor = PR_NewLock();
+#endif
+#ifdef WINCE
+ _MD_InitTime();
+#endif
+}
+
+void _PR_CleanupTime(void)
+{
+#ifdef HAVE_LOCALTIME_MONITOR
+ if (monitor) {
+ PR_DestroyLock(monitor);
+ monitor = NULL;
+ }
+#endif
+#ifdef WINCE
+ _MD_CleanupTime();
+#endif
+}
+
+#if defined(XP_UNIX) || defined(XP_PC)
+
+PR_IMPLEMENT(PRTimeParameters)
+PR_LocalTimeParameters(const PRExplodedTime *gmt)
+{
+
+ PRTimeParameters retVal;
+ struct tm localTime;
+ struct tm *localTimeResult;
+ time_t secs;
+ PRTime secs64;
+ PRInt64 usecPerSec;
+ PRInt64 usecPerSec_1;
+ PRInt64 maxInt32;
+ PRInt64 minInt32;
+ PRInt32 dayOffset;
+ PRInt32 offset2Jan1970;
+ PRInt32 offsetNew;
+ int isdst2Jan1970;
+
+ /*
+ * Calculate the GMT offset. First, figure out what is
+ * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
+ * seconds, since the epoch) in local time. Then we calculate
+ * the difference between local time and GMT in seconds:
+ * gmt_offset = local_time - GMT
+ *
+ * Caveat: the validity of this calculation depends on two
+ * assumptions:
+ * 1. Daylight saving time was not in effect on Jan. 2, 1970.
+ * 2. The time zone of the geographic location has not changed
+ * since Jan. 2, 1970.
+ */
+
+ secs = 86400L;
+ localTimeResult = MT_safe_localtime(&secs, &localTime);
+ PR_ASSERT(localTimeResult != NULL);
+ if (localTimeResult == NULL) {
+ /* Shouldn't happen. Use safe fallback for optimized builds. */
+ return PR_GMTParameters(gmt);
+ }
+
+ /* GMT is 00:00:00, 2nd of Jan. */
+
+ offset2Jan1970 = (PRInt32)localTime.tm_sec
+ + 60L * (PRInt32)localTime.tm_min
+ + 3600L * (PRInt32)localTime.tm_hour
+ + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
+
+ isdst2Jan1970 = localTime.tm_isdst;
+
+ /*
+ * Now compute DST offset. We calculate the overall offset
+ * of local time from GMT, similar to above. The overall
+ * offset has two components: gmt offset and dst offset.
+ * We subtract gmt offset from the overall offset to get
+ * the dst offset.
+ * overall_offset = local_time - GMT
+ * overall_offset = gmt_offset + dst_offset
+ * ==> dst_offset = local_time - GMT - gmt_offset
+ */
+
+ secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */
+ LL_I2L(usecPerSec, PR_USEC_PER_SEC);
+ LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1);
+ /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */
+ if (LL_GE_ZERO(secs64)) {
+ LL_DIV(secs64, secs64, usecPerSec);
+ } else {
+ LL_NEG(secs64, secs64);
+ LL_ADD(secs64, secs64, usecPerSec_1);
+ LL_DIV(secs64, secs64, usecPerSec);
+ LL_NEG(secs64, secs64);
+ }
+ LL_I2L(maxInt32, PR_INT32_MAX);
+ LL_I2L(minInt32, PR_INT32_MIN);
+ if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
+ /* secs64 is too large or too small for time_t (32-bit integer) */
+ retVal.tp_gmt_offset = offset2Jan1970;
+ retVal.tp_dst_offset = 0;
+ return retVal;
+ }
+ LL_L2I(secs, secs64);
+
+ /*
+ * On Windows, localtime() (and our MT_safe_localtime() too)
+ * returns a NULL pointer for time before midnight January 1,
+ * 1970 GMT. In that case, we just use the GMT offset for
+ * Jan 2, 1970 and assume that DST was not in effect.
+ */
+
+ if (MT_safe_localtime(&secs, &localTime) == NULL) {
+ retVal.tp_gmt_offset = offset2Jan1970;
+ retVal.tp_dst_offset = 0;
+ return retVal;
+ }
+
+ /*
+ * dayOffset is the offset between local time and GMT in
+ * the day component, which can only be -1, 0, or 1. We
+ * use the day of the week to compute dayOffset.
+ */
+
+ dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday;
+
+ /*
+ * Need to adjust for wrapping around of day of the week from
+ * 6 back to 0.
+ */
+
+ if (dayOffset == -6) {
+ /* Local time is Sunday (0) and GMT is Saturday (6) */
+ dayOffset = 1;
+ } else if (dayOffset == 6) {
+ /* Local time is Saturday (6) and GMT is Sunday (0) */
+ dayOffset = -1;
+ }
+
+ offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec
+ + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min)
+ + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour)
+ + 86400L * (PRInt32)dayOffset;
+
+ if (localTime.tm_isdst <= 0) {
+ /* DST is not in effect */
+ retVal.tp_gmt_offset = offsetNew;
+ retVal.tp_dst_offset = 0;
+ } else {
+ /* DST is in effect */
+ if (isdst2Jan1970 <=0) {
+ /*
+ * DST was not in effect back in 2 Jan. 1970.
+ * Use the offset back then as the GMT offset,
+ * assuming the time zone has not changed since then.
+ */
+ retVal.tp_gmt_offset = offset2Jan1970;
+ retVal.tp_dst_offset = offsetNew - offset2Jan1970;
+ } else {
+ /*
+ * DST was also in effect back in 2 Jan. 1970.
+ * Then our clever trick (or rather, ugly hack) fails.
+ * We will just assume DST offset is an hour.
+ */
+ retVal.tp_gmt_offset = offsetNew - 3600;
+ retVal.tp_dst_offset = 3600;
+ }
+ }
+
+ return retVal;
+}
+
+#endif /* defined(XP_UNIX) || defined(XP_PC) */
+
+/*
+ *------------------------------------------------------------------------
+ *
+ * PR_USPacificTimeParameters --
+ *
+ * The time parameters function for the US Pacific Time Zone.
+ *
+ *------------------------------------------------------------------------
+ */
+
+/*
+ * Returns the mday of the first sunday of the month, where
+ * mday and wday are for a given day in the month.
+ * mdays start with 1 (e.g. 1..31).
+ * wdays start with 0 and are in the range 0..6. 0 = Sunday.
+ */
+#define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1)
+
+/*
+ * Returns the mday for the N'th Sunday of the month, where
+ * mday and wday are for a given day in the month.
+ * mdays start with 1 (e.g. 1..31).
+ * wdays start with 0 and are in the range 0..6. 0 = Sunday.
+ * N has the following values: 0 = first, 1 = second (etc), -1 = last.
+ * ndays is the number of days in that month, the same value as the
+ * mday of the last day of the month.
+ */
+static PRInt32
+NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays)
+{
+ PRInt32 firstSun = firstSunday(mday, wday);
+
+ if (N < 0) {
+ N = (ndays - firstSun) / 7;
+ }
+ return firstSun + (7 * N);
+}
+
+typedef struct DSTParams {
+ PRInt8 dst_start_month; /* 0 = January */
+ PRInt8 dst_start_Nth_Sunday; /* N as defined above */
+ PRInt8 dst_start_month_ndays; /* ndays as defined above */
+ PRInt8 dst_end_month; /* 0 = January */
+ PRInt8 dst_end_Nth_Sunday; /* N as defined above */
+ PRInt8 dst_end_month_ndays; /* ndays as defined above */
+} DSTParams;
+
+static const DSTParams dstParams[2] = {
+ /* year < 2007: First April Sunday - Last October Sunday */
+ { 3, 0, 30, 9, -1, 31 },
+ /* year >= 2007: Second March Sunday - First November Sunday */
+ { 2, 1, 31, 10, 0, 30 }
+};
+
+PR_IMPLEMENT(PRTimeParameters)
+PR_USPacificTimeParameters(const PRExplodedTime *gmt)
+{
+ const DSTParams *dst;
+ PRTimeParameters retVal;
+ PRExplodedTime st;
+
+ /*
+ * Based on geographic location and GMT, figure out offset of
+ * standard time from GMT. In this example implementation, we
+ * assume the local time zone is US Pacific Time.
+ */
+
+ retVal.tp_gmt_offset = -8L * 3600L;
+
+ /*
+ * Make a copy of GMT. Note that the tm_params field of this copy
+ * is ignored.
+ */
+
+ st.tm_usec = gmt->tm_usec;
+ st.tm_sec = gmt->tm_sec;
+ st.tm_min = gmt->tm_min;
+ st.tm_hour = gmt->tm_hour;
+ st.tm_mday = gmt->tm_mday;
+ st.tm_month = gmt->tm_month;
+ st.tm_year = gmt->tm_year;
+ st.tm_wday = gmt->tm_wday;
+ st.tm_yday = gmt->tm_yday;
+
+ /* Apply the offset to GMT to obtain the local standard time */
+ ApplySecOffset(&st, retVal.tp_gmt_offset);
+
+ if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */
+ dst = &dstParams[0];
+ } else { /* Second March Sunday - First November Sunday */
+ dst = &dstParams[1];
+ }
+
+ /*
+ * Apply the rules on standard time or GMT to obtain daylight saving
+ * time offset. In this implementation, we use the US DST rule.
+ */
+ if (st.tm_month < dst->dst_start_month) {
+ retVal.tp_dst_offset = 0L;
+ } else if (st.tm_month == dst->dst_start_month) {
+ int NthSun = NthSunday(st.tm_mday, st.tm_wday,
+ dst->dst_start_Nth_Sunday,
+ dst->dst_start_month_ndays);
+ if (st.tm_mday < NthSun) { /* Before starting Sunday */
+ retVal.tp_dst_offset = 0L;
+ } else if (st.tm_mday == NthSun) { /* Starting Sunday */
+ /* 01:59:59 PST -> 03:00:00 PDT */
+ if (st.tm_hour < 2) {
+ retVal.tp_dst_offset = 0L;
+ } else {
+ retVal.tp_dst_offset = 3600L;
+ }
+ } else { /* After starting Sunday */
+ retVal.tp_dst_offset = 3600L;
+ }
+ } else if (st.tm_month < dst->dst_end_month) {
+ retVal.tp_dst_offset = 3600L;
+ } else if (st.tm_month == dst->dst_end_month) {
+ int NthSun = NthSunday(st.tm_mday, st.tm_wday,
+ dst->dst_end_Nth_Sunday,
+ dst->dst_end_month_ndays);
+ if (st.tm_mday < NthSun) { /* Before ending Sunday */
+ retVal.tp_dst_offset = 3600L;
+ } else if (st.tm_mday == NthSun) { /* Ending Sunday */
+ /* 01:59:59 PDT -> 01:00:00 PST */
+ if (st.tm_hour < 1) {
+ retVal.tp_dst_offset = 3600L;
+ } else {
+ retVal.tp_dst_offset = 0L;
+ }
+ } else { /* After ending Sunday */
+ retVal.tp_dst_offset = 0L;
+ }
+ } else {
+ retVal.tp_dst_offset = 0L;
+ }
+ return retVal;
+}
+
+/*
+ *------------------------------------------------------------------------
+ *
+ * PR_GMTParameters --
+ *
+ * Returns the PRTimeParameters for Greenwich Mean Time.
+ * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
+ *
+ *------------------------------------------------------------------------
+ */
+
+PR_IMPLEMENT(PRTimeParameters)
+PR_GMTParameters(const PRExplodedTime *gmt)
+{
+ PRTimeParameters retVal = { 0, 0 };
+ return retVal;
+}
+
+/*
+ * The following code implements PR_ParseTimeString(). It is based on
+ * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
+ */
+
+/*
+ * We only recognize the abbreviations of a small subset of time zones
+ * in North America, Europe, and Japan.
+ *
+ * PST/PDT: Pacific Standard/Daylight Time
+ * MST/MDT: Mountain Standard/Daylight Time
+ * CST/CDT: Central Standard/Daylight Time
+ * EST/EDT: Eastern Standard/Daylight Time
+ * AST: Atlantic Standard Time
+ * NST: Newfoundland Standard Time
+ * GMT: Greenwich Mean Time
+ * BST: British Summer Time
+ * MET: Middle Europe Time
+ * EET: Eastern Europe Time
+ * JST: Japan Standard Time
+ */
+
+typedef enum
+{
+ TT_UNKNOWN,
+
+ TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
+
+ TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
+ TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
+
+ TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
+ TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
+} TIME_TOKEN;
+
+/*
+ * This parses a time/date string into a PRTime
+ * (microseconds after "1-Jan-1970 00:00:00 GMT").
+ * It returns PR_SUCCESS on success, and PR_FAILURE
+ * if the time/date string can't be parsed.
+ *
+ * Many formats are handled, including:
+ *
+ * 14 Apr 89 03:20:12
+ * 14 Apr 89 03:20 GMT
+ * Fri, 17 Mar 89 4:01:33
+ * Fri, 17 Mar 89 4:01 GMT
+ * Mon Jan 16 16:12 PDT 1989
+ * Mon Jan 16 16:12 +0130 1989
+ * 6 May 1992 16:41-JST (Wednesday)
+ * 22-AUG-1993 10:59:12.82
+ * 22-AUG-1993 10:59pm
+ * 22-AUG-1993 12:59am
+ * 22-AUG-1993 12:59 PM
+ * Friday, August 04, 1995 3:54 PM
+ * 06/21/95 04:24:34 PM
+ * 20/06/95 21:07
+ * 95-06-08 19:32:48 EDT
+ *
+ * If the input string doesn't contain a description of the timezone,
+ * we consult the `default_to_gmt' to decide whether the string should
+ * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
+ * The correct value for this argument depends on what standard specified
+ * the time string which you are parsing.
+ */
+
+PR_IMPLEMENT(PRStatus)
+PR_ParseTimeStringToExplodedTime(
+ const char *string,
+ PRBool default_to_gmt,
+ PRExplodedTime *result)
+{
+ TIME_TOKEN dotw = TT_UNKNOWN;
+ TIME_TOKEN month = TT_UNKNOWN;
+ TIME_TOKEN zone = TT_UNKNOWN;
+ int zone_offset = -1;
+ int dst_offset = 0;
+ int date = -1;
+ PRInt32 year = -1;
+ int hour = -1;
+ int min = -1;
+ int sec = -1;
+ struct tm *localTimeResult;
+
+ const char *rest = string;
+
+ int iterations = 0;
+
+ PR_ASSERT(string && result);
+ if (!string || !result) {
+ return PR_FAILURE;
+ }
+
+ while (*rest)
+ {
+
+ if (iterations++ > 1000)
+ {
+ return PR_FAILURE;
+ }
+
+ switch (*rest)
+ {
+ case 'a': case 'A':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'p' || rest[1] == 'P') &&
+ (rest[2] == 'r' || rest[2] == 'R')) {
+ month = TT_APR;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_AST;
+ }
+ else if (month == TT_UNKNOWN &&
+ (rest[1] == 'u' || rest[1] == 'U') &&
+ (rest[2] == 'g' || rest[2] == 'G')) {
+ month = TT_AUG;
+ }
+ break;
+ case 'b': case 'B':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_BST;
+ }
+ break;
+ case 'c': case 'C':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 'd' || rest[1] == 'D') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_CDT;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_CST;
+ }
+ break;
+ case 'd': case 'D':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 'c' || rest[2] == 'C')) {
+ month = TT_DEC;
+ }
+ break;
+ case 'e': case 'E':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 'd' || rest[1] == 'D') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_EDT;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_EET;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_EST;
+ }
+ break;
+ case 'f': case 'F':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 'b' || rest[2] == 'B')) {
+ month = TT_FEB;
+ }
+ else if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'r' || rest[1] == 'R') &&
+ (rest[2] == 'i' || rest[2] == 'I')) {
+ dotw = TT_FRI;
+ }
+ break;
+ case 'g': case 'G':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 'm' || rest[1] == 'M') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_GMT;
+ }
+ break;
+ case 'j': case 'J':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'a' || rest[1] == 'A') &&
+ (rest[2] == 'n' || rest[2] == 'N')) {
+ month = TT_JAN;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_JST;
+ }
+ else if (month == TT_UNKNOWN &&
+ (rest[1] == 'u' || rest[1] == 'U') &&
+ (rest[2] == 'l' || rest[2] == 'L')) {
+ month = TT_JUL;
+ }
+ else if (month == TT_UNKNOWN &&
+ (rest[1] == 'u' || rest[1] == 'U') &&
+ (rest[2] == 'n' || rest[2] == 'N')) {
+ month = TT_JUN;
+ }
+ break;
+ case 'm': case 'M':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'a' || rest[1] == 'A') &&
+ (rest[2] == 'r' || rest[2] == 'R')) {
+ month = TT_MAR;
+ }
+ else if (month == TT_UNKNOWN &&
+ (rest[1] == 'a' || rest[1] == 'A') &&
+ (rest[2] == 'y' || rest[2] == 'Y')) {
+ month = TT_MAY;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 'd' || rest[1] == 'D') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_MDT;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_MET;
+ }
+ else if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'o' || rest[1] == 'O') &&
+ (rest[2] == 'n' || rest[2] == 'N')) {
+ dotw = TT_MON;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_MST;
+ }
+ break;
+ case 'n': case 'N':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'o' || rest[1] == 'O') &&
+ (rest[2] == 'v' || rest[2] == 'V')) {
+ month = TT_NOV;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_NST;
+ }
+ break;
+ case 'o': case 'O':
+ if (month == TT_UNKNOWN &&
+ (rest[1] == 'c' || rest[1] == 'C') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ month = TT_OCT;
+ }
+ break;
+ case 'p': case 'P':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 'd' || rest[1] == 'D') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_PDT;
+ }
+ else if (zone == TT_UNKNOWN &&
+ (rest[1] == 's' || rest[1] == 'S') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ zone = TT_PST;
+ }
+ break;
+ case 's': case 'S':
+ if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'a' || rest[1] == 'A') &&
+ (rest[2] == 't' || rest[2] == 'T')) {
+ dotw = TT_SAT;
+ }
+ else if (month == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 'p' || rest[2] == 'P')) {
+ month = TT_SEP;
+ }
+ else if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'u' || rest[1] == 'U') &&
+ (rest[2] == 'n' || rest[2] == 'N')) {
+ dotw = TT_SUN;
+ }
+ break;
+ case 't': case 'T':
+ if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'h' || rest[1] == 'H') &&
+ (rest[2] == 'u' || rest[2] == 'U')) {
+ dotw = TT_THU;
+ }
+ else if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'u' || rest[1] == 'U') &&
+ (rest[2] == 'e' || rest[2] == 'E')) {
+ dotw = TT_TUE;
+ }
+ break;
+ case 'u': case 'U':
+ if (zone == TT_UNKNOWN &&
+ (rest[1] == 't' || rest[1] == 'T') &&
+ !(rest[2] >= 'A' && rest[2] <= 'Z') &&
+ !(rest[2] >= 'a' && rest[2] <= 'z'))
+ /* UT is the same as GMT but UTx is not. */
+ {
+ zone = TT_GMT;
+ }
+ break;
+ case 'w': case 'W':
+ if (dotw == TT_UNKNOWN &&
+ (rest[1] == 'e' || rest[1] == 'E') &&
+ (rest[2] == 'd' || rest[2] == 'D')) {
+ dotw = TT_WED;
+ }
+ break;
+
+ case '+': case '-':
+ {
+ const char *end;
+ int sign;
+ if (zone_offset != -1)
+ {
+ /* already got one... */
+ rest++;
+ break;
+ }
+ if (zone != TT_UNKNOWN && zone != TT_GMT)
+ {
+ /* GMT+0300 is legal, but PST+0300 is not. */
+ rest++;
+ break;
+ }
+
+ sign = ((*rest == '+') ? 1 : -1);
+ rest++; /* move over sign */
+ end = rest;
+ while (*end >= '0' && *end <= '9') {
+ end++;
+ }
+ if (rest == end) { /* no digits here */
+ break;
+ }
+
+ if ((end - rest) == 4)
+ /* offset in HHMM */
+ zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
+ (((rest[2]-'0')*10) + (rest[3]-'0')));
+ else if ((end - rest) == 2)
+ /* offset in hours */
+ {
+ zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
+ }
+ else if ((end - rest) == 1)
+ /* offset in hours */
+ {
+ zone_offset = (rest[0]-'0') * 60;
+ }
+ else
+ /* 3 or >4 */
+ {
+ break;
+ }
+
+ zone_offset *= sign;
+ zone = TT_GMT;
+ break;
+ }
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ {
+ int tmp_hour = -1;
+ int tmp_min = -1;
+ int tmp_sec = -1;
+ const char *end = rest + 1;
+ while (*end >= '0' && *end <= '9') {
+ end++;
+ }
+
+ /* end is now the first character after a range of digits. */
+
+ if (*end == ':')
+ {
+ if (hour >= 0 && min >= 0) { /* already got it */
+ break;
+ }
+
+ /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
+ if ((end - rest) > 2)
+ /* it is [0-9][0-9][0-9]+: */
+ {
+ break;
+ }
+ if ((end - rest) == 2)
+ tmp_hour = ((rest[0]-'0')*10 +
+ (rest[1]-'0'));
+ else {
+ tmp_hour = (rest[0]-'0');
+ }
+
+ /* move over the colon, and parse minutes */
+
+ rest = ++end;
+ while (*end >= '0' && *end <= '9') {
+ end++;
+ }
+
+ if (end == rest)
+ /* no digits after first colon? */
+ {
+ break;
+ }
+ if ((end - rest) > 2)
+ /* it is [0-9][0-9][0-9]+: */
+ {
+ break;
+ }
+ if ((end - rest) == 2)
+ tmp_min = ((rest[0]-'0')*10 +
+ (rest[1]-'0'));
+ else {
+ tmp_min = (rest[0]-'0');
+ }
+
+ /* now go for seconds */
+ rest = end;
+ if (*rest == ':') {
+ rest++;
+ }
+ end = rest;
+ while (*end >= '0' && *end <= '9') {
+ end++;
+ }
+
+ if (end == rest)
+ /* no digits after second colon - that's ok. */
+ ;
+ else if ((end - rest) > 2)
+ /* it is [0-9][0-9][0-9]+: */
+ {
+ break;
+ }
+ if ((end - rest) == 2)
+ tmp_sec = ((rest[0]-'0')*10 +
+ (rest[1]-'0'));
+ else {
+ tmp_sec = (rest[0]-'0');
+ }
+
+ /* If we made it here, we've parsed hour and min,
+ and possibly sec, so it worked as a unit. */
+
+ /* skip over whitespace and see if there's an AM or PM
+ directly following the time.
+ */
+ if (tmp_hour <= 12)
+ {
+ const char *s = end;
+ while (*s && (*s == ' ' || *s == '\t')) {
+ s++;
+ }
+ if ((s[0] == 'p' || s[0] == 'P') &&
+ (s[1] == 'm' || s[1] == 'M'))
+ /* 10:05pm == 22:05, and 12:05pm == 12:05 */
+ {
+ tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
+ }
+ else if (tmp_hour == 12 &&
+ (s[0] == 'a' || s[0] == 'A') &&
+ (s[1] == 'm' || s[1] == 'M'))
+ /* 12:05am == 00:05 */
+ {
+ tmp_hour = 0;
+ }
+ }
+
+ hour = tmp_hour;
+ min = tmp_min;
+ sec = tmp_sec;
+ rest = end;
+ break;
+ }
+ if ((*end == '/' || *end == '-') &&
+ end[1] >= '0' && end[1] <= '9')
+ {
+ /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
+ or even 95-06-05...
+ #### But it doesn't handle 1995-06-22.
+ */
+ int n1, n2, n3;
+ const char *s;
+
+ if (month != TT_UNKNOWN)
+ /* if we saw a month name, this can't be. */
+ {
+ break;
+ }
+
+ s = rest;
+
+ n1 = (*s++ - '0'); /* first 1 or 2 digits */
+ if (*s >= '0' && *s <= '9') {
+ n1 = n1*10 + (*s++ - '0');
+ }
+
+ if (*s != '/' && *s != '-') { /* slash */
+ break;
+ }
+ s++;
+
+ if (*s < '0' || *s > '9') { /* second 1 or 2 digits */
+ break;
+ }
+ n2 = (*s++ - '0');
+ if (*s >= '0' && *s <= '9') {
+ n2 = n2*10 + (*s++ - '0');
+ }
+
+ if (*s != '/' && *s != '-') { /* slash */
+ break;
+ }
+ s++;
+
+ if (*s < '0' || *s > '9') { /* third 1, 2, 4, or 5 digits */
+ break;
+ }
+ n3 = (*s++ - '0');
+ if (*s >= '0' && *s <= '9') {
+ n3 = n3*10 + (*s++ - '0');
+ }
+
+ if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
+ {
+ n3 = n3*10 + (*s++ - '0');
+ if (*s < '0' || *s > '9') {
+ break;
+ }
+ n3 = n3*10 + (*s++ - '0');
+ if (*s >= '0' && *s <= '9') {
+ n3 = n3*10 + (*s++ - '0');
+ }
+ }
+
+ if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
+ (*s >= 'A' && *s <= 'Z') ||
+ (*s >= 'a' && *s <= 'z')) {
+ break;
+ }
+
+ /* Ok, we parsed three 1-2 digit numbers, with / or -
+ between them. Now decide what the hell they are
+ (DD/MM/YY or MM/DD/YY or YY/MM/DD.)
+ */
+
+ if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
+ {
+ if (n2 > 12) {
+ break;
+ }
+ if (n3 > 31) {
+ break;
+ }
+ year = n1;
+ if (year < 70) {
+ year += 2000;
+ }
+ else if (year < 100) {
+ year += 1900;
+ }
+ month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
+ date = n3;
+ rest = s;
+ break;
+ }
+
+ if (n1 > 12 && n2 > 12) /* illegal */
+ {
+ rest = s;
+ break;
+ }
+
+ if (n3 < 70) {
+ n3 += 2000;
+ }
+ else if (n3 < 100) {
+ n3 += 1900;
+ }
+
+ if (n1 > 12) /* must be DD/MM/YY */
+ {
+ date = n1;
+ month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
+ year = n3;
+ }
+ else /* assume MM/DD/YY */
+ {
+ /* #### In the ambiguous case, should we consult the
+ locale to find out the local default? */
+ month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
+ date = n2;
+ year = n3;
+ }
+ rest = s;
+ }
+ else if ((*end >= 'A' && *end <= 'Z') ||
+ (*end >= 'a' && *end <= 'z'))
+ /* Digits followed by non-punctuation - what's that? */
+ ;
+ else if ((end - rest) == 5) /* five digits is a year */
+ year = (year < 0
+ ? ((rest[0]-'0')*10000L +
+ (rest[1]-'0')*1000L +
+ (rest[2]-'0')*100L +
+ (rest[3]-'0')*10L +
+ (rest[4]-'0'))
+ : year);
+ else if ((end - rest) == 4) /* four digits is a year */
+ year = (year < 0
+ ? ((rest[0]-'0')*1000L +
+ (rest[1]-'0')*100L +
+ (rest[2]-'0')*10L +
+ (rest[3]-'0'))
+ : year);
+ else if ((end - rest) == 2) /* two digits - date or year */
+ {
+ int n = ((rest[0]-'0')*10 +
+ (rest[1]-'0'));
+ /* If we don't have a date (day of the month) and we see a number
+ less than 32, then assume that is the date.
+
+ Otherwise, if we have a date and not a year, assume this is the
+ year. If it is less than 70, then assume it refers to the 21st
+ century. If it is two digits (>= 70), assume it refers to this
+ century. Otherwise, assume it refers to an unambiguous year.
+
+ The world will surely end soon.
+ */
+ if (date < 0 && n < 32) {
+ date = n;
+ }
+ else if (year < 0)
+ {
+ if (n < 70) {
+ year = 2000 + n;
+ }
+ else if (n < 100) {
+ year = 1900 + n;
+ }
+ else {
+ year = n;
+ }
+ }
+ /* else what the hell is this. */
+ }
+ else if ((end - rest) == 1) { /* one digit - date */
+ date = (date < 0 ? (rest[0]-'0') : date);
+ }
+ /* else, three or more than five digits - what's that? */
+
+ break;
+ }
+ }
+
+ /* Skip to the end of this token, whether we parsed it or not.
+ Tokens are delimited by whitespace, or ,;-/
+ But explicitly not :+-.
+ */
+ while (*rest &&
+ *rest != ' ' && *rest != '\t' &&
+ *rest != ',' && *rest != ';' &&
+ *rest != '-' && *rest != '+' &&
+ *rest != '/' &&
+ *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') {
+ rest++;
+ }
+ /* skip over uninteresting chars. */
+SKIP_MORE:
+ while (*rest &&
+ (*rest == ' ' || *rest == '\t' ||
+ *rest == ',' || *rest == ';' || *rest == '/' ||
+ *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) {
+ rest++;
+ }
+
+ /* "-" is ignored at the beginning of a token if we have not yet
+ parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
+ the character after the dash is not a digit. */
+ if (*rest == '-' && ((rest > string &&
+ isalpha((unsigned char)rest[-1]) && year < 0) ||
+ rest[1] < '0' || rest[1] > '9'))
+ {
+ rest++;
+ goto SKIP_MORE;
+ }
+
+ }
+
+ if (zone != TT_UNKNOWN && zone_offset == -1)
+ {
+ switch (zone)
+ {
+ case TT_PST: zone_offset = -8 * 60; break;
+ case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
+ case TT_MST: zone_offset = -7 * 60; break;
+ case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
+ case TT_CST: zone_offset = -6 * 60; break;
+ case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
+ case TT_EST: zone_offset = -5 * 60; break;
+ case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
+ case TT_AST: zone_offset = -4 * 60; break;
+ case TT_NST: zone_offset = -3 * 60 - 30; break;
+ case TT_GMT: zone_offset = 0 * 60; break;
+ case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
+ case TT_MET: zone_offset = 1 * 60; break;
+ case TT_EET: zone_offset = 2 * 60; break;
+ case TT_JST: zone_offset = 9 * 60; break;
+ default:
+ PR_ASSERT (0);
+ break;
+ }
+ }
+
+ /* If we didn't find a year, month, or day-of-the-month, we can't
+ possibly parse this, and in fact, mktime() will do something random
+ (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
+ a numerologically significant date... */
+ if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) {
+ return PR_FAILURE;
+ }
+
+ memset(result, 0, sizeof(*result));
+ if (sec != -1) {
+ result->tm_sec = sec;
+ }
+ if (min != -1) {
+ result->tm_min = min;
+ }
+ if (hour != -1) {
+ result->tm_hour = hour;
+ }
+ if (date != -1) {
+ result->tm_mday = date;
+ }
+ if (month != TT_UNKNOWN) {
+ result->tm_month = (((int)month) - ((int)TT_JAN));
+ }
+ if (year != -1) {
+ result->tm_year = year;
+ }
+ if (dotw != TT_UNKNOWN) {
+ result->tm_wday = (((int)dotw) - ((int)TT_SUN));
+ }
+ /*
+ * Mainly to compute wday and yday, but normalized time is also required
+ * by the check below that works around a Visual C++ 2005 mktime problem.
+ */
+ PR_NormalizeTime(result, PR_GMTParameters);
+ /* The remaining work is to set the gmt and dst offsets in tm_params. */
+
+ if (zone == TT_UNKNOWN && default_to_gmt)
+ {
+ /* No zone was specified, so pretend the zone was GMT. */
+ zone = TT_GMT;
+ zone_offset = 0;
+ }
+
+ if (zone_offset == -1)
+ {
+ /* no zone was specified, and we're to assume that everything
+ is local. */
+ struct tm localTime;
+ time_t secs;
+
+ PR_ASSERT(result->tm_month > -1 &&
+ result->tm_mday > 0 &&
+ result->tm_hour > -1 &&
+ result->tm_min > -1 &&
+ result->tm_sec > -1);
+
+ /*
+ * To obtain time_t from a tm structure representing the local
+ * time, we call mktime(). However, we need to see if we are
+ * on 1-Jan-1970 or before. If we are, we can't call mktime()
+ * because mktime() will crash on win16. In that case, we
+ * calculate zone_offset based on the zone offset at
+ * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
+ * date we are parsing to transform the date to GMT. We also
+ * do so if mktime() returns (time_t) -1 (time out of range).
+ */
+
+ /* month, day, hours, mins and secs are always non-negative
+ so we dont need to worry about them. */
+ if(result->tm_year >= 1970)
+ {
+ PRInt64 usec_per_sec;
+
+ localTime.tm_sec = result->tm_sec;
+ localTime.tm_min = result->tm_min;
+ localTime.tm_hour = result->tm_hour;
+ localTime.tm_mday = result->tm_mday;
+ localTime.tm_mon = result->tm_month;
+ localTime.tm_year = result->tm_year - 1900;
+ /* Set this to -1 to tell mktime "I don't care". If you set
+ it to 0 or 1, you are making assertions about whether the
+ date you are handing it is in daylight savings mode or not;
+ and if you're wrong, it will "fix" it for you. */
+ localTime.tm_isdst = -1;
+
+#if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
+ /*
+ * mktime will return (time_t) -1 if the input is a date
+ * after 23:59:59, December 31, 3000, US Pacific Time (not
+ * UTC as documented):
+ * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
+ * But if the year is 3001, mktime also invokes the invalid
+ * parameter handler, causing the application to crash. This
+ * problem has been reported in
+ * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
+ * We avoid this crash by not calling mktime if the date is
+ * out of range. To use a simple test that works in any time
+ * zone, we consider year 3000 out of range as well. (See
+ * bug 480740.)
+ */
+ if (result->tm_year >= 3000) {
+ /* Emulate what mktime would have done. */
+ errno = EINVAL;
+ secs = (time_t) -1;
+ } else {
+ secs = mktime(&localTime);
+ }
+#else
+ secs = mktime(&localTime);
+#endif
+ if (secs != (time_t) -1)
+ {
+ PRTime usecs64;
+ LL_I2L(usecs64, secs);
+ LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
+ LL_MUL(usecs64, usecs64, usec_per_sec);
+ PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result);
+ return PR_SUCCESS;
+ }
+ }
+
+ /* So mktime() can't handle this case. We assume the
+ zone_offset for the date we are parsing is the same as
+ the zone offset on 00:00:00 2 Jan 1970 GMT. */
+ secs = 86400;
+ localTimeResult = MT_safe_localtime(&secs, &localTime);
+ PR_ASSERT(localTimeResult != NULL);
+ if (localTimeResult == NULL) {
+ return PR_FAILURE;
+ }
+ zone_offset = localTime.tm_min
+ + 60 * localTime.tm_hour
+ + 1440 * (localTime.tm_mday - 2);
+ }
+
+ result->tm_params.tp_gmt_offset = zone_offset * 60;
+ result->tm_params.tp_dst_offset = dst_offset * 60;
+
+ return PR_SUCCESS;
+}
+
+PR_IMPLEMENT(PRStatus)
+PR_ParseTimeString(
+ const char *string,
+ PRBool default_to_gmt,
+ PRTime *result)
+{
+ PRExplodedTime tm;
+ PRStatus rv;
+
+ rv = PR_ParseTimeStringToExplodedTime(string,
+ default_to_gmt,
+ &tm);
+ if (rv != PR_SUCCESS) {
+ return rv;
+ }
+
+ *result = PR_ImplodeTime(&tm);
+
+ return PR_SUCCESS;
+}
+
+/*
+ *******************************************************************
+ *******************************************************************
+ **
+ ** OLD COMPATIBILITY FUNCTIONS
+ **
+ *******************************************************************
+ *******************************************************************
+ */
+
+
+/*
+ *-----------------------------------------------------------------------
+ *
+ * PR_FormatTime --
+ *
+ * Format a time value into a buffer. Same semantics as strftime().
+ *
+ *-----------------------------------------------------------------------
+ */
+
+PR_IMPLEMENT(PRUint32)
+PR_FormatTime(char *buf, int buflen, const char *fmt,
+ const PRExplodedTime *time)
+{
+ size_t rv;
+ struct tm a;
+ struct tm *ap;
+
+ if (time) {
+ ap = &a;
+ a.tm_sec = time->tm_sec;
+ a.tm_min = time->tm_min;
+ a.tm_hour = time->tm_hour;
+ a.tm_mday = time->tm_mday;
+ a.tm_mon = time->tm_month;
+ a.tm_wday = time->tm_wday;
+ a.tm_year = time->tm_year - 1900;
+ a.tm_yday = time->tm_yday;
+ a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0;
+
+ /*
+ * On some platforms, for example SunOS 4, struct tm has two
+ * additional fields: tm_zone and tm_gmtoff.
+ */
+
+#if (__GLIBC__ >= 2) || defined(NETBSD) \
+ || defined(OPENBSD) || defined(FREEBSD) \
+ || defined(DARWIN) || defined(ANDROID)
+ a.tm_zone = NULL;
+ a.tm_gmtoff = time->tm_params.tp_gmt_offset +
+ time->tm_params.tp_dst_offset;
+#endif
+ } else {
+ ap = NULL;
+ }
+
+ rv = strftime(buf, buflen, fmt, ap);
+ if (!rv && buf && buflen > 0) {
+ /*
+ * When strftime fails, the contents of buf are indeterminate.
+ * Some callers don't check the return value from this function,
+ * so store an empty string in buf in case they try to print it.
+ */
+ buf[0] = '\0';
+ }
+ return rv;
+}
+
+
+/*
+ * The following string arrays and macros are used by PR_FormatTimeUSEnglish().
+ */
+
+static const char* abbrevDays[] =
+{
+ "Sun","Mon","Tue","Wed","Thu","Fri","Sat"
+};
+
+static const char* days[] =
+{
+ "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"
+};
+
+static const char* abbrevMonths[] =
+{
+ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
+};
+
+static const char* months[] =
+{
+ "January", "February", "March", "April", "May", "June",
+ "July", "August", "September", "October", "November", "December"
+};
+
+
+/*
+ * Add a single character to the given buffer, incrementing the buffer pointer
+ * and decrementing the buffer size. Return 0 on error.
+ */
+#define ADDCHAR( buf, bufSize, ch ) \
+do \
+{ \
+ if( bufSize < 1 ) \
+ { \
+ *(--buf) = '\0'; \
+ return 0; \
+ } \
+ *buf++ = ch; \
+ bufSize--; \
+} \
+while(0)
+
+
+/*
+ * Add a string to the given buffer, incrementing the buffer pointer
+ * and decrementing the buffer size appropriately. Return 0 on error.
+ */
+#define ADDSTR( buf, bufSize, str ) \
+do \
+{ \
+ PRUint32 strSize = strlen( str ); \
+ if( strSize > bufSize ) \
+ { \
+ if( bufSize==0 ) \
+ *(--buf) = '\0'; \
+ else \
+ *buf = '\0'; \
+ return 0; \
+ } \
+ memcpy(buf, str, strSize); \
+ buf += strSize; \
+ bufSize -= strSize; \
+} \
+while(0)
+
+/* Needed by PR_FormatTimeUSEnglish() */
+static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
+ unsigned int firstDayOfWeek);
+
+
+/***********************************************************************************
+ *
+ * Description:
+ * This is a dumbed down version of strftime that will format the date in US
+ * English regardless of the setting of the global locale. This functionality is
+ * needed to write things like MIME headers which must always be in US English.
+ *
+ **********************************************************************************/
+
+PR_IMPLEMENT(PRUint32)
+PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize,
+ const char* format, const PRExplodedTime* time )
+{
+ char* bufPtr = buf;
+ const char* fmtPtr;
+ char tmpBuf[ 40 ];
+ const int tmpBufSize = sizeof( tmpBuf );
+
+
+ for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ )
+ {
+ if( *fmtPtr != '%' )
+ {
+ ADDCHAR( bufPtr, bufSize, *fmtPtr );
+ }
+ else
+ {
+ switch( *(++fmtPtr) )
+ {
+ case '%':
+ /* escaped '%' character */
+ ADDCHAR( bufPtr, bufSize, '%' );
+ break;
+
+ case 'a':
+ /* abbreviated weekday name */
+ ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] );
+ break;
+
+ case 'A':
+ /* full weekday name */
+ ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] );
+ break;
+
+ case 'b':
+ /* abbreviated month name */
+ ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] );
+ break;
+
+ case 'B':
+ /* full month name */
+ ADDSTR(bufPtr, bufSize, months[ time->tm_month ] );
+ break;
+
+ case 'c':
+ /* Date and time. */
+ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'd':
+ /* day of month ( 01 - 31 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'H':
+ /* hour ( 00 - 23 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'I':
+ /* hour ( 01 - 12 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",
+ (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'j':
+ /* day number of year ( 001 - 366 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1);
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'm':
+ /* month number ( 01 - 12 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1);
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'M':
+ /* minute ( 00 - 59 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'p':
+ /* locale's equivalent of either AM or PM */
+ ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" );
+ break;
+
+ case 'S':
+ /* seconds ( 00 - 61 ), allows for leap seconds */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'U':
+ /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'w':
+ /* weekday number ( 0 - 6 ), Sunday = 0 */
+ PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'W':
+ /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'x':
+ /* Date representation */
+ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'X':
+ /* Time representation. */
+ PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'y':
+ /* year within century ( 00 - 99 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'Y':
+ /* year as ccyy ( for example 1986 ) */
+ PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ case 'Z':
+ /* Time zone name or no characters if no time zone exists.
+ * Since time zone name is supposed to be independant of locale, we
+ * defer to PR_FormatTime() for this option.
+ */
+ PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time );
+ ADDSTR( bufPtr, bufSize, tmpBuf );
+ break;
+
+ default:
+ /* Unknown format. Simply copy format into output buffer. */
+ ADDCHAR( bufPtr, bufSize, '%' );
+ ADDCHAR( bufPtr, bufSize, *fmtPtr );
+ break;
+
+ }
+ }
+ }
+
+ ADDCHAR( bufPtr, bufSize, '\0' );
+ return (PRUint32)(bufPtr - buf - 1);
+}
+
+
+
+/***********************************************************************************
+ *
+ * Description:
+ * Returns the week number of the year (0-53) for the given time. firstDayOfWeek
+ * is the day on which the week is considered to start (0=Sun, 1=Mon, ...).
+ * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words,
+ * a partial week at the start of the year is considered week 0.
+ *
+ **********************************************************************************/
+
+static unsigned int
+pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek)
+{
+ int dayOfWeek;
+ int dayOfYear;
+
+ /* Get the day of the year for the given time then adjust it to represent the
+ * first day of the week containing the given time.
+ */
+ dayOfWeek = time->tm_wday - firstDayOfWeek;
+ if (dayOfWeek < 0) {
+ dayOfWeek += 7;
+ }
+
+ dayOfYear = time->tm_yday - dayOfWeek;
+
+ if( dayOfYear <= 0 )
+ {
+ /* If dayOfYear is <= 0, it is in the first partial week of the year. */
+ return 0;
+ }
+
+ /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
+ * are any days left over ( dayOfYear % 7 ). Because we are only counting to
+ * the first day of the week containing the given time, rather than to the
+ * actual day representing the given time, any days in week 0 will be "absorbed"
+ * as extra days in the given week.
+ */
+ return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 );
+
+}
+