summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc')
-rw-r--r--security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc394
1 files changed, 394 insertions, 0 deletions
diff --git a/security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc b/security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc
new file mode 100644
index 0000000000..9884be8bb2
--- /dev/null
+++ b/security/sandbox/chromium/sandbox/linux/seccomp-bpf/trap.cc
@@ -0,0 +1,394 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "sandbox/linux/seccomp-bpf/trap.h"
+
+#include <errno.h>
+#include <signal.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+#include <sys/syscall.h>
+
+#include <algorithm>
+#include <limits>
+#include <tuple>
+
+#include "base/compiler_specific.h"
+#include "base/logging.h"
+#include "build/build_config.h"
+#include "sandbox/linux/bpf_dsl/seccomp_macros.h"
+#include "sandbox/linux/seccomp-bpf/die.h"
+#include "sandbox/linux/seccomp-bpf/syscall.h"
+#include "sandbox/linux/services/syscall_wrappers.h"
+#include "sandbox/linux/system_headers/linux_seccomp.h"
+#include "sandbox/linux/system_headers/linux_signal.h"
+
+namespace {
+
+struct arch_sigsys {
+ void* ip;
+ int nr;
+ unsigned int arch;
+};
+
+const int kCapacityIncrement = 20;
+
+// Unsafe traps can only be turned on, if the user explicitly allowed them
+// by setting the CHROME_SANDBOX_DEBUGGING environment variable.
+const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";
+
+// We need to tell whether we are performing a "normal" callback, or
+// whether we were called recursively from within a UnsafeTrap() callback.
+// This is a little tricky to do, because we need to somehow get access to
+// per-thread data from within a signal context. Normal TLS storage is not
+// safely accessible at this time. We could roll our own, but that involves
+// a lot of complexity. Instead, we co-opt one bit in the signal mask.
+// If BUS is blocked, we assume that we have been called recursively.
+// There is a possibility for collision with other code that needs to do
+// this, but in practice the risks are low.
+// If SIGBUS turns out to be a problem, we could instead co-opt one of the
+// realtime signals. There are plenty of them. Unfortunately, there is no
+// way to mark a signal as allocated. So, the potential for collision is
+// possibly even worse.
+bool GetIsInSigHandler(const ucontext_t* ctx) {
+ // Note: on Android, sigismember does not take a pointer to const.
+ return sigismember(const_cast<sigset_t*>(&ctx->uc_sigmask), LINUX_SIGBUS);
+}
+
+void SetIsInSigHandler() {
+ sigset_t mask;
+ if (sigemptyset(&mask) || sigaddset(&mask, LINUX_SIGBUS) ||
+ sandbox::sys_sigprocmask(LINUX_SIG_BLOCK, &mask, NULL)) {
+ SANDBOX_DIE("Failed to block SIGBUS");
+ }
+}
+
+bool IsDefaultSignalAction(const struct sigaction& sa) {
+ if (sa.sa_flags & SA_SIGINFO || sa.sa_handler != SIG_DFL) {
+ return false;
+ }
+ return true;
+}
+
+} // namespace
+
+namespace sandbox {
+
+Trap::Trap()
+ : trap_array_(NULL),
+ trap_array_size_(0),
+ trap_array_capacity_(0),
+ has_unsafe_traps_(false) {
+ // Set new SIGSYS handler
+ struct sigaction sa = {};
+ // In some toolchain, sa_sigaction is not declared in struct sigaction.
+ // So, here cast the pointer to the sa_handler's type. This works because
+ // |sa_handler| and |sa_sigaction| shares the same memory.
+ sa.sa_handler = reinterpret_cast<void (*)(int)>(SigSysAction);
+ sa.sa_flags = LINUX_SA_SIGINFO | LINUX_SA_NODEFER;
+ struct sigaction old_sa = {};
+ if (sys_sigaction(LINUX_SIGSYS, &sa, &old_sa) < 0) {
+ SANDBOX_DIE("Failed to configure SIGSYS handler");
+ }
+
+ if (!IsDefaultSignalAction(old_sa)) {
+ static const char kExistingSIGSYSMsg[] =
+ "Existing signal handler when trying to install SIGSYS. SIGSYS needs "
+ "to be reserved for seccomp-bpf.";
+ DLOG(FATAL) << kExistingSIGSYSMsg;
+ LOG(ERROR) << kExistingSIGSYSMsg;
+ }
+
+ // Unmask SIGSYS
+ sigset_t mask;
+ if (sigemptyset(&mask) || sigaddset(&mask, LINUX_SIGSYS) ||
+ sys_sigprocmask(LINUX_SIG_UNBLOCK, &mask, NULL)) {
+ SANDBOX_DIE("Failed to configure SIGSYS handler");
+ }
+}
+
+bpf_dsl::TrapRegistry* Trap::Registry() {
+ // Note: This class is not thread safe. It is the caller's responsibility
+ // to avoid race conditions. Normally, this is a non-issue as the sandbox
+ // can only be initialized if there are no other threads present.
+ // Also, this is not a normal singleton. Once created, the global trap
+ // object must never be destroyed again.
+ if (!global_trap_) {
+ global_trap_ = new Trap();
+ if (!global_trap_) {
+ SANDBOX_DIE("Failed to allocate global trap handler");
+ }
+ }
+ return global_trap_;
+}
+
+void Trap::SigSysAction(int nr, LinuxSigInfo* info, void* void_context) {
+ if (info) {
+ MSAN_UNPOISON(info, sizeof(*info));
+ }
+
+ // Obtain the signal context. This, most notably, gives us access to
+ // all CPU registers at the time of the signal.
+ ucontext_t* ctx = reinterpret_cast<ucontext_t*>(void_context);
+ if (ctx) {
+ MSAN_UNPOISON(ctx, sizeof(*ctx));
+ }
+
+ if (!global_trap_) {
+ RAW_SANDBOX_DIE(
+ "This can't happen. Found no global singleton instance "
+ "for Trap() handling.");
+ }
+ global_trap_->SigSys(nr, info, ctx);
+}
+
+void Trap::SigSys(int nr, LinuxSigInfo* info, ucontext_t* ctx) {
+ // Signal handlers should always preserve "errno". Otherwise, we could
+ // trigger really subtle bugs.
+ const int old_errno = errno;
+
+ // Various sanity checks to make sure we actually received a signal
+ // triggered by a BPF filter. If something else triggered SIGSYS
+ // (e.g. kill()), there is really nothing we can do with this signal.
+ if (nr != LINUX_SIGSYS || info->si_code != SYS_SECCOMP || !ctx ||
+ info->si_errno <= 0 ||
+ static_cast<size_t>(info->si_errno) > trap_array_size_) {
+ // ATI drivers seem to send SIGSYS, so this cannot be FATAL.
+ // See crbug.com/178166.
+ // TODO(jln): add a DCHECK or move back to FATAL.
+ RAW_LOG(ERROR, "Unexpected SIGSYS received.");
+ errno = old_errno;
+ return;
+ }
+
+
+ // Obtain the siginfo information that is specific to SIGSYS.
+ struct arch_sigsys sigsys;
+#if defined(si_call_addr) && !defined(__native_client_nonsfi__)
+ sigsys.ip = info->si_call_addr;
+ sigsys.nr = info->si_syscall;
+ sigsys.arch = info->si_arch;
+#else
+ // If the version of glibc doesn't include this information in
+ // siginfo_t (older than 2.17), we need to explicitly copy it
+ // into an arch_sigsys structure.
+ memcpy(&sigsys, &info->_sifields, sizeof(sigsys));
+#endif
+
+#if defined(__mips__)
+ // When indirect syscall (syscall(__NR_foo, ...)) is made on Mips, the
+ // number in register SECCOMP_SYSCALL(ctx) is always __NR_syscall and the
+ // real number of a syscall (__NR_foo) is in SECCOMP_PARM1(ctx)
+ bool sigsys_nr_is_bad = sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx)) &&
+ sigsys.nr != static_cast<int>(SECCOMP_PARM1(ctx));
+#else
+ bool sigsys_nr_is_bad = sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx));
+#endif
+
+ // Some more sanity checks.
+ if (sigsys.ip != reinterpret_cast<void*>(SECCOMP_IP(ctx)) ||
+ sigsys_nr_is_bad || sigsys.arch != SECCOMP_ARCH) {
+ // TODO(markus):
+ // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
+ // safe and can lead to bugs. We should eventually implement a different
+ // logging and reporting mechanism that is safe to be called from
+ // the sigSys() handler.
+ RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
+ }
+
+ intptr_t rc;
+ if (has_unsafe_traps_ && GetIsInSigHandler(ctx)) {
+ errno = old_errno;
+ if (sigsys.nr == __NR_clone) {
+ RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
+ }
+#if defined(__mips__)
+ // Mips supports up to eight arguments for syscall.
+ // However, seccomp bpf can filter only up to six arguments, so using eight
+ // arguments has sense only when using UnsafeTrap() handler.
+ rc = Syscall::Call(SECCOMP_SYSCALL(ctx),
+ SECCOMP_PARM1(ctx),
+ SECCOMP_PARM2(ctx),
+ SECCOMP_PARM3(ctx),
+ SECCOMP_PARM4(ctx),
+ SECCOMP_PARM5(ctx),
+ SECCOMP_PARM6(ctx),
+ SECCOMP_PARM7(ctx),
+ SECCOMP_PARM8(ctx));
+#else
+ rc = Syscall::Call(SECCOMP_SYSCALL(ctx),
+ SECCOMP_PARM1(ctx),
+ SECCOMP_PARM2(ctx),
+ SECCOMP_PARM3(ctx),
+ SECCOMP_PARM4(ctx),
+ SECCOMP_PARM5(ctx),
+ SECCOMP_PARM6(ctx));
+#endif // defined(__mips__)
+ } else {
+ const TrapKey& trap = trap_array_[info->si_errno - 1];
+ if (!trap.safe) {
+ SetIsInSigHandler();
+ }
+
+ // Copy the seccomp-specific data into a arch_seccomp_data structure. This
+ // is what we are showing to TrapFnc callbacks that the system call
+ // evaluator registered with the sandbox.
+ struct arch_seccomp_data data = {
+ static_cast<int>(SECCOMP_SYSCALL(ctx)),
+ SECCOMP_ARCH,
+ reinterpret_cast<uint64_t>(sigsys.ip),
+ {static_cast<uint64_t>(SECCOMP_PARM1(ctx)),
+ static_cast<uint64_t>(SECCOMP_PARM2(ctx)),
+ static_cast<uint64_t>(SECCOMP_PARM3(ctx)),
+ static_cast<uint64_t>(SECCOMP_PARM4(ctx)),
+ static_cast<uint64_t>(SECCOMP_PARM5(ctx)),
+ static_cast<uint64_t>(SECCOMP_PARM6(ctx))}};
+
+ // Now call the TrapFnc callback associated with this particular instance
+ // of SECCOMP_RET_TRAP.
+ rc = trap.fnc(data, const_cast<void*>(trap.aux));
+ }
+
+ // Update the CPU register that stores the return code of the system call
+ // that we just handled, and restore "errno" to the value that it had
+ // before entering the signal handler.
+ Syscall::PutValueInUcontext(rc, ctx);
+ errno = old_errno;
+
+ return;
+}
+
+bool Trap::TrapKey::operator<(const TrapKey& o) const {
+ return std::tie(fnc, aux, safe) < std::tie(o.fnc, o.aux, o.safe);
+}
+
+uint16_t Trap::Add(TrapFnc fnc, const void* aux, bool safe) {
+ if (!safe && !SandboxDebuggingAllowedByUser()) {
+ // Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
+ // we never return an ErrorCode that is marked as "unsafe". This also
+ // means, the BPF compiler will never emit code that allow unsafe system
+ // calls to by-pass the filter (because they use the magic return address
+ // from Syscall::Call(-1)).
+
+ // This SANDBOX_DIE() can optionally be removed. It won't break security,
+ // but it might make error messages from the BPF compiler a little harder
+ // to understand. Removing the SANDBOX_DIE() allows callers to easily check
+ // whether unsafe traps are supported (by checking whether the returned
+ // ErrorCode is ET_INVALID).
+ SANDBOX_DIE(
+ "Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
+ "is enabled");
+
+ return 0;
+ }
+
+ // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
+ // of a SECCOMP_RET_TRAP.
+ TrapKey key(fnc, aux, safe);
+
+ // We return unique identifiers together with SECCOMP_RET_TRAP. This allows
+ // us to associate trap with the appropriate handler. The kernel allows us
+ // identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
+ // avoid 0, as it could be confused for a trap without any specific id.
+ // The nice thing about sequentially numbered identifiers is that we can also
+ // trivially look them up from our signal handler without making any system
+ // calls that might be async-signal-unsafe.
+ // In order to do so, we store all of our traps in a C-style trap_array_.
+
+ TrapIds::const_iterator iter = trap_ids_.find(key);
+ if (iter != trap_ids_.end()) {
+ // We have seen this pair before. Return the same id that we assigned
+ // earlier.
+ return iter->second;
+ }
+
+ // This is a new pair. Remember it and assign a new id.
+ if (trap_array_size_ >= SECCOMP_RET_DATA /* 0xFFFF */ ||
+ trap_array_size_ >= std::numeric_limits<uint16_t>::max()) {
+ // In practice, this is pretty much impossible to trigger, as there
+ // are other kernel limitations that restrict overall BPF program sizes.
+ SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
+ }
+
+ // Our callers ensure that there are no other threads accessing trap_array_
+ // concurrently (typically this is done by ensuring that we are single-
+ // threaded while the sandbox is being set up). But we nonetheless are
+ // modifying a live data structure that could be accessed any time a
+ // system call is made; as system calls could be triggering SIGSYS.
+ // So, we have to be extra careful that we update trap_array_ atomically.
+ // In particular, this means we shouldn't be using realloc() to resize it.
+ // Instead, we allocate a new array, copy the values, and then switch the
+ // pointer. We only really care about the pointer being updated atomically
+ // and the data that is pointed to being valid, as these are the only
+ // values accessed from the signal handler. It is OK if trap_array_size_
+ // is inconsistent with the pointer, as it is monotonously increasing.
+ // Also, we only care about compiler barriers, as the signal handler is
+ // triggered synchronously from a system call. We don't have to protect
+ // against issues with the memory model or with completely asynchronous
+ // events.
+ if (trap_array_size_ >= trap_array_capacity_) {
+ trap_array_capacity_ += kCapacityIncrement;
+ TrapKey* old_trap_array = trap_array_;
+ TrapKey* new_trap_array = new TrapKey[trap_array_capacity_];
+ std::copy_n(old_trap_array, trap_array_size_, new_trap_array);
+
+ // Language specs are unclear on whether the compiler is allowed to move
+ // the "delete[]" above our preceding assignments and/or memory moves,
+ // iff the compiler believes that "delete[]" doesn't have any other
+ // global side-effects.
+ // We insert optimization barriers to prevent this from happening.
+ // The first barrier is probably not needed, but better be explicit in
+ // what we want to tell the compiler.
+ // The clang developer mailing list couldn't answer whether this is a
+ // legitimate worry; but they at least thought that the barrier is
+ // sufficient to prevent the (so far hypothetical) problem of re-ordering
+ // of instructions by the compiler.
+ //
+ // TODO(mdempsky): Try to clean this up using base/atomicops or C++11
+ // atomics; see crbug.com/414363.
+ asm volatile("" : "=r"(new_trap_array) : "0"(new_trap_array) : "memory");
+ trap_array_ = new_trap_array;
+ asm volatile("" : "=r"(trap_array_) : "0"(trap_array_) : "memory");
+
+ delete[] old_trap_array;
+ }
+
+ uint16_t id = trap_array_size_ + 1;
+ trap_ids_[key] = id;
+ trap_array_[trap_array_size_] = key;
+ trap_array_size_++;
+ return id;
+}
+
+bool Trap::SandboxDebuggingAllowedByUser() {
+ const char* debug_flag = getenv(kSandboxDebuggingEnv);
+ return debug_flag && *debug_flag;
+}
+
+bool Trap::EnableUnsafeTraps() {
+ if (!has_unsafe_traps_) {
+ // Unsafe traps are a one-way fuse. Once enabled, they can never be turned
+ // off again.
+ // We only allow enabling unsafe traps, if the user explicitly set an
+ // appropriate environment variable. This prevents bugs that accidentally
+ // disable all sandboxing for all users.
+ if (SandboxDebuggingAllowedByUser()) {
+ // We only ever print this message once, when we enable unsafe traps the
+ // first time.
+ SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
+ has_unsafe_traps_ = true;
+ } else {
+ SANDBOX_INFO(
+ "Cannot disable sandbox and use unsafe traps unless "
+ "CHROME_SANDBOX_DEBUGGING is turned on first");
+ }
+ }
+ // Returns the, possibly updated, value of has_unsafe_traps_.
+ return has_unsafe_traps_;
+}
+
+Trap* Trap::global_trap_;
+
+} // namespace sandbox