diff options
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc')
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc | 406 |
1 files changed, 406 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc b/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc new file mode 100644 index 0000000000..a6782f6a45 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/enc_icc_codec.cc @@ -0,0 +1,406 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/enc_icc_codec.h" + +#include <stdint.h> + +#include <map> +#include <string> +#include <vector> + +#include "lib/jxl/base/byte_order.h" +#include "lib/jxl/common.h" +#include "lib/jxl/enc_ans.h" +#include "lib/jxl/enc_aux_out.h" +#include "lib/jxl/fields.h" +#include "lib/jxl/icc_codec_common.h" + +namespace jxl { +namespace { + +// Unshuffles or de-interleaves bytes, for example with width 2, turns +// "AaBbCcDc" into "ABCDabcd", this for example de-interleaves UTF-16 bytes into +// first all the high order bytes, then all the low order bytes. +// Transposes a matrix of width columns and ceil(size / width) rows. There are +// size elements, size may be < width * height, if so the +// last elements of the bottom row are missing, the missing spots are +// transposed along with the filled spots, and the result has the missing +// elements at the bottom of the rightmost column. The input is the input matrix +// in scanline order, the output is the result matrix in scanline order, with +// missing elements skipped over (this may occur at multiple positions). +void Unshuffle(uint8_t* data, size_t size, size_t width) { + size_t height = (size + width - 1) / width; // amount of rows of input + PaddedBytes result(size); + // i = input index, j output index + size_t s = 0, j = 0; + for (size_t i = 0; i < size; i++) { + result[j] = data[i]; + j += height; + if (j >= size) j = ++s; + } + + for (size_t i = 0; i < size; i++) { + data[i] = result[i]; + } +} + +// This is performed by the encoder, the encoder must be able to encode any +// random byte stream (not just byte streams that are a valid ICC profile), so +// an error returned by this function is an implementation error. +Status PredictAndShuffle(size_t stride, size_t width, int order, size_t num, + const uint8_t* data, size_t size, size_t* pos, + PaddedBytes* result) { + JXL_RETURN_IF_ERROR(CheckOutOfBounds(*pos, num, size)); + // Required by the specification, see decoder. stride * 4 must be < *pos. + if (!*pos || ((*pos - 1u) >> 2u) < stride) { + return JXL_FAILURE("Invalid stride"); + } + if (*pos < stride * 4) return JXL_FAILURE("Too large stride"); + size_t start = result->size(); + for (size_t i = 0; i < num; i++) { + uint8_t predicted = + LinearPredictICCValue(data, *pos, i, stride, width, order); + result->push_back(data[*pos + i] - predicted); + } + *pos += num; + if (width > 1) Unshuffle(result->data() + start, num, width); + return true; +} +} // namespace + +// Outputs a transformed form of the given icc profile. The result itself is +// not particularly smaller than the input data in bytes, but it will be in a +// form that is easier to compress (more zeroes, ...) and will compress better +// with brotli. +Status PredictICC(const uint8_t* icc, size_t size, PaddedBytes* result) { + PaddedBytes commands; + PaddedBytes data; + + EncodeVarInt(size, result); + + // Header + PaddedBytes header = ICCInitialHeaderPrediction(); + EncodeUint32(0, size, &header); + for (size_t i = 0; i < kICCHeaderSize && i < size; i++) { + ICCPredictHeader(icc, size, header.data(), i); + data.push_back(icc[i] - header[i]); + } + if (size <= kICCHeaderSize) { + EncodeVarInt(0, result); // 0 commands + for (size_t i = 0; i < data.size(); i++) { + result->push_back(data[i]); + } + return true; + } + + std::vector<Tag> tags; + std::vector<size_t> tagstarts; + std::vector<size_t> tagsizes; + std::map<size_t, size_t> tagmap; + + // Tag list + size_t pos = kICCHeaderSize; + if (pos + 4 <= size) { + uint64_t numtags = DecodeUint32(icc, size, pos); + pos += 4; + EncodeVarInt(numtags + 1, &commands); + uint64_t prevtagstart = kICCHeaderSize + numtags * 12; + uint32_t prevtagsize = 0; + for (size_t i = 0; i < numtags; i++) { + if (pos + 12 > size) break; + + Tag tag = DecodeKeyword(icc, size, pos + 0); + uint32_t tagstart = DecodeUint32(icc, size, pos + 4); + uint32_t tagsize = DecodeUint32(icc, size, pos + 8); + pos += 12; + + tags.push_back(tag); + tagstarts.push_back(tagstart); + tagsizes.push_back(tagsize); + tagmap[tagstart] = tags.size() - 1; + + uint8_t tagcode = kCommandTagUnknown; + for (size_t j = 0; j < kNumTagStrings; j++) { + if (tag == *kTagStrings[j]) { + tagcode = j + kCommandTagStringFirst; + break; + } + } + + if (tag == kRtrcTag && pos + 24 < size) { + bool ok = true; + ok &= DecodeKeyword(icc, size, pos + 0) == kGtrcTag; + ok &= DecodeKeyword(icc, size, pos + 12) == kBtrcTag; + if (ok) { + for (size_t kk = 0; kk < 8; kk++) { + if (icc[pos - 8 + kk] != icc[pos + 4 + kk]) ok = false; + if (icc[pos - 8 + kk] != icc[pos + 16 + kk]) ok = false; + } + } + if (ok) { + tagcode = kCommandTagTRC; + pos += 24; + i += 2; + } + } + + if (tag == kRxyzTag && pos + 24 < size) { + bool ok = true; + ok &= DecodeKeyword(icc, size, pos + 0) == kGxyzTag; + ok &= DecodeKeyword(icc, size, pos + 12) == kBxyzTag; + uint32_t offsetr = tagstart; + uint32_t offsetg = DecodeUint32(icc, size, pos + 4); + uint32_t offsetb = DecodeUint32(icc, size, pos + 16); + uint32_t sizer = tagsize; + uint32_t sizeg = DecodeUint32(icc, size, pos + 8); + uint32_t sizeb = DecodeUint32(icc, size, pos + 20); + ok &= sizer == 20; + ok &= sizeg == 20; + ok &= sizeb == 20; + ok &= (offsetg == offsetr + 20); + ok &= (offsetb == offsetr + 40); + if (ok) { + tagcode = kCommandTagXYZ; + pos += 24; + i += 2; + } + } + + uint8_t command = tagcode; + uint64_t predicted_tagstart = prevtagstart + prevtagsize; + if (predicted_tagstart != tagstart) command |= kFlagBitOffset; + size_t predicted_tagsize = prevtagsize; + if (tag == kRxyzTag || tag == kGxyzTag || tag == kBxyzTag || + tag == kKxyzTag || tag == kWtptTag || tag == kBkptTag || + tag == kLumiTag) { + predicted_tagsize = 20; + } + if (predicted_tagsize != tagsize) command |= kFlagBitSize; + commands.push_back(command); + if (tagcode == 1) { + AppendKeyword(tag, &data); + } + if (command & kFlagBitOffset) EncodeVarInt(tagstart, &commands); + if (command & kFlagBitSize) EncodeVarInt(tagsize, &commands); + + prevtagstart = tagstart; + prevtagsize = tagsize; + } + } + // Indicate end of tag list or varint indicating there's none + commands.push_back(0); + + // Main content + // The main content in a valid ICC profile contains tagged elements, with the + // tag types (4 letter names) given by the tag list above, and the tag list + // pointing to the start and indicating the size of each tagged element. It is + // allowed for tagged elements to overlap, e.g. the curve for R, G and B could + // all point to the same one. + Tag tag; + size_t tagstart = 0, tagsize = 0, clutstart = 0; + + size_t last0 = pos; + // This loop appends commands to the output, processing some sub-section of a + // current tagged element each time. We need to keep track of the tagtype of + // the current element, and update it when we encounter the boundary of a + // next one. + // It is not required that the input data is a valid ICC profile, if the + // encoder does not recognize the data it will still be able to output bytes + // but will not predict as well. + while (pos <= size) { + size_t last1 = pos; + PaddedBytes commands_add; + PaddedBytes data_add; + + // This means the loop brought the position beyond the tag end. + if (pos > tagstart + tagsize) { + tag = {{0, 0, 0, 0}}; // nonsensical value + } + + if (commands_add.empty() && data_add.empty() && tagmap.count(pos) && + pos + 4 <= size) { + size_t index = tagmap[pos]; + tag = DecodeKeyword(icc, size, pos); + tagstart = tagstarts[index]; + tagsize = tagsizes[index]; + + if (tag == kMlucTag && pos + tagsize <= size && tagsize > 8 && + icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 && + icc[pos + 7] == 0) { + size_t num = tagsize - 8; + commands_add.push_back(kCommandTypeStartFirst + 3); + pos += 8; + commands_add.push_back(kCommandShuffle2); + EncodeVarInt(num, &commands_add); + size_t start = data_add.size(); + for (size_t i = 0; i < num; i++) { + data_add.push_back(icc[pos]); + pos++; + } + Unshuffle(data_add.data() + start, num, 2); + } + + if (tag == kCurvTag && pos + tagsize <= size && tagsize > 8 && + icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 && + icc[pos + 7] == 0) { + size_t num = tagsize - 8; + if (num > 16 && num < (1 << 28) && pos + num <= size && pos > 0) { + commands_add.push_back(kCommandTypeStartFirst + 5); + pos += 8; + commands_add.push_back(kCommandPredict); + int order = 1, width = 2, stride = width; + commands_add.push_back((order << 2) | (width - 1)); + EncodeVarInt(num, &commands_add); + JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, + size, &pos, &data_add)); + } + } + } + + if (tag == kMab_Tag || tag == kMba_Tag) { + Tag subTag = DecodeKeyword(icc, size, pos); + if (pos + 12 < size && (subTag == kCurvTag || subTag == kVcgtTag) && + DecodeUint32(icc, size, pos + 4) == 0) { + uint32_t num = DecodeUint32(icc, size, pos + 8) * 2; + if (num > 16 && num < (1 << 28) && pos + 12 + num <= size) { + pos += 12; + last1 = pos; + commands_add.push_back(kCommandPredict); + int order = 1, width = 2, stride = width; + commands_add.push_back((order << 2) | (width - 1)); + EncodeVarInt(num, &commands_add); + JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, + size, &pos, &data_add)); + } + } + + if (pos == tagstart + 24 && pos + 4 < size) { + // Note that this value can be remembered for next iterations of the + // loop, so the "pos == clutstart" if below can trigger during a later + // iteration. + clutstart = tagstart + DecodeUint32(icc, size, pos); + } + + if (pos == clutstart && clutstart + 16 < size) { + size_t numi = icc[tagstart + 8]; + size_t numo = icc[tagstart + 9]; + size_t width = icc[clutstart + 16]; + size_t stride = width * numo; + size_t num = width * numo; + for (size_t i = 0; i < numi && clutstart + i < size; i++) { + num *= icc[clutstart + i]; + } + if ((width == 1 || width == 2) && num > 64 && num < (1 << 28) && + pos + num <= size && pos > stride * 4) { + commands_add.push_back(kCommandPredict); + int order = 1; + uint8_t flags = + (order << 2) | (width - 1) | (stride == width ? 0 : 16); + commands_add.push_back(flags); + if (flags & 16) EncodeVarInt(stride, &commands_add); + EncodeVarInt(num, &commands_add); + JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, + size, &pos, &data_add)); + } + } + } + + if (commands_add.empty() && data_add.empty() && tag == kGbd_Tag && + pos == tagstart + 8 && pos + tagsize - 8 <= size && pos > 16 && + tagsize > 8) { + size_t width = 4, order = 0, stride = width; + size_t num = tagsize - 8; + uint8_t flags = (order << 2) | (width - 1) | (stride == width ? 0 : 16); + commands_add.push_back(kCommandPredict); + commands_add.push_back(flags); + if (flags & 16) EncodeVarInt(stride, &commands_add); + EncodeVarInt(num, &commands_add); + JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, + size, &pos, &data_add)); + } + + if (commands_add.empty() && data_add.empty() && pos + 20 <= size) { + Tag subTag = DecodeKeyword(icc, size, pos); + if (subTag == kXyz_Tag && DecodeUint32(icc, size, pos + 4) == 0) { + commands_add.push_back(kCommandXYZ); + pos += 8; + for (size_t j = 0; j < 12; j++) data_add.push_back(icc[pos++]); + } + } + + if (commands_add.empty() && data_add.empty() && pos + 8 <= size) { + if (DecodeUint32(icc, size, pos + 4) == 0) { + Tag subTag = DecodeKeyword(icc, size, pos); + for (size_t i = 0; i < kNumTypeStrings; i++) { + if (subTag == *kTypeStrings[i]) { + commands_add.push_back(kCommandTypeStartFirst + i); + pos += 8; + break; + } + } + } + } + + if (!(commands_add.empty() && data_add.empty()) || pos == size) { + if (last0 < last1) { + commands.push_back(kCommandInsert); + EncodeVarInt(last1 - last0, &commands); + while (last0 < last1) { + data.push_back(icc[last0++]); + } + } + for (size_t i = 0; i < commands_add.size(); i++) { + commands.push_back(commands_add[i]); + } + for (size_t i = 0; i < data_add.size(); i++) { + data.push_back(data_add[i]); + } + last0 = pos; + } + if (commands_add.empty() && data_add.empty()) { + pos++; + } + } + + EncodeVarInt(commands.size(), result); + for (size_t i = 0; i < commands.size(); i++) { + result->push_back(commands[i]); + } + for (size_t i = 0; i < data.size(); i++) { + result->push_back(data[i]); + } + + return true; +} + +Status WriteICC(const PaddedBytes& icc, BitWriter* JXL_RESTRICT writer, + size_t layer, AuxOut* JXL_RESTRICT aux_out) { + if (icc.empty()) return JXL_FAILURE("ICC must be non-empty"); + PaddedBytes enc; + JXL_RETURN_IF_ERROR(PredictICC(icc.data(), icc.size(), &enc)); + std::vector<std::vector<Token>> tokens(1); + BitWriter::Allotment allotment(writer, 128); + JXL_RETURN_IF_ERROR(U64Coder::Write(enc.size(), writer)); + allotment.ReclaimAndCharge(writer, layer, aux_out); + + for (size_t i = 0; i < enc.size(); i++) { + tokens[0].emplace_back( + ICCANSContext(i, i > 0 ? enc[i - 1] : 0, i > 1 ? enc[i - 2] : 0), + enc[i]); + } + HistogramParams params; + params.lz77_method = enc.size() < 4096 ? HistogramParams::LZ77Method::kOptimal + : HistogramParams::LZ77Method::kLZ77; + EntropyEncodingData code; + std::vector<uint8_t> context_map; + params.force_huffman = true; + BuildAndEncodeHistograms(params, kNumICCContexts, tokens, &code, &context_map, + writer, layer, aux_out); + WriteTokens(tokens[0], code, context_map, writer, layer, aux_out); + return true; +} + +} // namespace jxl |