summaryrefslogtreecommitdiffstats
path: root/third_party/aom/tools/gen_constrained_tokenset.py
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/tools/gen_constrained_tokenset.py')
-rwxr-xr-xthird_party/aom/tools/gen_constrained_tokenset.py120
1 files changed, 120 insertions, 0 deletions
diff --git a/third_party/aom/tools/gen_constrained_tokenset.py b/third_party/aom/tools/gen_constrained_tokenset.py
new file mode 100755
index 0000000000..5d12ee1ef5
--- /dev/null
+++ b/third_party/aom/tools/gen_constrained_tokenset.py
@@ -0,0 +1,120 @@
+#!/usr/bin/python
+##
+## Copyright (c) 2016, Alliance for Open Media. All rights reserved
+##
+## This source code is subject to the terms of the BSD 2 Clause License and
+## the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+## was not distributed with this source code in the LICENSE file, you can
+## obtain it at www.aomedia.org/license/software. If the Alliance for Open
+## Media Patent License 1.0 was not distributed with this source code in the
+## PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+##
+"""Generate the probability model for the constrained token set.
+
+Model obtained from a 2-sided zero-centered distribution derived
+from a Pareto distribution. The cdf of the distribution is:
+cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
+
+For a given beta and a given probability of the 1-node, the alpha
+is first solved, and then the {alpha, beta} pair is used to generate
+the probabilities for the rest of the nodes.
+"""
+
+import heapq
+import sys
+import numpy as np
+import scipy.optimize
+import scipy.stats
+
+
+def cdf_spareto(x, xm, beta):
+ p = 1 - (xm / (np.abs(x) + xm))**beta
+ p = 0.5 + 0.5 * np.sign(x) * p
+ return p
+
+
+def get_spareto(p, beta):
+ cdf = cdf_spareto
+
+ def func(x):
+ return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) /
+ (1 - cdf(0.5, x, beta)) - p)**2
+
+ alpha = scipy.optimize.fminbound(func, 1e-12, 10000, xtol=1e-12)
+ parray = np.zeros(11)
+ parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5)
+ parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta)))
+ parray[2] = (2 * (cdf(2.5, alpha, beta) - cdf(1.5, alpha, beta)))
+ parray[3] = (2 * (cdf(3.5, alpha, beta) - cdf(2.5, alpha, beta)))
+ parray[4] = (2 * (cdf(4.5, alpha, beta) - cdf(3.5, alpha, beta)))
+ parray[5] = (2 * (cdf(6.5, alpha, beta) - cdf(4.5, alpha, beta)))
+ parray[6] = (2 * (cdf(10.5, alpha, beta) - cdf(6.5, alpha, beta)))
+ parray[7] = (2 * (cdf(18.5, alpha, beta) - cdf(10.5, alpha, beta)))
+ parray[8] = (2 * (cdf(34.5, alpha, beta) - cdf(18.5, alpha, beta)))
+ parray[9] = (2 * (cdf(66.5, alpha, beta) - cdf(34.5, alpha, beta)))
+ parray[10] = 2 * (1. - cdf(66.5, alpha, beta))
+ return parray
+
+
+def quantize_probs(p, save_first_bin, bits):
+ """Quantize probability precisely.
+
+ Quantize probabilities minimizing dH (Kullback-Leibler divergence)
+ approximated by: sum (p_i-q_i)^2/p_i.
+ References:
+ https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
+ https://github.com/JarekDuda/AsymmetricNumeralSystemsToolkit
+ """
+ num_sym = p.size
+ p = np.clip(p, 1e-16, 1)
+ L = 2**bits
+ pL = p * L
+ ip = 1. / p # inverse probability
+ q = np.clip(np.round(pL), 1, L + 1 - num_sym)
+ quant_err = (pL - q)**2 * ip
+ sgn = np.sign(L - q.sum()) # direction of correction
+ if sgn != 0: # correction is needed
+ v = [] # heap of adjustment results (adjustment err, index) of each symbol
+ for i in range(1 if save_first_bin else 0, num_sym):
+ q_adj = q[i] + sgn
+ if q_adj > 0 and q_adj < L:
+ adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i]
+ heapq.heappush(v, (adj_err, i))
+ while q.sum() != L:
+ # apply lowest error adjustment
+ (adj_err, i) = heapq.heappop(v)
+ quant_err[i] += adj_err
+ q[i] += sgn
+ # calculate the cost of adjusting this symbol again
+ q_adj = q[i] + sgn
+ if q_adj > 0 and q_adj < L:
+ adj_err = (pL[i] - q_adj)**2 * ip[i] - quant_err[i]
+ heapq.heappush(v, (adj_err, i))
+ return q
+
+
+def get_quantized_spareto(p, beta, bits, first_token):
+ parray = get_spareto(p, beta)
+ parray = parray[1:] / (1 - parray[0])
+ # CONFIG_NEW_TOKENSET
+ if first_token > 1:
+ parray = parray[1:] / (1 - parray[0])
+ qarray = quantize_probs(parray, first_token == 1, bits)
+ return qarray.astype(np.int)
+
+
+def main(bits=15, first_token=1):
+ beta = 8
+ for q in range(1, 256):
+ parray = get_quantized_spareto(q / 256., beta, bits, first_token)
+ assert parray.sum() == 2**bits
+ print '{', ', '.join('%d' % i for i in parray), '},'
+
+
+if __name__ == '__main__':
+ if len(sys.argv) > 2:
+ main(int(sys.argv[1]), int(sys.argv[2]))
+ elif len(sys.argv) > 1:
+ main(int(sys.argv[1]))
+ else:
+ main()