summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/numerics/checked_math_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/numerics/checked_math_impl.h')
-rw-r--r--security/sandbox/chromium/base/numerics/checked_math_impl.h567
1 files changed, 567 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/numerics/checked_math_impl.h b/security/sandbox/chromium/base/numerics/checked_math_impl.h
new file mode 100644
index 0000000000..e083389ebf
--- /dev/null
+++ b/security/sandbox/chromium/base/numerics/checked_math_impl.h
@@ -0,0 +1,567 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <climits>
+#include <cmath>
+#include <cstdlib>
+#include <limits>
+#include <type_traits>
+
+#include "base/numerics/safe_conversions.h"
+#include "base/numerics/safe_math_shared_impl.h"
+
+namespace base {
+namespace internal {
+
+template <typename T>
+constexpr bool CheckedAddImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x+y is undefined if we have a signed type, we compute
+ // it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ UnsignedDst ux = static_cast<UnsignedDst>(x);
+ UnsignedDst uy = static_cast<UnsignedDst>(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
+ *result = static_cast<T>(uresult);
+ // Addition is valid if the sign of (x + y) is equal to either that of x or
+ // that of y.
+ return (std::is_signed<T>::value)
+ ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
+ : uresult >= uy; // Unsigned is either valid or underflow.
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedAddOp {};
+
+template <typename T, typename U>
+struct CheckedAddOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedAddFastOp<T, U>::is_supported)
+ return CheckedAddFastOp<T, U>::Do(x, y, result);
+
+ // Double the underlying type up to a full machine word.
+ using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ using Promotion =
+ typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+ IntegerBitsPlusSign<intptr_t>::value),
+ typename BigEnoughPromotion<T, U>::type,
+ FastPromotion>::type;
+ // Fail if either operand is out of range for the promoted type.
+ // TODO(jschuh): This could be made to work for a broader range of values.
+ if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y))) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedAddImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T>
+constexpr bool CheckedSubImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x+y is undefined if we have a signed type, we compute
+ // it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ UnsignedDst ux = static_cast<UnsignedDst>(x);
+ UnsignedDst uy = static_cast<UnsignedDst>(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
+ *result = static_cast<T>(uresult);
+ // Subtraction is valid if either x and y have same sign, or (x-y) and x have
+ // the same sign.
+ return (std::is_signed<T>::value)
+ ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
+ : x >= y;
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedSubOp {};
+
+template <typename T, typename U>
+struct CheckedSubOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedSubFastOp<T, U>::is_supported)
+ return CheckedSubFastOp<T, U>::Do(x, y, result);
+
+ // Double the underlying type up to a full machine word.
+ using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ using Promotion =
+ typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+ IntegerBitsPlusSign<intptr_t>::value),
+ typename BigEnoughPromotion<T, U>::type,
+ FastPromotion>::type;
+ // Fail if either operand is out of range for the promoted type.
+ // TODO(jschuh): This could be made to work for a broader range of values.
+ if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y))) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedSubImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T>
+constexpr bool CheckedMulImpl(T x, T y, T* result) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ // Since the value of x*y is potentially undefined if we have a signed type,
+ // we compute it using the unsigned type of the same size.
+ using UnsignedDst = typename std::make_unsigned<T>::type;
+ using SignedDst = typename std::make_signed<T>::type;
+ const UnsignedDst ux = SafeUnsignedAbs(x);
+ const UnsignedDst uy = SafeUnsignedAbs(y);
+ UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
+ const bool is_negative =
+ std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
+ *result = is_negative ? 0 - uresult : uresult;
+ // We have a fast out for unsigned identity or zero on the second operand.
+ // After that it's an unsigned overflow check on the absolute value, with
+ // a +1 bound for a negative result.
+ return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
+ ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
+}
+
+template <typename T, typename U, class Enable = void>
+struct CheckedMulOp {};
+
+template <typename T, typename U>
+struct CheckedMulOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ // TODO(jschuh) Make this "constexpr if" once we're C++17.
+ if (CheckedMulFastOp<T, U>::is_supported)
+ return CheckedMulFastOp<T, U>::Do(x, y, result);
+
+ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+ // Verify the destination type can hold the result (always true for 0).
+ if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y)) &&
+ x && y)) {
+ return false;
+ }
+
+ Promotion presult = {};
+ bool is_valid = true;
+ if (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
+ // The fast op may be available with the promoted type.
+ is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult);
+ } else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
+ } else {
+ is_valid = CheckedMulImpl(static_cast<Promotion>(x),
+ static_cast<Promotion>(y), &presult);
+ }
+ *result = static_cast<V>(presult);
+ return is_valid && IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+// Division just requires a check for a zero denominator or an invalid negation
+// on signed min/-1.
+template <typename T, typename U, class Enable = void>
+struct CheckedDivOp {};
+
+template <typename T, typename U>
+struct CheckedDivOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ if (BASE_NUMERICS_UNLIKELY(!y))
+ return false;
+
+ // The overflow check can be compiled away if we don't have the exact
+ // combination of types needed to trigger this case.
+ using Promotion = typename BigEnoughPromotion<T, U>::type;
+ if (BASE_NUMERICS_UNLIKELY(
+ (std::is_signed<T>::value && std::is_signed<U>::value &&
+ IsTypeInRangeForNumericType<T, Promotion>::value &&
+ static_cast<Promotion>(x) ==
+ std::numeric_limits<Promotion>::lowest() &&
+ y == static_cast<U>(-1)))) {
+ return false;
+ }
+
+ // This branch always compiles away if the above branch wasn't removed.
+ if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+ !IsValueInRangeForNumericType<Promotion>(y)) &&
+ x)) {
+ return false;
+ }
+
+ Promotion presult = Promotion(x) / Promotion(y);
+ *result = static_cast<V>(presult);
+ return IsValueInRangeForNumericType<V>(presult);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedModOp {};
+
+template <typename T, typename U>
+struct CheckedModOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ using Promotion = typename BigEnoughPromotion<T, U>::type;
+ if (BASE_NUMERICS_LIKELY(y)) {
+ Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y);
+ *result = static_cast<Promotion>(presult);
+ return IsValueInRangeForNumericType<V>(presult);
+ }
+ return false;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedLshOp {};
+
+// Left shift. Shifts less than 0 or greater than or equal to the number
+// of bits in the promoted type are undefined. Shifts of negative values
+// are undefined. Otherwise it is defined when the result fits.
+template <typename T, typename U>
+struct CheckedLshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V>
+ static constexpr bool Do(T x, U shift, V* result) {
+ // Disallow negative numbers and verify the shift is in bounds.
+ if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) &&
+ as_unsigned(shift) <
+ as_unsigned(std::numeric_limits<T>::digits))) {
+ // Shift as unsigned to avoid undefined behavior.
+ *result = static_cast<V>(as_unsigned(x) << shift);
+ // If the shift can be reversed, we know it was valid.
+ return *result >> shift == x;
+ }
+
+ // Handle the legal corner-case of a full-width signed shift of zero.
+ return std::is_signed<T>::value && !x &&
+ as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedRshOp {};
+
+// Right shift. Shifts less than 0 or greater than or equal to the number
+// of bits in the promoted type are undefined. Otherwise, it is always defined,
+// but a right shift of a negative value is implementation-dependent.
+template <typename T, typename U>
+struct CheckedRshOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = T;
+ template <typename V>
+ static bool Do(T x, U shift, V* result) {
+ // Use the type conversion push negative values out of range.
+ if (BASE_NUMERICS_LIKELY(as_unsigned(shift) <
+ IntegerBitsPlusSign<T>::value)) {
+ T tmp = x >> shift;
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+ return false;
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedAndOp {};
+
+// For simplicity we support only unsigned integer results.
+template <typename T, typename U>
+struct CheckedAndOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedOrOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct CheckedOrOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+template <typename T, typename U, class Enable = void>
+struct CheckedXorOp {};
+
+// For simplicity we support only unsigned integers.
+template <typename T, typename U>
+struct CheckedXorOp<T,
+ U,
+ typename std::enable_if<std::is_integral<T>::value &&
+ std::is_integral<U>::value>::type> {
+ using result_type = typename std::make_unsigned<
+ typename MaxExponentPromotion<T, U>::type>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// Max doesn't really need to be implemented this way because it can't fail,
+// but it makes the code much cleaner to use the MathOp wrappers.
+template <typename T, typename U, class Enable = void>
+struct CheckedMaxOp {};
+
+template <typename T, typename U>
+struct CheckedMaxOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename MaxExponentPromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
+ : static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// Min doesn't really need to be implemented this way because it can't fail,
+// but it makes the code much cleaner to use the MathOp wrappers.
+template <typename T, typename U, class Enable = void>
+struct CheckedMinOp {};
+
+template <typename T, typename U>
+struct CheckedMinOp<
+ T,
+ U,
+ typename std::enable_if<std::is_arithmetic<T>::value &&
+ std::is_arithmetic<U>::value>::type> {
+ using result_type = typename LowestValuePromotion<T, U>::type;
+ template <typename V>
+ static constexpr bool Do(T x, U y, V* result) {
+ result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
+ : static_cast<result_type>(y);
+ *result = static_cast<V>(tmp);
+ return IsValueInRangeForNumericType<V>(tmp);
+ }
+};
+
+// This is just boilerplate that wraps the standard floating point arithmetic.
+// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+ template <typename T, typename U> \
+ struct Checked##NAME##Op< \
+ T, U, \
+ typename std::enable_if<std::is_floating_point<T>::value || \
+ std::is_floating_point<U>::value>::type> { \
+ using result_type = typename MaxExponentPromotion<T, U>::type; \
+ template <typename V> \
+ static constexpr bool Do(T x, U y, V* result) { \
+ using Promotion = typename MaxExponentPromotion<T, U>::type; \
+ Promotion presult = x OP y; \
+ *result = static_cast<V>(presult); \
+ return IsValueInRangeForNumericType<V>(presult); \
+ } \
+ };
+
+BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+
+#undef BASE_FLOAT_ARITHMETIC_OPS
+
+// Floats carry around their validity state with them, but integers do not. So,
+// we wrap the underlying value in a specialization in order to hide that detail
+// and expose an interface via accessors.
+enum NumericRepresentation {
+ NUMERIC_INTEGER,
+ NUMERIC_FLOATING,
+ NUMERIC_UNKNOWN
+};
+
+template <typename NumericType>
+struct GetNumericRepresentation {
+ static const NumericRepresentation value =
+ std::is_integral<NumericType>::value
+ ? NUMERIC_INTEGER
+ : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
+ : NUMERIC_UNKNOWN);
+};
+
+template <typename T,
+ NumericRepresentation type = GetNumericRepresentation<T>::value>
+class CheckedNumericState {};
+
+// Integrals require quite a bit of additional housekeeping to manage state.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_INTEGER> {
+ private:
+ // is_valid_ precedes value_ because member intializers in the constructors
+ // are evaluated in field order, and is_valid_ must be read when initializing
+ // value_.
+ bool is_valid_;
+ T value_;
+
+ // Ensures that a type conversion does not trigger undefined behavior.
+ template <typename Src>
+ static constexpr T WellDefinedConversionOrZero(const Src value,
+ const bool is_valid) {
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return (std::is_integral<SrcType>::value || is_valid)
+ ? static_cast<T>(value)
+ : static_cast<T>(0);
+ }
+
+ public:
+ template <typename Src, NumericRepresentation type>
+ friend class CheckedNumericState;
+
+ constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
+
+ template <typename Src>
+ constexpr CheckedNumericState(Src value, bool is_valid)
+ : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
+ value_(WellDefinedConversionOrZero(value, is_valid_)) {
+ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+ }
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+ : is_valid_(rhs.IsValid()),
+ value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
+
+ template <typename Src>
+ constexpr explicit CheckedNumericState(Src value)
+ : is_valid_(IsValueInRangeForNumericType<T>(value)),
+ value_(WellDefinedConversionOrZero(value, is_valid_)) {}
+
+ constexpr bool is_valid() const { return is_valid_; }
+ constexpr T value() const { return value_; }
+};
+
+// Floating points maintain their own validity, but need translation wrappers.
+template <typename T>
+class CheckedNumericState<T, NUMERIC_FLOATING> {
+ private:
+ T value_;
+
+ // Ensures that a type conversion does not trigger undefined behavior.
+ template <typename Src>
+ static constexpr T WellDefinedConversionOrNaN(const Src value,
+ const bool is_valid) {
+ using SrcType = typename internal::UnderlyingType<Src>::type;
+ return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
+ NUMERIC_RANGE_CONTAINED ||
+ is_valid)
+ ? static_cast<T>(value)
+ : std::numeric_limits<T>::quiet_NaN();
+ }
+
+ public:
+ template <typename Src, NumericRepresentation type>
+ friend class CheckedNumericState;
+
+ constexpr CheckedNumericState() : value_(0.0) {}
+
+ template <typename Src>
+ constexpr CheckedNumericState(Src value, bool is_valid)
+ : value_(WellDefinedConversionOrNaN(value, is_valid)) {}
+
+ template <typename Src>
+ constexpr explicit CheckedNumericState(Src value)
+ : value_(WellDefinedConversionOrNaN(
+ value,
+ IsValueInRangeForNumericType<T>(value))) {}
+
+ // Copy constructor.
+ template <typename Src>
+ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+ : value_(WellDefinedConversionOrNaN(
+ rhs.value(),
+ rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
+
+ constexpr bool is_valid() const {
+ // Written this way because std::isfinite is not reliably constexpr.
+ return MustTreatAsConstexpr(value_)
+ ? value_ <= std::numeric_limits<T>::max() &&
+ value_ >= std::numeric_limits<T>::lowest()
+ : std::isfinite(value_);
+ }
+ constexpr T value() const { return value_; }
+};
+
+} // namespace internal
+} // namespace base
+
+#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_