summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/cfl_avx2.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/x86/cfl_avx2.c')
-rw-r--r--third_party/aom/av1/common/x86/cfl_avx2.c491
1 files changed, 491 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/x86/cfl_avx2.c b/third_party/aom/av1/common/x86/cfl_avx2.c
new file mode 100644
index 0000000000..a8bfdcce6b
--- /dev/null
+++ b/third_party/aom/av1/common/x86/cfl_avx2.c
@@ -0,0 +1,491 @@
+/*
+ * Copyright (c) 2017, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+#include <immintrin.h>
+
+#include "config/av1_rtcd.h"
+
+#include "av1/common/cfl.h"
+
+#include "av1/common/x86/cfl_simd.h"
+
+#define CFL_GET_SUBSAMPLE_FUNCTION_AVX2(sub, bd) \
+ CFL_SUBSAMPLE(avx2, sub, bd, 32, 32) \
+ CFL_SUBSAMPLE(avx2, sub, bd, 32, 16) \
+ CFL_SUBSAMPLE(avx2, sub, bd, 32, 8) \
+ cfl_subsample_##bd##_fn cfl_get_luma_subsampling_##sub##_##bd##_avx2( \
+ TX_SIZE tx_size) { \
+ static const cfl_subsample_##bd##_fn subfn_##sub[TX_SIZES_ALL] = { \
+ subsample_##bd##_##sub##_4x4_ssse3, /* 4x4 */ \
+ subsample_##bd##_##sub##_8x8_ssse3, /* 8x8 */ \
+ subsample_##bd##_##sub##_16x16_ssse3, /* 16x16 */ \
+ subsample_##bd##_##sub##_32x32_avx2, /* 32x32 */ \
+ cfl_subsample_##bd##_null, /* 64x64 (invalid CFL size) */ \
+ subsample_##bd##_##sub##_4x8_ssse3, /* 4x8 */ \
+ subsample_##bd##_##sub##_8x4_ssse3, /* 8x4 */ \
+ subsample_##bd##_##sub##_8x16_ssse3, /* 8x16 */ \
+ subsample_##bd##_##sub##_16x8_ssse3, /* 16x8 */ \
+ subsample_##bd##_##sub##_16x32_ssse3, /* 16x32 */ \
+ subsample_##bd##_##sub##_32x16_avx2, /* 32x16 */ \
+ cfl_subsample_##bd##_null, /* 32x64 (invalid CFL size) */ \
+ cfl_subsample_##bd##_null, /* 64x32 (invalid CFL size) */ \
+ subsample_##bd##_##sub##_4x16_ssse3, /* 4x16 */ \
+ subsample_##bd##_##sub##_16x4_ssse3, /* 16x4 */ \
+ subsample_##bd##_##sub##_8x32_ssse3, /* 8x32 */ \
+ subsample_##bd##_##sub##_32x8_avx2, /* 32x8 */ \
+ cfl_subsample_##bd##_null, /* 16x64 (invalid CFL size) */ \
+ cfl_subsample_##bd##_null, /* 64x16 (invalid CFL size) */ \
+ }; \
+ return subfn_##sub[tx_size]; \
+ }
+
+/**
+ * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
+ * precise version of a box filter 4:2:0 pixel subsampling in Q3.
+ *
+ * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
+ * active area is specified using width and height.
+ *
+ * Note: We don't need to worry about going over the active area, as long as we
+ * stay inside the CfL prediction buffer.
+ *
+ * Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
+ */
+static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos
+ const int luma_stride = input_stride << 1;
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
+
+ __m256i top_16x16 = _mm256_maddubs_epi16(top, twos);
+ __m256i bot_16x16 = _mm256_maddubs_epi16(bot, twos);
+ __m256i sum_16x16 = _mm256_add_epi16(top_16x16, bot_16x16);
+
+ _mm256_storeu_si256(row, sum_16x16);
+
+ input += luma_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, lbd)
+
+/**
+ * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
+ * precise version of a box filter 4:2:2 pixel subsampling in Q3.
+ *
+ * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
+ * active area is specified using width and height.
+ *
+ * Note: We don't need to worry about going over the active area, as long as we
+ * stay inside the CfL prediction buffer.
+ */
+static void cfl_luma_subsampling_422_lbd_avx2(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ const __m256i fours = _mm256_set1_epi8(4); // Thirty two fours
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ __m256i top_16x16 = _mm256_maddubs_epi16(top, fours);
+ _mm256_storeu_si256(row, top_16x16);
+ input += input_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, lbd)
+
+/**
+ * Multiplies the pixels by 8 (scaling in Q3). The AVX2 subsampling is only
+ * performed on block of width 32.
+ *
+ * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
+ * active area is specified using width and height.
+ *
+ * Note: We don't need to worry about going over the active area, as long as we
+ * stay inside the CfL prediction buffer.
+ */
+static void cfl_luma_subsampling_444_lbd_avx2(const uint8_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+ const __m256i zeros = _mm256_setzero_si256();
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ top = _mm256_permute4x64_epi64(top, _MM_SHUFFLE(3, 1, 2, 0));
+
+ __m256i row_lo = _mm256_unpacklo_epi8(top, zeros);
+ row_lo = _mm256_slli_epi16(row_lo, 3);
+ __m256i row_hi = _mm256_unpackhi_epi8(top, zeros);
+ row_hi = _mm256_slli_epi16(row_hi, 3);
+
+ _mm256_storeu_si256(row, row_lo);
+ _mm256_storeu_si256(row + 1, row_hi);
+
+ input += input_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, lbd)
+
+/**
+ * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more
+ * precise version of a box filter 4:2:0 pixel subsampling in Q3.
+ *
+ * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
+ * active area is specified using width and height.
+ *
+ * Note: We don't need to worry about going over the active area, as long as we
+ * stay inside the CfL prediction buffer.
+ *
+ * Note: For 4:2:0 luma subsampling, the width will never be greater than 16.
+ */
+static void cfl_luma_subsampling_420_hbd_avx2(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ const int luma_stride = input_stride << 1;
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + (height >> 1) * CFL_BUF_LINE_I256;
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride));
+ __m256i sum = _mm256_add_epi16(top, bot);
+
+ __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
+ __m256i bot_1 = _mm256_loadu_si256((__m256i *)(input + 16 + input_stride));
+ __m256i sum_1 = _mm256_add_epi16(top_1, bot_1);
+
+ __m256i hsum = _mm256_hadd_epi16(sum, sum_1);
+ hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
+ hsum = _mm256_add_epi16(hsum, hsum);
+
+ _mm256_storeu_si256(row, hsum);
+
+ input += luma_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(420, hbd)
+
+/**
+ * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more
+ * precise version of a box filter 4:2:2 pixel subsampling in Q3.
+ *
+ * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the
+ * active area is specified using width and height.
+ *
+ * Note: We don't need to worry about going over the active area, as long as we
+ * stay inside the CfL prediction buffer.
+ *
+ */
+static void cfl_luma_subsampling_422_hbd_avx2(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
+ __m256i hsum = _mm256_hadd_epi16(top, top_1);
+ hsum = _mm256_permute4x64_epi64(hsum, _MM_SHUFFLE(3, 1, 2, 0));
+ hsum = _mm256_slli_epi16(hsum, 2);
+
+ _mm256_storeu_si256(row, hsum);
+
+ input += input_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(422, hbd)
+
+static void cfl_luma_subsampling_444_hbd_avx2(const uint16_t *input,
+ int input_stride,
+ uint16_t *pred_buf_q3, int width,
+ int height) {
+ (void)width; // Forever 32
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+ do {
+ __m256i top = _mm256_loadu_si256((__m256i *)input);
+ __m256i top_1 = _mm256_loadu_si256((__m256i *)(input + 16));
+ _mm256_storeu_si256(row, _mm256_slli_epi16(top, 3));
+ _mm256_storeu_si256(row + 1, _mm256_slli_epi16(top_1, 3));
+ input += input_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_GET_SUBSAMPLE_FUNCTION_AVX2(444, hbd)
+
+static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12,
+ __m256i alpha_sign, __m256i dc_q0) {
+ __m256i ac_q3 = _mm256_loadu_si256(input);
+ __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3);
+ __m256i scaled_luma_q0 =
+ _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12);
+ scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign);
+ return _mm256_add_epi16(scaled_luma_q0, dc_q0);
+}
+
+static INLINE void cfl_predict_lbd_avx2(const int16_t *pred_buf_q3,
+ uint8_t *dst, int dst_stride,
+ int alpha_q3, int width, int height) {
+ (void)width;
+ const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
+ const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
+ const __m256i dc_q0 = _mm256_set1_epi16(*dst);
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+
+ do {
+ __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
+ __m256i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
+ res = _mm256_packus_epi16(res, next);
+ res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0));
+ _mm256_storeu_si256((__m256i *)dst, res);
+ dst += dst_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_PREDICT_X(avx2, 32, 8, lbd);
+CFL_PREDICT_X(avx2, 32, 16, lbd);
+CFL_PREDICT_X(avx2, 32, 32, lbd);
+
+cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) {
+ static const cfl_predict_lbd_fn pred[TX_SIZES_ALL] = {
+ predict_lbd_4x4_ssse3, /* 4x4 */
+ predict_lbd_8x8_ssse3, /* 8x8 */
+ predict_lbd_16x16_ssse3, /* 16x16 */
+ predict_lbd_32x32_avx2, /* 32x32 */
+ cfl_predict_lbd_null, /* 64x64 (invalid CFL size) */
+ predict_lbd_4x8_ssse3, /* 4x8 */
+ predict_lbd_8x4_ssse3, /* 8x4 */
+ predict_lbd_8x16_ssse3, /* 8x16 */
+ predict_lbd_16x8_ssse3, /* 16x8 */
+ predict_lbd_16x32_ssse3, /* 16x32 */
+ predict_lbd_32x16_avx2, /* 32x16 */
+ cfl_predict_lbd_null, /* 32x64 (invalid CFL size) */
+ cfl_predict_lbd_null, /* 64x32 (invalid CFL size) */
+ predict_lbd_4x16_ssse3, /* 4x16 */
+ predict_lbd_16x4_ssse3, /* 16x4 */
+ predict_lbd_8x32_ssse3, /* 8x32 */
+ predict_lbd_32x8_avx2, /* 32x8 */
+ cfl_predict_lbd_null, /* 16x64 (invalid CFL size) */
+ cfl_predict_lbd_null, /* 64x16 (invalid CFL size) */
+ };
+ // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
+ // function pointer array out of bounds.
+ return pred[tx_size % TX_SIZES_ALL];
+}
+
+static __m256i highbd_max_epi16(int bd) {
+ const __m256i neg_one = _mm256_set1_epi16(-1);
+ // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd)
+ return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one);
+}
+
+static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) {
+ return _mm256_max_epi16(_mm256_min_epi16(u, max), zero);
+}
+
+static INLINE void cfl_predict_hbd_avx2(const int16_t *pred_buf_q3,
+ uint16_t *dst, int dst_stride,
+ int alpha_q3, int bd, int width,
+ int height) {
+ // Use SSSE3 version for smaller widths
+ assert(width == 16 || width == 32);
+ const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3);
+ const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9);
+ const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst);
+ const __m256i max = highbd_max_epi16(bd);
+
+ __m256i *row = (__m256i *)pred_buf_q3;
+ const __m256i *row_end = row + height * CFL_BUF_LINE_I256;
+ do {
+ const __m256i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0);
+ _mm256_storeu_si256((__m256i *)dst,
+ highbd_clamp_epi16(res, _mm256_setzero_si256(), max));
+ if (width == 32) {
+ const __m256i res_1 =
+ predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0);
+ _mm256_storeu_si256(
+ (__m256i *)(dst + 16),
+ highbd_clamp_epi16(res_1, _mm256_setzero_si256(), max));
+ }
+ dst += dst_stride;
+ } while ((row += CFL_BUF_LINE_I256) < row_end);
+}
+
+CFL_PREDICT_X(avx2, 16, 4, hbd)
+CFL_PREDICT_X(avx2, 16, 8, hbd)
+CFL_PREDICT_X(avx2, 16, 16, hbd)
+CFL_PREDICT_X(avx2, 16, 32, hbd)
+CFL_PREDICT_X(avx2, 32, 8, hbd)
+CFL_PREDICT_X(avx2, 32, 16, hbd)
+CFL_PREDICT_X(avx2, 32, 32, hbd)
+
+cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) {
+ static const cfl_predict_hbd_fn pred[TX_SIZES_ALL] = {
+ predict_hbd_4x4_ssse3, /* 4x4 */
+ predict_hbd_8x8_ssse3, /* 8x8 */
+ predict_hbd_16x16_avx2, /* 16x16 */
+ predict_hbd_32x32_avx2, /* 32x32 */
+ cfl_predict_hbd_null, /* 64x64 (invalid CFL size) */
+ predict_hbd_4x8_ssse3, /* 4x8 */
+ predict_hbd_8x4_ssse3, /* 8x4 */
+ predict_hbd_8x16_ssse3, /* 8x16 */
+ predict_hbd_16x8_avx2, /* 16x8 */
+ predict_hbd_16x32_avx2, /* 16x32 */
+ predict_hbd_32x16_avx2, /* 32x16 */
+ cfl_predict_hbd_null, /* 32x64 (invalid CFL size) */
+ cfl_predict_hbd_null, /* 64x32 (invalid CFL size) */
+ predict_hbd_4x16_ssse3, /* 4x16 */
+ predict_hbd_16x4_avx2, /* 16x4 */
+ predict_hbd_8x32_ssse3, /* 8x32 */
+ predict_hbd_32x8_avx2, /* 32x8 */
+ cfl_predict_hbd_null, /* 16x64 (invalid CFL size) */
+ cfl_predict_hbd_null, /* 64x16 (invalid CFL size) */
+ };
+ // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to index the
+ // function pointer array out of bounds.
+ return pred[tx_size % TX_SIZES_ALL];
+}
+
+// Returns a vector where all the (32-bits) elements are the sum of all the
+// lanes in a.
+static INLINE __m256i fill_sum_epi32(__m256i a) {
+ // Given that a == [A, B, C, D, E, F, G, H]
+ a = _mm256_hadd_epi32(a, a);
+ // Given that A' == A + B, C' == C + D, E' == E + F, G' == G + H
+ // a == [A', C', A', C', E', G', E', G']
+ a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(3, 1, 2, 0));
+ // a == [A', C', E', G', A', C', E', G']
+ a = _mm256_hadd_epi32(a, a);
+ // Given that A'' == A' + C' and E'' == E' + G'
+ // a == [A'', E'', A'', E'', A'', E'', A'', E'']
+ return _mm256_hadd_epi32(a, a);
+ // Given that A''' == A'' + E''
+ // a == [A''', A''', A''', A''', A''', A''', A''', A''']
+}
+
+static INLINE __m256i _mm256_addl_epi16(__m256i a) {
+ return _mm256_add_epi32(_mm256_unpacklo_epi16(a, _mm256_setzero_si256()),
+ _mm256_unpackhi_epi16(a, _mm256_setzero_si256()));
+}
+
+static INLINE void subtract_average_avx2(const uint16_t *src_ptr,
+ int16_t *dst_ptr, int width,
+ int height, int round_offset,
+ int num_pel_log2) {
+ // Use SSE2 version for smaller widths
+ assert(width == 16 || width == 32);
+
+ const __m256i *src = (__m256i *)src_ptr;
+ const __m256i *const end = src + height * CFL_BUF_LINE_I256;
+ // To maximize usage of the AVX2 registers, we sum two rows per loop
+ // iteration
+ const int step = 2 * CFL_BUF_LINE_I256;
+
+ __m256i sum = _mm256_setzero_si256();
+ // For width 32, we use a second sum accumulator to reduce accumulator
+ // dependencies in the loop.
+ __m256i sum2;
+ if (width == 32) sum2 = _mm256_setzero_si256();
+
+ do {
+ // Add top row to the bottom row
+ __m256i l0 = _mm256_add_epi16(_mm256_loadu_si256(src),
+ _mm256_loadu_si256(src + CFL_BUF_LINE_I256));
+ sum = _mm256_add_epi32(sum, _mm256_addl_epi16(l0));
+ if (width == 32) { /* Don't worry, this if it gets optimized out. */
+ // Add the second part of the top row to the second part of the bottom row
+ __m256i l1 =
+ _mm256_add_epi16(_mm256_loadu_si256(src + 1),
+ _mm256_loadu_si256(src + 1 + CFL_BUF_LINE_I256));
+ sum2 = _mm256_add_epi32(sum2, _mm256_addl_epi16(l1));
+ }
+ src += step;
+ } while (src < end);
+ // Combine both sum accumulators
+ if (width == 32) sum = _mm256_add_epi32(sum, sum2);
+
+ __m256i fill = fill_sum_epi32(sum);
+
+ __m256i avg_epi16 = _mm256_srli_epi32(
+ _mm256_add_epi32(fill, _mm256_set1_epi32(round_offset)), num_pel_log2);
+ avg_epi16 = _mm256_packs_epi32(avg_epi16, avg_epi16);
+
+ // Store and subtract loop
+ src = (__m256i *)src_ptr;
+ __m256i *dst = (__m256i *)dst_ptr;
+ do {
+ _mm256_storeu_si256(dst,
+ _mm256_sub_epi16(_mm256_loadu_si256(src), avg_epi16));
+ if (width == 32) {
+ _mm256_storeu_si256(
+ dst + 1, _mm256_sub_epi16(_mm256_loadu_si256(src + 1), avg_epi16));
+ }
+ src += CFL_BUF_LINE_I256;
+ dst += CFL_BUF_LINE_I256;
+ } while (src < end);
+}
+
+// Declare wrappers for AVX2 sizes
+CFL_SUB_AVG_X(avx2, 16, 4, 32, 6)
+CFL_SUB_AVG_X(avx2, 16, 8, 64, 7)
+CFL_SUB_AVG_X(avx2, 16, 16, 128, 8)
+CFL_SUB_AVG_X(avx2, 16, 32, 256, 9)
+CFL_SUB_AVG_X(avx2, 32, 8, 128, 8)
+CFL_SUB_AVG_X(avx2, 32, 16, 256, 9)
+CFL_SUB_AVG_X(avx2, 32, 32, 512, 10)
+
+// Based on the observation that for small blocks AVX2 does not outperform
+// SSE2, we call the SSE2 code for block widths 4 and 8.
+cfl_subtract_average_fn get_subtract_average_fn_avx2(TX_SIZE tx_size) {
+ static const cfl_subtract_average_fn sub_avg[TX_SIZES_ALL] = {
+ subtract_average_4x4_sse2, /* 4x4 */
+ subtract_average_8x8_sse2, /* 8x8 */
+ subtract_average_16x16_avx2, /* 16x16 */
+ subtract_average_32x32_avx2, /* 32x32 */
+ cfl_subtract_average_null, /* 64x64 (invalid CFL size) */
+ subtract_average_4x8_sse2, /* 4x8 */
+ subtract_average_8x4_sse2, /* 8x4 */
+ subtract_average_8x16_sse2, /* 8x16 */
+ subtract_average_16x8_avx2, /* 16x8 */
+ subtract_average_16x32_avx2, /* 16x32 */
+ subtract_average_32x16_avx2, /* 32x16 */
+ cfl_subtract_average_null, /* 32x64 (invalid CFL size) */
+ cfl_subtract_average_null, /* 64x32 (invalid CFL size) */
+ subtract_average_4x16_sse2, /* 4x16 */
+ subtract_average_16x4_avx2, /* 16x4 */
+ subtract_average_8x32_sse2, /* 8x32 */
+ subtract_average_32x8_avx2, /* 32x8 */
+ cfl_subtract_average_null, /* 16x64 (invalid CFL size) */
+ cfl_subtract_average_null, /* 64x16 (invalid CFL size) */
+ };
+ // Modulo TX_SIZES_ALL to ensure that an attacker won't be able to
+ // index the function pointer array out of bounds.
+ return sub_avg[tx_size % TX_SIZES_ALL];
+}