diff options
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/jpeg')
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.cc | 145 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.h | 19 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.cc | 1050 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.h | 35 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_output_chunk.h | 72 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_serialization_state.h | 96 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.cc | 384 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.h | 31 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.cc | 1053 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.h | 36 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.cc | 103 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.h | 41 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.cc | 451 | ||||
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.h | 216 |
14 files changed, 3732 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.cc b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.cc new file mode 100644 index 0000000000..db49a1c215 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.cc @@ -0,0 +1,145 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/dec_jpeg_data.h" + +#include <brotli/decode.h> + +#include "lib/jxl/base/span.h" +#include "lib/jxl/base/status.h" +#include "lib/jxl/dec_bit_reader.h" +#include "lib/jxl/sanitizers.h" + +namespace jxl { +namespace jpeg { +Status DecodeJPEGData(Span<const uint8_t> encoded, JPEGData* jpeg_data) { + Status ret = true; + const uint8_t* in = encoded.data(); + size_t available_in = encoded.size(); + { + BitReader br(encoded); + BitReaderScopedCloser br_closer(&br, &ret); + JXL_RETURN_IF_ERROR(Bundle::Read(&br, jpeg_data)); + JXL_RETURN_IF_ERROR(br.JumpToByteBoundary()); + in += br.TotalBitsConsumed() / 8; + available_in -= br.TotalBitsConsumed() / 8; + } + JXL_RETURN_IF_ERROR(ret); + + BrotliDecoderState* brotli_dec = + BrotliDecoderCreateInstance(nullptr, nullptr, nullptr); + + struct BrotliDecDeleter { + BrotliDecoderState* brotli_dec; + ~BrotliDecDeleter() { BrotliDecoderDestroyInstance(brotli_dec); } + } brotli_dec_deleter{brotli_dec}; + + BrotliDecoderResult result = + BrotliDecoderResult::BROTLI_DECODER_RESULT_SUCCESS; + + auto br_read = [&](std::vector<uint8_t>& data) -> Status { + size_t available_out = data.size(); + uint8_t* out = data.data(); + while (available_out != 0) { + if (BrotliDecoderIsFinished(brotli_dec)) { + return JXL_FAILURE("Not enough decompressed output"); + } + uint8_t* next_out_before = out; + size_t avail_out_before = available_out; + msan::MemoryIsInitialized(in, available_in); + result = BrotliDecoderDecompressStream(brotli_dec, &available_in, &in, + &available_out, &out, nullptr); + if (result != + BrotliDecoderResult::BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT && + result != BrotliDecoderResult::BROTLI_DECODER_RESULT_SUCCESS) { + return JXL_FAILURE( + "Brotli decoding error: %s\n", + BrotliDecoderErrorString(BrotliDecoderGetErrorCode(brotli_dec))); + } + msan::UnpoisonMemory(next_out_before, avail_out_before - available_out); + } + return true; + }; + size_t num_icc = 0; + for (size_t i = 0; i < jpeg_data->app_data.size(); i++) { + auto& marker = jpeg_data->app_data[i]; + if (jpeg_data->app_marker_type[i] != AppMarkerType::kUnknown) { + // Set the size of the marker. + size_t size_minus_1 = marker.size() - 1; + marker[1] = size_minus_1 >> 8; + marker[2] = size_minus_1 & 0xFF; + if (jpeg_data->app_marker_type[i] == AppMarkerType::kICC) { + if (marker.size() < 17) { + return JXL_FAILURE("ICC markers must be at least 17 bytes"); + } + marker[0] = 0xE2; + memcpy(&marker[3], kIccProfileTag, sizeof kIccProfileTag); + marker[15] = ++num_icc; + } + } else { + JXL_RETURN_IF_ERROR(br_read(marker)); + if (marker[1] * 256u + marker[2] + 1u != marker.size()) { + return JXL_FAILURE("Incorrect marker size"); + } + } + } + for (size_t i = 0; i < jpeg_data->app_data.size(); i++) { + auto& marker = jpeg_data->app_data[i]; + if (jpeg_data->app_marker_type[i] == AppMarkerType::kICC) { + marker[16] = num_icc; + } + if (jpeg_data->app_marker_type[i] == AppMarkerType::kExif) { + marker[0] = 0xE1; + if (marker.size() < 3 + sizeof kExifTag) { + return JXL_FAILURE("Incorrect Exif marker size"); + } + memcpy(&marker[3], kExifTag, sizeof kExifTag); + } + if (jpeg_data->app_marker_type[i] == AppMarkerType::kXMP) { + marker[0] = 0xE1; + if (marker.size() < 3 + sizeof kXMPTag) { + return JXL_FAILURE("Incorrect XMP marker size"); + } + memcpy(&marker[3], kXMPTag, sizeof kXMPTag); + } + } + // TODO(eustas): actually inject ICC profile and check it fits perfectly. + for (size_t i = 0; i < jpeg_data->com_data.size(); i++) { + auto& marker = jpeg_data->com_data[i]; + JXL_RETURN_IF_ERROR(br_read(marker)); + if (marker[1] * 256u + marker[2] + 1u != marker.size()) { + return JXL_FAILURE("Incorrect marker size"); + } + } + for (size_t i = 0; i < jpeg_data->inter_marker_data.size(); i++) { + JXL_RETURN_IF_ERROR(br_read(jpeg_data->inter_marker_data[i])); + } + JXL_RETURN_IF_ERROR(br_read(jpeg_data->tail_data)); + + // Check if there is more decompressed output. + size_t available_out = 1; + uint64_t dummy; + uint8_t* next_out = reinterpret_cast<uint8_t*>(&dummy); + result = BrotliDecoderDecompressStream(brotli_dec, &available_in, &in, + &available_out, &next_out, nullptr); + if (available_out == 0 || + result == BrotliDecoderResult::BROTLI_DECODER_RESULT_NEEDS_MORE_OUTPUT) { + return JXL_FAILURE("Excess data in compressed stream"); + } + if (result == BrotliDecoderResult::BROTLI_DECODER_RESULT_NEEDS_MORE_INPUT) { + return JXL_FAILURE("Incomplete brotli-stream"); + } + if (!BrotliDecoderIsFinished(brotli_dec) || + result != BrotliDecoderResult::BROTLI_DECODER_RESULT_SUCCESS) { + return JXL_FAILURE("Corrupted brotli-stream"); + } + if (available_in != 0) { + return JXL_FAILURE("Unused data after brotli stream"); + } + + return true; +} +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.h b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.h new file mode 100644 index 0000000000..b9d50bf9f8 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data.h @@ -0,0 +1,19 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#ifndef LIB_JXL_JPEG_DEC_JPEG_DATA_H_ +#define LIB_JXL_JPEG_DEC_JPEG_DATA_H_ + +#include "lib/jxl/base/span.h" +#include "lib/jxl/base/status.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { +Status DecodeJPEGData(Span<const uint8_t> encoded, JPEGData* jpeg_data); +} +} // namespace jxl + +#endif // LIB_JXL_JPEG_DEC_JPEG_DATA_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.cc b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.cc new file mode 100644 index 0000000000..f9ae755789 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.cc @@ -0,0 +1,1050 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/dec_jpeg_data_writer.h" + +#include <stdlib.h> +#include <string.h> /* for memset, memcpy */ + +#include <deque> +#include <string> +#include <vector> + +#include "lib/jxl/base/bits.h" +#include "lib/jxl/common.h" +#include "lib/jxl/image_bundle.h" +#include "lib/jxl/jpeg/dec_jpeg_serialization_state.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +namespace { + +enum struct SerializationStatus { + NEEDS_MORE_INPUT, + NEEDS_MORE_OUTPUT, + ERROR, + DONE +}; + +const int kJpegPrecision = 8; + +// JpegBitWriter: buffer size +const size_t kJpegBitWriterChunkSize = 16384; + +// DCTCodingState: maximum number of correction bits to buffer +const int kJPEGMaxCorrectionBits = 1u << 16; + +// Returns non-zero if and only if x has a zero byte, i.e. one of +// x & 0xff, x & 0xff00, ..., x & 0xff00000000000000 is zero. +static JXL_INLINE uint64_t HasZeroByte(uint64_t x) { + return (x - 0x0101010101010101ULL) & ~x & 0x8080808080808080ULL; +} + +void JpegBitWriterInit(JpegBitWriter* bw, + std::deque<OutputChunk>* output_queue) { + bw->output = output_queue; + bw->chunk = OutputChunk(kJpegBitWriterChunkSize); + bw->pos = 0; + bw->put_buffer = 0; + bw->put_bits = 64; + bw->healthy = true; + bw->data = bw->chunk.buffer->data(); +} + +static JXL_NOINLINE void SwapBuffer(JpegBitWriter* bw) { + bw->chunk.len = bw->pos; + bw->output->emplace_back(std::move(bw->chunk)); + bw->chunk = OutputChunk(kJpegBitWriterChunkSize); + bw->data = bw->chunk.buffer->data(); + bw->pos = 0; +} + +static JXL_INLINE void Reserve(JpegBitWriter* bw, size_t n_bytes) { + if (JXL_UNLIKELY((bw->pos + n_bytes) > kJpegBitWriterChunkSize)) { + SwapBuffer(bw); + } +} + +/** + * Writes the given byte to the output, writes an extra zero if byte is 0xFF. + * + * This method is "careless" - caller must make sure that there is enough + * space in the output buffer. Emits up to 2 bytes to buffer. + */ +static JXL_INLINE void EmitByte(JpegBitWriter* bw, int byte) { + bw->data[bw->pos++] = byte; + if (byte == 0xFF) bw->data[bw->pos++] = 0; +} + +static JXL_INLINE void DischargeBitBuffer(JpegBitWriter* bw) { + // At this point we are ready to emit the most significant 6 bytes of + // put_buffer_ to the output. + // The JPEG format requires that after every 0xff byte in the entropy + // coded section, there is a zero byte, therefore we first check if any of + // the 6 most significant bytes of put_buffer_ is 0xFF. + Reserve(bw, 12); + if (HasZeroByte(~bw->put_buffer | 0xFFFF)) { + // We have a 0xFF byte somewhere, examine each byte and append a zero + // byte if necessary. + EmitByte(bw, (bw->put_buffer >> 56) & 0xFF); + EmitByte(bw, (bw->put_buffer >> 48) & 0xFF); + EmitByte(bw, (bw->put_buffer >> 40) & 0xFF); + EmitByte(bw, (bw->put_buffer >> 32) & 0xFF); + EmitByte(bw, (bw->put_buffer >> 24) & 0xFF); + EmitByte(bw, (bw->put_buffer >> 16) & 0xFF); + } else { + // We don't have any 0xFF bytes, output all 6 bytes without checking. + bw->data[bw->pos] = (bw->put_buffer >> 56) & 0xFF; + bw->data[bw->pos + 1] = (bw->put_buffer >> 48) & 0xFF; + bw->data[bw->pos + 2] = (bw->put_buffer >> 40) & 0xFF; + bw->data[bw->pos + 3] = (bw->put_buffer >> 32) & 0xFF; + bw->data[bw->pos + 4] = (bw->put_buffer >> 24) & 0xFF; + bw->data[bw->pos + 5] = (bw->put_buffer >> 16) & 0xFF; + bw->pos += 6; + } + bw->put_buffer <<= 48; + bw->put_bits += 48; +} + +static JXL_INLINE void WriteBits(JpegBitWriter* bw, int nbits, uint64_t bits) { + // This is an optimization; if everything goes well, + // then |nbits| is positive; if non-existing Huffman symbol is going to be + // encoded, its length should be zero; later encoder could check the + // "health" of JpegBitWriter. + if (nbits == 0) { + bw->healthy = false; + return; + } + bw->put_bits -= nbits; + bw->put_buffer |= (bits << bw->put_bits); + if (bw->put_bits <= 16) DischargeBitBuffer(bw); +} + +void EmitMarker(JpegBitWriter* bw, int marker) { + Reserve(bw, 2); + JXL_DASSERT(marker != 0xFF); + bw->data[bw->pos++] = 0xFF; + bw->data[bw->pos++] = marker; +} + +bool JumpToByteBoundary(JpegBitWriter* bw, const uint8_t** pad_bits, + const uint8_t* pad_bits_end) { + size_t n_bits = bw->put_bits & 7u; + uint8_t pad_pattern; + if (*pad_bits == nullptr) { + pad_pattern = (1u << n_bits) - 1; + } else { + pad_pattern = 0; + const uint8_t* src = *pad_bits; + // TODO(eustas): bitwise reading looks insanely ineffective... + while (n_bits--) { + pad_pattern <<= 1; + if (src >= pad_bits_end) return false; + // TODO(eustas): DCHECK *src == {0, 1} + pad_pattern |= !!*(src++); + } + *pad_bits = src; + } + + Reserve(bw, 16); + + while (bw->put_bits <= 56) { + int c = (bw->put_buffer >> 56) & 0xFF; + EmitByte(bw, c); + bw->put_buffer <<= 8; + bw->put_bits += 8; + } + if (bw->put_bits < 64) { + int pad_mask = 0xFFu >> (64 - bw->put_bits); + int c = ((bw->put_buffer >> 56) & ~pad_mask) | pad_pattern; + EmitByte(bw, c); + } + bw->put_buffer = 0; + bw->put_bits = 64; + + return true; +} + +void JpegBitWriterFinish(JpegBitWriter* bw) { + if (bw->pos == 0) return; + bw->chunk.len = bw->pos; + bw->output->emplace_back(std::move(bw->chunk)); + bw->chunk = OutputChunk(nullptr, 0); + bw->data = nullptr; + bw->pos = 0; +} + +void DCTCodingStateInit(DCTCodingState* s) { + s->eob_run_ = 0; + s->cur_ac_huff_ = nullptr; + s->refinement_bits_.clear(); + s->refinement_bits_.reserve(kJPEGMaxCorrectionBits); +} + +enum OutputModes { + kModeHistogram, + kModeWrite, +}; + +template <int kOutputMode> +static JXL_INLINE void WriteSymbol(int symbol, HuffmanCodeTable* table, + JpegBitWriter* bw) { + if (kOutputMode == OutputModes::kModeHistogram) { + ++table->depth[symbol]; + } else { + WriteBits(bw, table->depth[symbol], table->code[symbol]); + } +} + +// Emit all buffered data to the bit stream using the given Huffman code and +// bit writer. +template <int kOutputMode> +static JXL_INLINE void Flush(DCTCodingState* s, JpegBitWriter* bw) { + if (s->eob_run_ > 0) { + int nbits = FloorLog2Nonzero<uint32_t>(s->eob_run_); + int symbol = nbits << 4u; + WriteSymbol<kOutputMode>(symbol, s->cur_ac_huff_, bw); + if (nbits > 0) { + WriteBits(bw, nbits, s->eob_run_ & ((1 << nbits) - 1)); + } + s->eob_run_ = 0; + } + for (size_t i = 0; i < s->refinement_bits_.size(); ++i) { + WriteBits(bw, 1, s->refinement_bits_[i]); + } + s->refinement_bits_.clear(); +} + +// Buffer some more data at the end-of-band (the last non-zero or newly +// non-zero coefficient within the [Ss, Se] spectral band). +template <int kOutputMode> +static JXL_INLINE void BufferEndOfBand(DCTCodingState* s, + HuffmanCodeTable* ac_huff, + const std::vector<int>* new_bits, + JpegBitWriter* bw) { + if (s->eob_run_ == 0) { + s->cur_ac_huff_ = ac_huff; + } + ++s->eob_run_; + if (new_bits) { + s->refinement_bits_.insert(s->refinement_bits_.end(), new_bits->begin(), + new_bits->end()); + } + if (s->eob_run_ == 0x7FFF || + s->refinement_bits_.size() > kJPEGMaxCorrectionBits - kDCTBlockSize + 1) { + Flush<kOutputMode>(s, bw); + } +} + +bool BuildHuffmanCodeTable(const JPEGHuffmanCode& huff, + HuffmanCodeTable* table) { + int huff_code[kJpegHuffmanAlphabetSize]; + // +1 for a sentinel element. + uint32_t huff_size[kJpegHuffmanAlphabetSize + 1]; + int p = 0; + for (size_t l = 1; l <= kJpegHuffmanMaxBitLength; ++l) { + int i = huff.counts[l]; + if (p + i > kJpegHuffmanAlphabetSize + 1) { + return false; + } + while (i--) huff_size[p++] = l; + } + + if (p == 0) { + return true; + } + + // Reuse sentinel element. + int last_p = p - 1; + huff_size[last_p] = 0; + + int code = 0; + uint32_t si = huff_size[0]; + p = 0; + while (huff_size[p]) { + while ((huff_size[p]) == si) { + huff_code[p++] = code; + code++; + } + code <<= 1; + si++; + } + for (p = 0; p < last_p; p++) { + int i = huff.values[p]; + table->depth[i] = huff_size[p]; + table->code[i] = huff_code[p]; + } + return true; +} + +bool EncodeSOI(SerializationState* state) { + state->output_queue.push_back(OutputChunk({0xFF, 0xD8})); + return true; +} + +bool EncodeEOI(const JPEGData& jpg, SerializationState* state) { + state->output_queue.push_back(OutputChunk({0xFF, 0xD9})); + state->output_queue.emplace_back(jpg.tail_data); + return true; +} + +bool EncodeSOF(const JPEGData& jpg, uint8_t marker, SerializationState* state) { + if (marker <= 0xC2) state->is_progressive = (marker == 0xC2); + + const size_t n_comps = jpg.components.size(); + const size_t marker_len = 8 + 3 * n_comps; + state->output_queue.emplace_back(marker_len + 2); + uint8_t* data = state->output_queue.back().buffer->data(); + size_t pos = 0; + data[pos++] = 0xFF; + data[pos++] = marker; + data[pos++] = marker_len >> 8u; + data[pos++] = marker_len & 0xFFu; + data[pos++] = kJpegPrecision; + data[pos++] = jpg.height >> 8u; + data[pos++] = jpg.height & 0xFFu; + data[pos++] = jpg.width >> 8u; + data[pos++] = jpg.width & 0xFFu; + data[pos++] = n_comps; + for (size_t i = 0; i < n_comps; ++i) { + data[pos++] = jpg.components[i].id; + data[pos++] = ((jpg.components[i].h_samp_factor << 4u) | + (jpg.components[i].v_samp_factor)); + const size_t quant_idx = jpg.components[i].quant_idx; + if (quant_idx >= jpg.quant.size()) return false; + data[pos++] = jpg.quant[quant_idx].index; + } + return true; +} + +bool EncodeSOS(const JPEGData& jpg, const JPEGScanInfo& scan_info, + SerializationState* state) { + const size_t n_scans = scan_info.num_components; + const size_t marker_len = 6 + 2 * n_scans; + state->output_queue.emplace_back(marker_len + 2); + uint8_t* data = state->output_queue.back().buffer->data(); + size_t pos = 0; + data[pos++] = 0xFF; + data[pos++] = 0xDA; + data[pos++] = marker_len >> 8u; + data[pos++] = marker_len & 0xFFu; + data[pos++] = n_scans; + for (size_t i = 0; i < n_scans; ++i) { + const JPEGComponentScanInfo& si = scan_info.components[i]; + if (si.comp_idx >= jpg.components.size()) return false; + data[pos++] = jpg.components[si.comp_idx].id; + data[pos++] = (si.dc_tbl_idx << 4u) + si.ac_tbl_idx; + } + data[pos++] = scan_info.Ss; + data[pos++] = scan_info.Se; + data[pos++] = ((scan_info.Ah << 4u) | (scan_info.Al)); + return true; +} + +bool EncodeDHT(const JPEGData& jpg, SerializationState* state) { + const std::vector<JPEGHuffmanCode>& huffman_code = jpg.huffman_code; + + size_t marker_len = 2; + for (size_t i = state->dht_index; i < huffman_code.size(); ++i) { + const JPEGHuffmanCode& huff = huffman_code[i]; + marker_len += kJpegHuffmanMaxBitLength; + for (size_t j = 0; j < huff.counts.size(); ++j) { + marker_len += huff.counts[j]; + } + if (huff.is_last) break; + } + state->output_queue.emplace_back(marker_len + 2); + uint8_t* data = state->output_queue.back().buffer->data(); + size_t pos = 0; + data[pos++] = 0xFF; + data[pos++] = 0xC4; + data[pos++] = marker_len >> 8u; + data[pos++] = marker_len & 0xFFu; + while (true) { + const size_t huffman_code_index = state->dht_index++; + if (huffman_code_index >= huffman_code.size()) { + return false; + } + const JPEGHuffmanCode& huff = huffman_code[huffman_code_index]; + size_t index = huff.slot_id; + HuffmanCodeTable* huff_table; + if (index & 0x10) { + index -= 0x10; + huff_table = &state->ac_huff_table[index]; + } else { + huff_table = &state->dc_huff_table[index]; + } + // TODO(eustas): cache + // TODO(eustas): set up non-existing symbols + if (!BuildHuffmanCodeTable(huff, huff_table)) { + return false; + } + size_t total_count = 0; + size_t max_length = 0; + for (size_t i = 0; i < huff.counts.size(); ++i) { + if (huff.counts[i] != 0) { + max_length = i; + } + total_count += huff.counts[i]; + } + --total_count; + data[pos++] = huff.slot_id; + for (size_t i = 1; i <= kJpegHuffmanMaxBitLength; ++i) { + data[pos++] = (i == max_length ? huff.counts[i] - 1 : huff.counts[i]); + } + for (size_t i = 0; i < total_count; ++i) { + data[pos++] = huff.values[i]; + } + if (huff.is_last) break; + } + return true; +} + +bool EncodeDQT(const JPEGData& jpg, SerializationState* state) { + int marker_len = 2; + for (size_t i = state->dqt_index; i < jpg.quant.size(); ++i) { + const JPEGQuantTable& table = jpg.quant[i]; + marker_len += 1 + (table.precision ? 2 : 1) * kDCTBlockSize; + if (table.is_last) break; + } + state->output_queue.emplace_back(marker_len + 2); + uint8_t* data = state->output_queue.back().buffer->data(); + size_t pos = 0; + data[pos++] = 0xFF; + data[pos++] = 0xDB; + data[pos++] = marker_len >> 8u; + data[pos++] = marker_len & 0xFFu; + while (true) { + const size_t idx = state->dqt_index++; + if (idx >= jpg.quant.size()) { + return false; // corrupt input + } + const JPEGQuantTable& table = jpg.quant[idx]; + data[pos++] = (table.precision << 4u) + table.index; + for (size_t i = 0; i < kDCTBlockSize; ++i) { + int val_idx = kJPEGNaturalOrder[i]; + int val = table.values[val_idx]; + if (table.precision) { + data[pos++] = val >> 8u; + } + data[pos++] = val & 0xFFu; + } + if (table.is_last) break; + } + return true; +} + +bool EncodeDRI(const JPEGData& jpg, SerializationState* state) { + state->seen_dri_marker = true; + OutputChunk dri_marker = {0xFF, + 0xDD, + 0, + 4, + static_cast<uint8_t>(jpg.restart_interval >> 8), + static_cast<uint8_t>(jpg.restart_interval & 0xFF)}; + state->output_queue.push_back(std::move(dri_marker)); + return true; +} + +bool EncodeRestart(uint8_t marker, SerializationState* state) { + state->output_queue.push_back(OutputChunk({0xFF, marker})); + return true; +} + +bool EncodeAPP(const JPEGData& jpg, uint8_t marker, SerializationState* state) { + // TODO(eustas): check that marker corresponds to payload? + (void)marker; + + size_t app_index = state->app_index++; + if (app_index >= jpg.app_data.size()) return false; + state->output_queue.push_back(OutputChunk({0xFF})); + state->output_queue.emplace_back(jpg.app_data[app_index]); + return true; +} + +bool EncodeCOM(const JPEGData& jpg, SerializationState* state) { + size_t com_index = state->com_index++; + if (com_index >= jpg.com_data.size()) return false; + state->output_queue.push_back(OutputChunk({0xFF})); + state->output_queue.emplace_back(jpg.com_data[com_index]); + return true; +} + +bool EncodeInterMarkerData(const JPEGData& jpg, SerializationState* state) { + size_t index = state->data_index++; + if (index >= jpg.inter_marker_data.size()) return false; + state->output_queue.emplace_back(jpg.inter_marker_data[index]); + return true; +} + +template <int kOutputMode> +bool EncodeDCTBlockSequential(const coeff_t* coeffs, HuffmanCodeTable* dc_huff, + HuffmanCodeTable* ac_huff, int num_zero_runs, + coeff_t* last_dc_coeff, JpegBitWriter* bw) { + coeff_t temp2; + coeff_t temp; + temp2 = coeffs[0]; + temp = temp2 - *last_dc_coeff; + *last_dc_coeff = temp2; + temp2 = temp; + if (temp < 0) { + temp = -temp; + if (temp < 0) return false; + temp2--; + } + int dc_nbits = (temp == 0) ? 0 : (FloorLog2Nonzero<uint32_t>(temp) + 1); + WriteSymbol<kOutputMode>(dc_nbits, dc_huff, bw); + if (dc_nbits >= 12) return false; + if (dc_nbits > 0) { + WriteBits(bw, dc_nbits, temp2 & ((1u << dc_nbits) - 1)); + } + int r = 0; + for (int k = 1; k < 64; ++k) { + if ((temp = coeffs[kJPEGNaturalOrder[k]]) == 0) { + r++; + continue; + } + if (temp < 0) { + temp = -temp; + if (temp < 0) return false; + temp2 = ~temp; + } else { + temp2 = temp; + } + while (r > 15) { + WriteSymbol<kOutputMode>(0xf0, ac_huff, bw); + r -= 16; + } + int ac_nbits = FloorLog2Nonzero<uint32_t>(temp) + 1; + if (ac_nbits >= 16) return false; + int symbol = (r << 4u) + ac_nbits; + WriteSymbol<kOutputMode>(symbol, ac_huff, bw); + WriteBits(bw, ac_nbits, temp2 & ((1 << ac_nbits) - 1)); + r = 0; + } + for (int i = 0; i < num_zero_runs; ++i) { + WriteSymbol<kOutputMode>(0xf0, ac_huff, bw); + r -= 16; + } + if (r > 0) { + WriteSymbol<kOutputMode>(0, ac_huff, bw); + } + return true; +} + +template <int kOutputMode> +bool EncodeDCTBlockProgressive(const coeff_t* coeffs, HuffmanCodeTable* dc_huff, + HuffmanCodeTable* ac_huff, int Ss, int Se, + int Al, int num_zero_runs, + DCTCodingState* coding_state, + coeff_t* last_dc_coeff, JpegBitWriter* bw) { + bool eob_run_allowed = Ss > 0; + coeff_t temp2; + coeff_t temp; + if (Ss == 0) { + temp2 = coeffs[0] >> Al; + temp = temp2 - *last_dc_coeff; + *last_dc_coeff = temp2; + temp2 = temp; + if (temp < 0) { + temp = -temp; + if (temp < 0) return false; + temp2--; + } + int nbits = (temp == 0) ? 0 : (FloorLog2Nonzero<uint32_t>(temp) + 1); + WriteSymbol<kOutputMode>(nbits, dc_huff, bw); + if (nbits > 0) { + WriteBits(bw, nbits, temp2 & ((1 << nbits) - 1)); + } + ++Ss; + } + if (Ss > Se) { + return true; + } + int r = 0; + for (int k = Ss; k <= Se; ++k) { + if ((temp = coeffs[kJPEGNaturalOrder[k]]) == 0) { + r++; + continue; + } + if (temp < 0) { + temp = -temp; + if (temp < 0) return false; + temp >>= Al; + temp2 = ~temp; + } else { + temp >>= Al; + temp2 = temp; + } + if (temp == 0) { + r++; + continue; + } + Flush<kOutputMode>(coding_state, bw); + while (r > 15) { + WriteSymbol<kOutputMode>(0xf0, ac_huff, bw); + r -= 16; + } + int nbits = FloorLog2Nonzero<uint32_t>(temp) + 1; + int symbol = (r << 4u) + nbits; + WriteSymbol<kOutputMode>(symbol, ac_huff, bw); + WriteBits(bw, nbits, temp2 & ((1 << nbits) - 1)); + r = 0; + } + if (num_zero_runs > 0) { + Flush<kOutputMode>(coding_state, bw); + for (int i = 0; i < num_zero_runs; ++i) { + WriteSymbol<kOutputMode>(0xf0, ac_huff, bw); + r -= 16; + } + } + if (r > 0) { + BufferEndOfBand<kOutputMode>(coding_state, ac_huff, nullptr, bw); + if (!eob_run_allowed) { + Flush<kOutputMode>(coding_state, bw); + } + } + return true; +} + +template <int kOutputMode> +bool EncodeRefinementBits(const coeff_t* coeffs, HuffmanCodeTable* ac_huff, + int Ss, int Se, int Al, DCTCodingState* coding_state, + JpegBitWriter* bw) { + bool eob_run_allowed = Ss > 0; + if (Ss == 0) { + // Emit next bit of DC component. + WriteBits(bw, 1, (coeffs[0] >> Al) & 1); + ++Ss; + } + if (Ss > Se) { + return true; + } + int abs_values[kDCTBlockSize]; + int eob = 0; + for (int k = Ss; k <= Se; k++) { + const coeff_t abs_val = std::abs(coeffs[kJPEGNaturalOrder[k]]); + abs_values[k] = abs_val >> Al; + if (abs_values[k] == 1) { + eob = k; + } + } + int r = 0; + std::vector<int> refinement_bits; + refinement_bits.reserve(kDCTBlockSize); + for (int k = Ss; k <= Se; k++) { + if (abs_values[k] == 0) { + r++; + continue; + } + while (r > 15 && k <= eob) { + Flush<kOutputMode>(coding_state, bw); + WriteSymbol<kOutputMode>(0xf0, ac_huff, bw); + r -= 16; + for (int bit : refinement_bits) { + WriteBits(bw, 1, bit); + } + refinement_bits.clear(); + } + if (abs_values[k] > 1) { + refinement_bits.push_back(abs_values[k] & 1u); + continue; + } + Flush<kOutputMode>(coding_state, bw); + int symbol = (r << 4u) + 1; + int new_non_zero_bit = (coeffs[kJPEGNaturalOrder[k]] < 0) ? 0 : 1; + WriteSymbol<kOutputMode>(symbol, ac_huff, bw); + WriteBits(bw, 1, new_non_zero_bit); + for (int bit : refinement_bits) { + WriteBits(bw, 1, bit); + } + refinement_bits.clear(); + r = 0; + } + if (r > 0 || !refinement_bits.empty()) { + BufferEndOfBand<kOutputMode>(coding_state, ac_huff, &refinement_bits, bw); + if (!eob_run_allowed) { + Flush<kOutputMode>(coding_state, bw); + } + } + return true; +} + +size_t NumHistograms(const JPEGData& jpg) { + size_t num = 0; + for (const auto& si : jpg.scan_info) { + num += si.num_components; + } + return num; +} + +size_t HistogramIndex(const JPEGData& jpg, size_t scan_index, + size_t component_index) { + size_t idx = 0; + for (size_t i = 0; i < scan_index; ++i) { + idx += jpg.scan_info[i].num_components; + } + return idx + component_index; +} + +template <int kMode, int kOutputMode> +SerializationStatus JXL_NOINLINE DoEncodeScan(const JPEGData& jpg, + SerializationState* state) { + const JPEGScanInfo& scan_info = jpg.scan_info[state->scan_index]; + EncodeScanState& ss = state->scan_state; + + const int restart_interval = + state->seen_dri_marker ? jpg.restart_interval : 0; + + const auto get_next_extra_zero_run_index = [&ss, &scan_info]() -> int { + if (ss.extra_zero_runs_pos < scan_info.extra_zero_runs.size()) { + return scan_info.extra_zero_runs[ss.extra_zero_runs_pos].block_idx; + } else { + return -1; + } + }; + + const auto get_next_reset_point = [&ss, &scan_info]() -> int { + if (ss.next_reset_point_pos < scan_info.reset_points.size()) { + return scan_info.reset_points[ss.next_reset_point_pos++]; + } else { + return -1; + } + }; + + if (ss.stage == EncodeScanState::HEAD) { + if (!EncodeSOS(jpg, scan_info, state)) return SerializationStatus::ERROR; + JpegBitWriterInit(&ss.bw, &state->output_queue); + DCTCodingStateInit(&ss.coding_state); + ss.restarts_to_go = restart_interval; + ss.next_restart_marker = 0; + ss.block_scan_index = 0; + ss.extra_zero_runs_pos = 0; + ss.next_extra_zero_run_index = get_next_extra_zero_run_index(); + ss.next_reset_point_pos = 0; + ss.next_reset_point = get_next_reset_point(); + ss.mcu_y = 0; + memset(ss.last_dc_coeff, 0, sizeof(ss.last_dc_coeff)); + ss.stage = EncodeScanState::BODY; + } + JpegBitWriter* bw = &ss.bw; + DCTCodingState* coding_state = &ss.coding_state; + + JXL_DASSERT(ss.stage == EncodeScanState::BODY); + + // "Non-interleaved" means color data comes in separate scans, in other words + // each scan can contain only one color component. + const bool is_interleaved = (scan_info.num_components > 1); + int MCUs_per_row = 0; + int MCU_rows = 0; + jpg.CalculateMcuSize(scan_info, &MCUs_per_row, &MCU_rows); + const bool is_progressive = state->is_progressive; + const int Al = is_progressive ? scan_info.Al : 0; + const int Ss = is_progressive ? scan_info.Ss : 0; + const int Se = is_progressive ? scan_info.Se : 63; + + // DC-only is defined by [0..0] spectral range. + const bool want_ac = ((Ss != 0) || (Se != 0)); + // TODO: support streaming decoding again. + const bool complete_ac = true; + const bool has_ac = true; + if (want_ac && !has_ac) return SerializationStatus::NEEDS_MORE_INPUT; + + // |has_ac| implies |complete_dc| but not vice versa; for the sake of + // simplicity we pretend they are equal, because they are separated by just a + // few bytes of input. + const bool complete_dc = has_ac; + const bool complete = want_ac ? complete_ac : complete_dc; + // When "incomplete" |ac_dc| tracks information about current ("incomplete") + // band parsing progress. + + // FIXME: Is this always complete? + // const int last_mcu_y = + // complete ? MCU_rows : parsing_state.internal->ac_dc.next_mcu_y * + // v_group; + (void)complete; + const int last_mcu_y = complete ? MCU_rows : 0; + + for (; ss.mcu_y < last_mcu_y; ++ss.mcu_y) { + for (int mcu_x = 0; mcu_x < MCUs_per_row; ++mcu_x) { + // Possibly emit a restart marker. + if (restart_interval > 0 && ss.restarts_to_go == 0) { + Flush<kOutputMode>(coding_state, bw); + if (!JumpToByteBoundary(bw, &state->pad_bits, state->pad_bits_end)) { + return SerializationStatus::ERROR; + } + EmitMarker(bw, 0xD0 + ss.next_restart_marker); + ss.next_restart_marker += 1; + ss.next_restart_marker &= 0x7; + ss.restarts_to_go = restart_interval; + memset(ss.last_dc_coeff, 0, sizeof(ss.last_dc_coeff)); + } + // Encode one MCU + for (size_t i = 0; i < scan_info.num_components; ++i) { + const JPEGComponentScanInfo& si = scan_info.components[i]; + const JPEGComponent& c = jpg.components[si.comp_idx]; + size_t dc_tbl_idx = (kOutputMode == OutputModes::kModeHistogram + ? HistogramIndex(jpg, state->scan_index, i) + : si.dc_tbl_idx); + size_t ac_tbl_idx = (kOutputMode == OutputModes::kModeHistogram + ? HistogramIndex(jpg, state->scan_index, i) + : si.ac_tbl_idx); + HuffmanCodeTable* dc_huff = &state->dc_huff_table[dc_tbl_idx]; + HuffmanCodeTable* ac_huff = &state->ac_huff_table[ac_tbl_idx]; + int n_blocks_y = is_interleaved ? c.v_samp_factor : 1; + int n_blocks_x = is_interleaved ? c.h_samp_factor : 1; + for (int iy = 0; iy < n_blocks_y; ++iy) { + for (int ix = 0; ix < n_blocks_x; ++ix) { + int block_y = ss.mcu_y * n_blocks_y + iy; + int block_x = mcu_x * n_blocks_x + ix; + int block_idx = block_y * c.width_in_blocks + block_x; + if (ss.block_scan_index == ss.next_reset_point) { + Flush<kOutputMode>(coding_state, bw); + ss.next_reset_point = get_next_reset_point(); + } + int num_zero_runs = 0; + if (ss.block_scan_index == ss.next_extra_zero_run_index) { + num_zero_runs = scan_info.extra_zero_runs[ss.extra_zero_runs_pos] + .num_extra_zero_runs; + ++ss.extra_zero_runs_pos; + ss.next_extra_zero_run_index = get_next_extra_zero_run_index(); + } + const coeff_t* coeffs = &c.coeffs[block_idx << 6]; + bool ok; + if (kMode == 0) { + ok = EncodeDCTBlockSequential<kOutputMode>( + coeffs, dc_huff, ac_huff, num_zero_runs, + ss.last_dc_coeff + si.comp_idx, bw); + } else if (kMode == 1) { + ok = EncodeDCTBlockProgressive<kOutputMode>( + coeffs, dc_huff, ac_huff, Ss, Se, Al, num_zero_runs, + coding_state, ss.last_dc_coeff + si.comp_idx, bw); + } else { + ok = EncodeRefinementBits<kOutputMode>(coeffs, ac_huff, Ss, Se, + Al, coding_state, bw); + } + if (!ok) return SerializationStatus::ERROR; + ++ss.block_scan_index; + } + } + } + --ss.restarts_to_go; + } + } + if (ss.mcu_y < MCU_rows) { + if (!bw->healthy) return SerializationStatus::ERROR; + return SerializationStatus::NEEDS_MORE_INPUT; + } + Flush<kOutputMode>(coding_state, bw); + if (!JumpToByteBoundary(bw, &state->pad_bits, state->pad_bits_end)) { + return SerializationStatus::ERROR; + } + JpegBitWriterFinish(bw); + ss.stage = EncodeScanState::HEAD; + state->scan_index++; + if (!bw->healthy) return SerializationStatus::ERROR; + + return SerializationStatus::DONE; +} + +template <int kOutputMode> +static SerializationStatus JXL_INLINE EncodeScan(const JPEGData& jpg, + SerializationState* state) { + const JPEGScanInfo& scan_info = jpg.scan_info[state->scan_index]; + const bool is_progressive = state->is_progressive; + const int Al = is_progressive ? scan_info.Al : 0; + const int Ah = is_progressive ? scan_info.Ah : 0; + const int Ss = is_progressive ? scan_info.Ss : 0; + const int Se = is_progressive ? scan_info.Se : 63; + const bool need_sequential = + !is_progressive || (Ah == 0 && Al == 0 && Ss == 0 && Se == 63); + if (need_sequential) { + return DoEncodeScan<0, kOutputMode>(jpg, state); + } else if (Ah == 0) { + return DoEncodeScan<1, kOutputMode>(jpg, state); + } else { + return DoEncodeScan<2, kOutputMode>(jpg, state); + } +} + +template <int kOutputMode> +SerializationStatus SerializeSection(uint8_t marker, SerializationState* state, + const JPEGData& jpg) { + const auto to_status = [](bool result) { + return result ? SerializationStatus::DONE : SerializationStatus::ERROR; + }; + // TODO(eustas): add and use marker enum + switch (marker) { + case 0xC0: + case 0xC1: + case 0xC2: + case 0xC9: + case 0xCA: + return to_status(EncodeSOF(jpg, marker, state)); + + case 0xC4: + return to_status((kOutputMode == OutputModes::kModeHistogram) || + EncodeDHT(jpg, state)); + + case 0xD0: + case 0xD1: + case 0xD2: + case 0xD3: + case 0xD4: + case 0xD5: + case 0xD6: + case 0xD7: + return to_status(EncodeRestart(marker, state)); + + case 0xD9: + return to_status(EncodeEOI(jpg, state)); + + case 0xDA: + return EncodeScan<kOutputMode>(jpg, state); + + case 0xDB: + return to_status(EncodeDQT(jpg, state)); + + case 0xDD: + return to_status(EncodeDRI(jpg, state)); + + case 0xE0: + case 0xE1: + case 0xE2: + case 0xE3: + case 0xE4: + case 0xE5: + case 0xE6: + case 0xE7: + case 0xE8: + case 0xE9: + case 0xEA: + case 0xEB: + case 0xEC: + case 0xED: + case 0xEE: + case 0xEF: + return to_status(EncodeAPP(jpg, marker, state)); + + case 0xFE: + return to_status(EncodeCOM(jpg, state)); + + case 0xFF: + return to_status(EncodeInterMarkerData(jpg, state)); + + default: + return SerializationStatus::ERROR; + } +} + +// TODO(veluca): add streaming support again. +template <int kOutputMode> +Status WriteJpegInternal(const JPEGData& jpg, const JPEGOutput& out, + SerializationState* ss) { + const auto maybe_push_output = [&]() -> Status { + if (ss->stage != SerializationState::STAGE_ERROR) { + while (!ss->output_queue.empty()) { + auto& chunk = ss->output_queue.front(); + size_t num_written = out(chunk.next, chunk.len); + if (num_written == 0 && chunk.len > 0) { + return StatusMessage(Status(StatusCode::kNotEnoughBytes), + "Failed to write output"); + } + chunk.len -= num_written; + if (chunk.len == 0) { + ss->output_queue.pop_front(); + } + } + } + return true; + }; + + while (true) { + switch (ss->stage) { + case SerializationState::STAGE_INIT: { + // Valid Brunsli requires, at least, 0xD9 marker. + // This might happen on corrupted stream, or on unconditioned JPEGData. + // TODO(eustas): check D9 in the only one and is the last one. + if (jpg.marker_order.empty()) { + ss->stage = SerializationState::STAGE_ERROR; + break; + } + if (kOutputMode == OutputModes::kModeHistogram) { + size_t num_histo = NumHistograms(jpg); + ss->dc_huff_table.resize(num_histo); + ss->ac_huff_table.resize(num_histo); + for (size_t i = 0; i < num_histo; ++i) { + ss->dc_huff_table[i].InitDepths(); + ss->ac_huff_table[i].InitDepths(); + } + } else { + ss->dc_huff_table.resize(kMaxHuffmanTables); + ss->ac_huff_table.resize(kMaxHuffmanTables); + } + if (jpg.has_zero_padding_bit) { + ss->pad_bits = jpg.padding_bits.data(); + ss->pad_bits_end = ss->pad_bits + jpg.padding_bits.size(); + } + + EncodeSOI(ss); + JXL_QUIET_RETURN_IF_ERROR(maybe_push_output()); + ss->stage = SerializationState::STAGE_SERIALIZE_SECTION; + break; + } + + case SerializationState::STAGE_SERIALIZE_SECTION: { + if (ss->section_index >= jpg.marker_order.size()) { + ss->stage = SerializationState::STAGE_DONE; + break; + } + uint8_t marker = jpg.marker_order[ss->section_index]; + SerializationStatus status = + SerializeSection<kOutputMode>(marker, ss, jpg); + if (status == SerializationStatus::ERROR) { + JXL_WARNING("Failed to encode marker 0x%.2x", marker); + ss->stage = SerializationState::STAGE_ERROR; + break; + } + JXL_QUIET_RETURN_IF_ERROR(maybe_push_output()); + if (status == SerializationStatus::NEEDS_MORE_INPUT) { + return JXL_FAILURE("Incomplete serialization data"); + } else if (status != SerializationStatus::DONE) { + JXL_DASSERT(false); + ss->stage = SerializationState::STAGE_ERROR; + break; + } + ++ss->section_index; + break; + } + + case SerializationState::STAGE_DONE: + JXL_ASSERT(ss->output_queue.empty()); + if (ss->pad_bits != nullptr && ss->pad_bits != ss->pad_bits_end) { + return JXL_FAILURE("Invalid number of padding bits."); + } + return true; + + case SerializationState::STAGE_ERROR: + return JXL_FAILURE("JPEG serialization error"); + } + } +} + +} // namespace + +Status WriteJpeg(const JPEGData& jpg, const JPEGOutput& out) { + SerializationState ss; + return WriteJpegInternal<OutputModes::kModeWrite>(jpg, out, &ss); +} + +Status ProcessJpeg(const JPEGData& jpg, SerializationState* ss) { + auto nullout = [](const uint8_t* buf, size_t len) { return len; }; + return WriteJpegInternal<OutputModes::kModeHistogram>(jpg, nullout, ss); +} + +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.h b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.h new file mode 100644 index 0000000000..9ccfb749a8 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_data_writer.h @@ -0,0 +1,35 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Functions for writing a JPEGData object into a jpeg byte stream. + +#ifndef LIB_JXL_JPEG_DEC_JPEG_DATA_WRITER_H_ +#define LIB_JXL_JPEG_DEC_JPEG_DATA_WRITER_H_ + +#include <stddef.h> +#include <stdint.h> + +#include <functional> + +#include "lib/jxl/jpeg/dec_jpeg_serialization_state.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +// Function type used to write len bytes into buf. Returns the number of bytes +// written. +using JPEGOutput = std::function<size_t(const uint8_t* buf, size_t len)>; + +Status WriteJpeg(const JPEGData& jpg, const JPEGOutput& out); + +// Same as WriteJpeg, but instead of writing to the output, collects statistics +// about the bit-stream into `ss`. +Status ProcessJpeg(const JPEGData& jpg, SerializationState* ss); + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_DEC_JPEG_DATA_WRITER_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_output_chunk.h b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_output_chunk.h new file mode 100644 index 0000000000..e003c04952 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_output_chunk.h @@ -0,0 +1,72 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#ifndef LIB_JXL_JPEG_DEC_JPEG_OUTPUT_CHUNK_H_ +#define LIB_JXL_JPEG_DEC_JPEG_OUTPUT_CHUNK_H_ + +#include <stddef.h> +#include <stdint.h> + +#include <initializer_list> +#include <memory> +#include <vector> + +namespace jxl { +namespace jpeg { + +/** + * A chunk of output data. + * + * Data producer creates OutputChunks and adds them to the end output queue. + * Once control flow leaves the producer code, it is considered that chunk of + * data is final and can not be changed; to underline this fact |next| is a + * const-pointer. + * + * Data consumer removes OutputChunks from the beginning of the output queue. + * It is possible to consume OutputChunks partially, by updating |next| and + * |len|. + * + * There are 2 types of output chunks: + * - owning: actual data is stored in |buffer| field; producer fills data after + * the instance it created; it is legal to reduce |len| to show that not all + * the capacity of |buffer| is used + * - non-owning: represents the data stored (owned) somewhere else + */ +struct OutputChunk { + // Non-owning + template <typename Bytes> + explicit OutputChunk(Bytes& bytes) : len(bytes.size()) { + // Deal both with const qualifier and data type. + const void* src = bytes.data(); + next = reinterpret_cast<const uint8_t*>(src); + } + + // Non-owning + OutputChunk(const uint8_t* data, size_t size) : next(data), len(size) {} + + // Owning + explicit OutputChunk(size_t size = 0) { + buffer.reset(new std::vector<uint8_t>(size)); + next = buffer->data(); + len = size; + } + + // Owning + OutputChunk(std::initializer_list<uint8_t> bytes) { + buffer.reset(new std::vector<uint8_t>(bytes)); + next = buffer->data(); + len = bytes.size(); + } + + const uint8_t* next; + size_t len; + // TODO(veluca): consider removing the unique_ptr. + std::unique_ptr<std::vector<uint8_t>> buffer; +}; + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_DEC_JPEG_OUTPUT_CHUNK_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_serialization_state.h b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_serialization_state.h new file mode 100644 index 0000000000..40ce450a76 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/dec_jpeg_serialization_state.h @@ -0,0 +1,96 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#ifndef LIB_JXL_JPEG_DEC_JPEG_SERIALIZATION_STATE_H_ +#define LIB_JXL_JPEG_DEC_JPEG_SERIALIZATION_STATE_H_ + +#include <deque> +#include <vector> + +#include "lib/jxl/jpeg/dec_jpeg_output_chunk.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +struct HuffmanCodeTable { + int depth[256]; + int code[256]; + void InitDepths() { std::fill(std::begin(depth), std::end(depth), 0); } +}; + +// Handles the packing of bits into output bytes. +struct JpegBitWriter { + bool healthy; + std::deque<OutputChunk>* output; + OutputChunk chunk; + uint8_t* data; + size_t pos; + uint64_t put_buffer; + int put_bits; +}; + +// Holds data that is buffered between 8x8 blocks in progressive mode. +struct DCTCodingState { + // The run length of end-of-band symbols in a progressive scan. + int eob_run_; + // The huffman table to be used when flushing the state. + HuffmanCodeTable* cur_ac_huff_; + // The sequence of currently buffered refinement bits for a successive + // approximation scan (one where Ah > 0). + std::vector<int> refinement_bits_; +}; + +struct EncodeScanState { + enum Stage { HEAD, BODY }; + + Stage stage = HEAD; + + int mcu_y; + JpegBitWriter bw; + coeff_t last_dc_coeff[kMaxComponents] = {0}; + int restarts_to_go; + int next_restart_marker; + int block_scan_index; + DCTCodingState coding_state; + size_t extra_zero_runs_pos; + int next_extra_zero_run_index; + size_t next_reset_point_pos; + int next_reset_point; +}; + +struct SerializationState { + enum Stage { + STAGE_INIT, + STAGE_SERIALIZE_SECTION, + STAGE_DONE, + STAGE_ERROR, + }; + + Stage stage = STAGE_INIT; + + std::deque<OutputChunk> output_queue; + + size_t section_index = 0; + int dht_index = 0; + int dqt_index = 0; + int app_index = 0; + int com_index = 0; + int data_index = 0; + int scan_index = 0; + std::vector<HuffmanCodeTable> dc_huff_table; + std::vector<HuffmanCodeTable> ac_huff_table; + const uint8_t* pad_bits = nullptr; + const uint8_t* pad_bits_end = nullptr; + bool seen_dri_marker = false; + bool is_progressive = false; + + EncodeScanState scan_state; +}; + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_DEC_JPEG_SERIALIZATION_STATE_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.cc b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.cc new file mode 100644 index 0000000000..842612f4ab --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.cc @@ -0,0 +1,384 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/enc_jpeg_data.h" + +#include <brotli/encode.h> +#include <stdio.h> + +#include "lib/jxl/enc_fields.h" +#include "lib/jxl/image_bundle.h" +#include "lib/jxl/jpeg/enc_jpeg_data_reader.h" +#include "lib/jxl/luminance.h" +#include "lib/jxl/sanitizers.h" + +namespace jxl { +namespace jpeg { + +namespace { + +constexpr int BITS_IN_JSAMPLE = 8; +using ByteSpan = Span<const uint8_t>; + +// TODO(eustas): move to jpeg_data, to use from codec_jpg as well. +// See if there is a canonically chunked ICC profile and mark corresponding +// app-tags with AppMarkerType::kICC. +Status DetectIccProfile(JPEGData& jpeg_data) { + JXL_DASSERT(jpeg_data.app_data.size() == jpeg_data.app_marker_type.size()); + size_t num_icc = 0; + size_t num_icc_jpeg = 0; + for (size_t i = 0; i < jpeg_data.app_data.size(); i++) { + const auto& app = jpeg_data.app_data[i]; + size_t pos = 0; + if (app[pos++] != 0xE2) continue; + // At least APPn + size; otherwise it should be intermarker-data. + JXL_DASSERT(app.size() >= 3); + size_t tag_length = (app[pos] << 8) + app[pos + 1]; + pos += 2; + JXL_DASSERT(app.size() == tag_length + 1); + // Empty payload is 2 bytes for tag length itself + signature + if (tag_length < 2 + sizeof kIccProfileTag) continue; + + if (memcmp(&app[pos], kIccProfileTag, sizeof kIccProfileTag) != 0) continue; + pos += sizeof kIccProfileTag; + uint8_t chunk_id = app[pos++]; + uint8_t num_chunks = app[pos++]; + if (chunk_id != num_icc + 1) continue; + if (num_icc_jpeg == 0) num_icc_jpeg = num_chunks; + if (num_icc_jpeg != num_chunks) continue; + num_icc++; + jpeg_data.app_marker_type[i] = AppMarkerType::kICC; + } + if (num_icc != num_icc_jpeg) { + return JXL_FAILURE("Invalid ICC chunks"); + } + return true; +} + +bool GetMarkerPayload(const uint8_t* data, size_t size, ByteSpan* payload) { + if (size < 3) { + return false; + } + size_t hi = data[1]; + size_t lo = data[2]; + size_t internal_size = (hi << 8u) | lo; + // Second byte of marker is not counted towards size. + if (internal_size != size - 1) { + return false; + } + // cut second marker byte and "length" from payload. + *payload = ByteSpan(data, size); + payload->remove_prefix(3); + return true; +} + +Status DetectBlobs(jpeg::JPEGData& jpeg_data) { + JXL_DASSERT(jpeg_data.app_data.size() == jpeg_data.app_marker_type.size()); + bool have_exif = false, have_xmp = false; + for (size_t i = 0; i < jpeg_data.app_data.size(); i++) { + auto& marker = jpeg_data.app_data[i]; + if (marker.empty() || marker[0] != kApp1) { + continue; + } + ByteSpan payload; + if (!GetMarkerPayload(marker.data(), marker.size(), &payload)) { + // Something is wrong with this marker; does not care. + continue; + } + if (!have_exif && payload.size() >= sizeof kExifTag && + !memcmp(payload.data(), kExifTag, sizeof kExifTag)) { + jpeg_data.app_marker_type[i] = AppMarkerType::kExif; + have_exif = true; + } + if (!have_xmp && payload.size() >= sizeof kXMPTag && + !memcmp(payload.data(), kXMPTag, sizeof kXMPTag)) { + jpeg_data.app_marker_type[i] = AppMarkerType::kXMP; + have_xmp = true; + } + } + return true; +} + +Status ParseChunkedMarker(const jpeg::JPEGData& src, uint8_t marker_type, + const ByteSpan& tag, PaddedBytes* output, + bool allow_permutations = false) { + output->clear(); + + std::vector<ByteSpan> chunks; + std::vector<bool> presence; + size_t expected_number_of_parts = 0; + bool is_first_chunk = true; + size_t ordinal = 0; + for (const auto& marker : src.app_data) { + if (marker.empty() || marker[0] != marker_type) { + continue; + } + ByteSpan payload; + if (!GetMarkerPayload(marker.data(), marker.size(), &payload)) { + // Something is wrong with this marker; does not care. + continue; + } + if ((payload.size() < tag.size()) || + memcmp(payload.data(), tag.data(), tag.size()) != 0) { + continue; + } + payload.remove_prefix(tag.size()); + if (payload.size() < 2) { + return JXL_FAILURE("Chunk is too small."); + } + uint8_t index = payload[0]; + uint8_t total = payload[1]; + ordinal++; + if (!allow_permutations) { + if (index != ordinal) return JXL_FAILURE("Invalid chunk order."); + } + + payload.remove_prefix(2); + + JXL_RETURN_IF_ERROR(total != 0); + if (is_first_chunk) { + is_first_chunk = false; + expected_number_of_parts = total; + // 1-based indices; 0-th element is added for convenience. + chunks.resize(total + 1); + presence.resize(total + 1); + } else { + JXL_RETURN_IF_ERROR(expected_number_of_parts == total); + } + + if (index == 0 || index > total) { + return JXL_FAILURE("Invalid chunk index."); + } + + if (presence[index]) { + return JXL_FAILURE("Duplicate chunk."); + } + presence[index] = true; + chunks[index] = payload; + } + + for (size_t i = 0; i < expected_number_of_parts; ++i) { + // 0-th element is not used. + size_t index = i + 1; + if (!presence[index]) { + return JXL_FAILURE("Missing chunk."); + } + output->append(chunks[index]); + } + + return true; +} + +Status SetBlobsFromJpegData(const jpeg::JPEGData& jpeg_data, Blobs* blobs) { + for (size_t i = 0; i < jpeg_data.app_data.size(); i++) { + auto& marker = jpeg_data.app_data[i]; + if (marker.empty() || marker[0] != kApp1) { + continue; + } + ByteSpan payload; + if (!GetMarkerPayload(marker.data(), marker.size(), &payload)) { + // Something is wrong with this marker; does not care. + continue; + } + if (payload.size() >= sizeof kExifTag && + !memcmp(payload.data(), kExifTag, sizeof kExifTag)) { + if (blobs->exif.empty()) { + blobs->exif.resize(payload.size() - sizeof kExifTag); + memcpy(blobs->exif.data(), payload.data() + sizeof kExifTag, + payload.size() - sizeof kExifTag); + } else { + JXL_WARNING( + "ReJPEG: multiple Exif blobs, storing only first one in the JPEG " + "XL container\n"); + } + } + if (payload.size() >= sizeof kXMPTag && + !memcmp(payload.data(), kXMPTag, sizeof kXMPTag)) { + if (blobs->xmp.empty()) { + blobs->xmp.resize(payload.size() - sizeof kXMPTag); + memcpy(blobs->xmp.data(), payload.data() + sizeof kXMPTag, + payload.size() - sizeof kXMPTag); + } else { + JXL_WARNING( + "ReJPEG: multiple XMP blobs, storing only first one in the JPEG " + "XL container\n"); + } + } + } + return true; +} + +static inline bool IsJPG(const Span<const uint8_t> bytes) { + return bytes.size() >= 2 && bytes[0] == 0xFF && bytes[1] == 0xD8; +} + +} // namespace + +Status SetColorEncodingFromJpegData(const jpeg::JPEGData& jpg, + ColorEncoding* color_encoding) { + PaddedBytes icc_profile; + if (!ParseChunkedMarker(jpg, kApp2, ByteSpan(kIccProfileTag), &icc_profile)) { + JXL_WARNING("ReJPEG: corrupted ICC profile\n"); + icc_profile.clear(); + } + + if (icc_profile.empty()) { + bool is_gray = (jpg.components.size() == 1); + *color_encoding = ColorEncoding::SRGB(is_gray); + return true; + } + + return color_encoding->SetICC(std::move(icc_profile)); +} + +Status EncodeJPEGData(JPEGData& jpeg_data, PaddedBytes* bytes, + const CompressParams& cparams) { + jpeg_data.app_marker_type.resize(jpeg_data.app_data.size(), + AppMarkerType::kUnknown); + JXL_RETURN_IF_ERROR(DetectIccProfile(jpeg_data)); + JXL_RETURN_IF_ERROR(DetectBlobs(jpeg_data)); + BitWriter writer; + JXL_RETURN_IF_ERROR(Bundle::Write(jpeg_data, &writer, 0, nullptr)); + writer.ZeroPadToByte(); + *bytes = std::move(writer).TakeBytes(); + BrotliEncoderState* brotli_enc = + BrotliEncoderCreateInstance(nullptr, nullptr, nullptr); + int effort = cparams.brotli_effort; + if (effort < 0) effort = 11 - static_cast<int>(cparams.speed_tier); + BrotliEncoderSetParameter(brotli_enc, BROTLI_PARAM_QUALITY, effort); + size_t total_data = 0; + for (size_t i = 0; i < jpeg_data.app_data.size(); i++) { + if (jpeg_data.app_marker_type[i] != AppMarkerType::kUnknown) { + continue; + } + total_data += jpeg_data.app_data[i].size(); + } + for (size_t i = 0; i < jpeg_data.com_data.size(); i++) { + total_data += jpeg_data.com_data[i].size(); + } + for (size_t i = 0; i < jpeg_data.inter_marker_data.size(); i++) { + total_data += jpeg_data.inter_marker_data[i].size(); + } + total_data += jpeg_data.tail_data.size(); + size_t initial_size = bytes->size(); + size_t brotli_capacity = BrotliEncoderMaxCompressedSize(total_data); + BrotliEncoderSetParameter(brotli_enc, BROTLI_PARAM_SIZE_HINT, total_data); + bytes->resize(bytes->size() + brotli_capacity); + size_t enc_size = 0; + auto br_append = [&](const std::vector<uint8_t>& data, bool last) { + size_t available_in = data.size(); + const uint8_t* in = data.data(); + uint8_t* out = &(*bytes)[initial_size + enc_size]; + do { + uint8_t* out_before = out; + msan::MemoryIsInitialized(in, available_in); + JXL_CHECK(BrotliEncoderCompressStream( + brotli_enc, last ? BROTLI_OPERATION_FINISH : BROTLI_OPERATION_PROCESS, + &available_in, &in, &brotli_capacity, &out, &enc_size)); + msan::UnpoisonMemory(out_before, out - out_before); + } while (BrotliEncoderHasMoreOutput(brotli_enc) || available_in > 0); + }; + + for (size_t i = 0; i < jpeg_data.app_data.size(); i++) { + if (jpeg_data.app_marker_type[i] != AppMarkerType::kUnknown) { + continue; + } + br_append(jpeg_data.app_data[i], /*last=*/false); + } + for (size_t i = 0; i < jpeg_data.com_data.size(); i++) { + br_append(jpeg_data.com_data[i], /*last=*/false); + } + for (size_t i = 0; i < jpeg_data.inter_marker_data.size(); i++) { + br_append(jpeg_data.inter_marker_data[i], /*last=*/false); + } + br_append(jpeg_data.tail_data, /*last=*/true); + BrotliEncoderDestroyInstance(brotli_enc); + bytes->resize(initial_size + enc_size); + return true; +} + +Status DecodeImageJPG(const Span<const uint8_t> bytes, CodecInOut* io) { + if (!IsJPG(bytes)) return false; + io->frames.clear(); + io->frames.reserve(1); + io->frames.emplace_back(&io->metadata.m); + io->Main().jpeg_data = make_unique<jpeg::JPEGData>(); + jpeg::JPEGData* jpeg_data = io->Main().jpeg_data.get(); + if (!jpeg::ReadJpeg(bytes.data(), bytes.size(), jpeg::JpegReadMode::kReadAll, + jpeg_data)) { + return JXL_FAILURE("Error reading JPEG"); + } + JXL_RETURN_IF_ERROR( + SetColorEncodingFromJpegData(*jpeg_data, &io->metadata.m.color_encoding)); + JXL_RETURN_IF_ERROR(SetBlobsFromJpegData(*jpeg_data, &io->blobs)); + size_t nbcomp = jpeg_data->components.size(); + if (nbcomp != 1 && nbcomp != 3) { + return JXL_FAILURE("Cannot recompress JPEGs with neither 1 nor 3 channels"); + } + YCbCrChromaSubsampling cs; + if (nbcomp == 3) { + uint8_t hsample[3], vsample[3]; + for (size_t i = 0; i < nbcomp; i++) { + hsample[i] = jpeg_data->components[i].h_samp_factor; + vsample[i] = jpeg_data->components[i].v_samp_factor; + } + JXL_RETURN_IF_ERROR(cs.Set(hsample, vsample)); + } else if (nbcomp == 1) { + uint8_t hsample[3], vsample[3]; + for (size_t i = 0; i < 3; i++) { + hsample[i] = jpeg_data->components[0].h_samp_factor; + vsample[i] = jpeg_data->components[0].v_samp_factor; + } + JXL_RETURN_IF_ERROR(cs.Set(hsample, vsample)); + } + bool is_rgb = false; + { + const auto& markers = jpeg_data->marker_order; + // If there is a JFIF marker, this is YCbCr. Otherwise... + if (std::find(markers.begin(), markers.end(), 0xE0) == markers.end()) { + // Try to find an 'Adobe' marker. + size_t app_markers = 0; + size_t i = 0; + for (; i < markers.size(); i++) { + // This is an APP marker. + if ((markers[i] & 0xF0) == 0xE0) { + JXL_CHECK(app_markers < jpeg_data->app_data.size()); + // APP14 marker + if (markers[i] == 0xEE) { + const auto& data = jpeg_data->app_data[app_markers]; + if (data.size() == 15 && data[3] == 'A' && data[4] == 'd' && + data[5] == 'o' && data[6] == 'b' && data[7] == 'e') { + // 'Adobe' marker. + is_rgb = data[14] == 0; + break; + } + } + app_markers++; + } + } + + if (i == markers.size()) { + // No 'Adobe' marker, guess from component IDs. + is_rgb = nbcomp == 3 && jpeg_data->components[0].id == 'R' && + jpeg_data->components[1].id == 'G' && + jpeg_data->components[2].id == 'B'; + } + } + } + + io->Main().chroma_subsampling = cs; + io->Main().color_transform = + (!is_rgb || nbcomp == 1) ? ColorTransform::kYCbCr : ColorTransform::kNone; + + io->metadata.m.SetIntensityTarget(kDefaultIntensityTarget); + io->metadata.m.SetUintSamples(BITS_IN_JSAMPLE); + io->SetFromImage(Image3F(jpeg_data->width, jpeg_data->height), + io->metadata.m.color_encoding); + SetIntensityTarget(&io->metadata.m); + return true; +} + +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.h b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.h new file mode 100644 index 0000000000..806128c465 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data.h @@ -0,0 +1,31 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#ifndef LIB_JXL_JPEG_ENC_JPEG_DATA_H_ +#define LIB_JXL_JPEG_ENC_JPEG_DATA_H_ + +#include "lib/jxl/base/padded_bytes.h" +#include "lib/jxl/codec_in_out.h" +#include "lib/jxl/enc_params.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { +Status EncodeJPEGData(JPEGData& jpeg_data, PaddedBytes* bytes, + const CompressParams& cparams); + +Status SetColorEncodingFromJpegData(const jpeg::JPEGData& jpg, + ColorEncoding* color_encoding); + +/** + * Decodes bytes containing JPEG codestream into a CodecInOut as coefficients + * only, for lossless JPEG transcoding. + */ +Status DecodeImageJPG(Span<const uint8_t> bytes, CodecInOut* io); + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_ENC_JPEG_DATA_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.cc b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.cc new file mode 100644 index 0000000000..f569b73363 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.cc @@ -0,0 +1,1053 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/enc_jpeg_data_reader.h" + +#include <inttypes.h> +#include <string.h> + +#include <algorithm> +#include <string> +#include <vector> + +#include "lib/jxl/base/printf_macros.h" +#include "lib/jxl/base/status.h" +#include "lib/jxl/common.h" +#include "lib/jxl/jpeg/enc_jpeg_huffman_decode.h" +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +namespace { +static const int kBrunsliMaxSampling = 15; + +// Macros for commonly used error conditions. + +#define JXL_JPEG_VERIFY_LEN(n) \ + if (*pos + (n) > len) { \ + return JXL_FAILURE("Unexpected end of input: pos=%" PRIuS \ + " need=%d len=%" PRIuS, \ + *pos, static_cast<int>(n), len); \ + } + +#define JXL_JPEG_VERIFY_INPUT(var, low, high, code) \ + if ((var) < (low) || (var) > (high)) { \ + return JXL_FAILURE("Invalid " #var ": %d", static_cast<int>(var)); \ + } + +#define JXL_JPEG_VERIFY_MARKER_END() \ + if (start_pos + marker_len != *pos) { \ + return JXL_FAILURE("Invalid marker length: declared=%" PRIuS \ + " actual=%" PRIuS, \ + marker_len, (*pos - start_pos)); \ + } + +#define JXL_JPEG_EXPECT_MARKER() \ + if (pos + 2 > len || data[pos] != 0xff) { \ + return JXL_FAILURE( \ + "Marker byte (0xff) expected, found: 0x%.2x pos=%" PRIuS \ + " len=%" PRIuS, \ + (pos < len ? data[pos] : 0), pos, len); \ + } + +inline int ReadUint8(const uint8_t* data, size_t* pos) { + return data[(*pos)++]; +} + +inline int ReadUint16(const uint8_t* data, size_t* pos) { + int v = (data[*pos] << 8) + data[*pos + 1]; + *pos += 2; + return v; +} + +// Reads the Start of Frame (SOF) marker segment and fills in *jpg with the +// parsed data. +bool ProcessSOF(const uint8_t* data, const size_t len, JpegReadMode mode, + size_t* pos, JPEGData* jpg) { + if (jpg->width != 0) { + return JXL_FAILURE("Duplicate SOF marker."); + } + const size_t start_pos = *pos; + JXL_JPEG_VERIFY_LEN(8); + size_t marker_len = ReadUint16(data, pos); + int precision = ReadUint8(data, pos); + int height = ReadUint16(data, pos); + int width = ReadUint16(data, pos); + int num_components = ReadUint8(data, pos); + // 'jbrd' is hardcoded for 8bits: + JXL_JPEG_VERIFY_INPUT(precision, 8, 8, PRECISION); + JXL_JPEG_VERIFY_INPUT(height, 1, kMaxDimPixels, HEIGHT); + JXL_JPEG_VERIFY_INPUT(width, 1, kMaxDimPixels, WIDTH); + JXL_JPEG_VERIFY_INPUT(num_components, 1, kMaxComponents, NUMCOMP); + JXL_JPEG_VERIFY_LEN(3 * num_components); + jpg->height = height; + jpg->width = width; + jpg->components.resize(num_components); + + // Read sampling factors and quant table index for each component. + std::vector<bool> ids_seen(256, false); + int max_h_samp_factor = 1; + int max_v_samp_factor = 1; + for (size_t i = 0; i < jpg->components.size(); ++i) { + const int id = ReadUint8(data, pos); + if (ids_seen[id]) { // (cf. section B.2.2, syntax of Ci) + return JXL_FAILURE("Duplicate ID %d in SOF.", id); + } + ids_seen[id] = true; + jpg->components[i].id = id; + int factor = ReadUint8(data, pos); + int h_samp_factor = factor >> 4; + int v_samp_factor = factor & 0xf; + JXL_JPEG_VERIFY_INPUT(h_samp_factor, 1, kBrunsliMaxSampling, SAMP_FACTOR); + JXL_JPEG_VERIFY_INPUT(v_samp_factor, 1, kBrunsliMaxSampling, SAMP_FACTOR); + jpg->components[i].h_samp_factor = h_samp_factor; + jpg->components[i].v_samp_factor = v_samp_factor; + jpg->components[i].quant_idx = ReadUint8(data, pos); + max_h_samp_factor = std::max(max_h_samp_factor, h_samp_factor); + max_v_samp_factor = std::max(max_v_samp_factor, v_samp_factor); + } + + // We have checked above that none of the sampling factors are 0, so the max + // sampling factors can not be 0. + int MCU_rows = DivCeil(jpg->height, max_v_samp_factor * 8); + int MCU_cols = DivCeil(jpg->width, max_h_samp_factor * 8); + // Compute the block dimensions for each component. + for (size_t i = 0; i < jpg->components.size(); ++i) { + JPEGComponent* c = &jpg->components[i]; + if (max_h_samp_factor % c->h_samp_factor != 0 || + max_v_samp_factor % c->v_samp_factor != 0) { + return JXL_FAILURE("Non-integral subsampling ratios."); + } + c->width_in_blocks = MCU_cols * c->h_samp_factor; + c->height_in_blocks = MCU_rows * c->v_samp_factor; + const uint64_t num_blocks = + static_cast<uint64_t>(c->width_in_blocks) * c->height_in_blocks; + if (mode == JpegReadMode::kReadAll) { + c->coeffs.resize(num_blocks * kDCTBlockSize); + } + } + JXL_JPEG_VERIFY_MARKER_END(); + return true; +} + +// Reads the Start of Scan (SOS) marker segment and fills in *scan_info with the +// parsed data. +bool ProcessSOS(const uint8_t* data, const size_t len, size_t* pos, + JPEGData* jpg) { + const size_t start_pos = *pos; + JXL_JPEG_VERIFY_LEN(3); + size_t marker_len = ReadUint16(data, pos); + size_t comps_in_scan = ReadUint8(data, pos); + JXL_JPEG_VERIFY_INPUT(comps_in_scan, 1, jpg->components.size(), + COMPS_IN_SCAN); + + JPEGScanInfo scan_info; + scan_info.num_components = comps_in_scan; + JXL_JPEG_VERIFY_LEN(2 * comps_in_scan); + std::vector<bool> ids_seen(256, false); + for (size_t i = 0; i < comps_in_scan; ++i) { + uint32_t id = ReadUint8(data, pos); + if (ids_seen[id]) { // (cf. section B.2.3, regarding CSj) + return JXL_FAILURE("Duplicate ID %d in SOS.", id); + } + ids_seen[id] = true; + bool found_index = false; + for (size_t j = 0; j < jpg->components.size(); ++j) { + if (jpg->components[j].id == id) { + scan_info.components[i].comp_idx = j; + found_index = true; + } + } + if (!found_index) { + return JXL_FAILURE("SOS marker: Could not find component with id %d", id); + } + int c = ReadUint8(data, pos); + int dc_tbl_idx = c >> 4; + int ac_tbl_idx = c & 0xf; + JXL_JPEG_VERIFY_INPUT(dc_tbl_idx, 0, 3, HUFFMAN_INDEX); + JXL_JPEG_VERIFY_INPUT(ac_tbl_idx, 0, 3, HUFFMAN_INDEX); + scan_info.components[i].dc_tbl_idx = dc_tbl_idx; + scan_info.components[i].ac_tbl_idx = ac_tbl_idx; + } + JXL_JPEG_VERIFY_LEN(3); + scan_info.Ss = ReadUint8(data, pos); + scan_info.Se = ReadUint8(data, pos); + JXL_JPEG_VERIFY_INPUT(static_cast<int>(scan_info.Ss), 0, 63, START_OF_SCAN); + JXL_JPEG_VERIFY_INPUT(scan_info.Se, scan_info.Ss, 63, END_OF_SCAN); + int c = ReadUint8(data, pos); + scan_info.Ah = c >> 4; + scan_info.Al = c & 0xf; + if (scan_info.Ah != 0 && scan_info.Al != scan_info.Ah - 1) { + // section G.1.1.1.2 : Successive approximation control only improves + // by one bit at a time. But it's not always respected, so we just issue + // a warning. + JXL_WARNING("Invalid progressive parameters: Al=%d Ah=%d", scan_info.Al, + scan_info.Ah); + } + // Check that all the Huffman tables needed for this scan are defined. + for (size_t i = 0; i < comps_in_scan; ++i) { + bool found_dc_table = false; + bool found_ac_table = false; + for (size_t j = 0; j < jpg->huffman_code.size(); ++j) { + uint32_t slot_id = jpg->huffman_code[j].slot_id; + if (slot_id == scan_info.components[i].dc_tbl_idx) { + found_dc_table = true; + } else if (slot_id == scan_info.components[i].ac_tbl_idx + 16) { + found_ac_table = true; + } + } + if (scan_info.Ss == 0 && !found_dc_table) { + return JXL_FAILURE( + "SOS marker: Could not find DC Huffman table with index %d", + scan_info.components[i].dc_tbl_idx); + } + if (scan_info.Se > 0 && !found_ac_table) { + return JXL_FAILURE( + "SOS marker: Could not find AC Huffman table with index %d", + scan_info.components[i].ac_tbl_idx); + } + } + jpg->scan_info.push_back(scan_info); + JXL_JPEG_VERIFY_MARKER_END(); + return true; +} + +// Reads the Define Huffman Table (DHT) marker segment and fills in *jpg with +// the parsed data. Builds the Huffman decoding table in either dc_huff_lut or +// ac_huff_lut, depending on the type and solt_id of Huffman code being read. +bool ProcessDHT(const uint8_t* data, const size_t len, JpegReadMode mode, + std::vector<HuffmanTableEntry>* dc_huff_lut, + std::vector<HuffmanTableEntry>* ac_huff_lut, size_t* pos, + JPEGData* jpg) { + const size_t start_pos = *pos; + JXL_JPEG_VERIFY_LEN(2); + size_t marker_len = ReadUint16(data, pos); + if (marker_len == 2) { + return JXL_FAILURE("DHT marker: no Huffman table found"); + } + while (*pos < start_pos + marker_len) { + JXL_JPEG_VERIFY_LEN(1 + kJpegHuffmanMaxBitLength); + JPEGHuffmanCode huff; + huff.slot_id = ReadUint8(data, pos); + int huffman_index = huff.slot_id; + int is_ac_table = (huff.slot_id & 0x10) != 0; + HuffmanTableEntry* huff_lut; + if (is_ac_table) { + huffman_index -= 0x10; + JXL_JPEG_VERIFY_INPUT(huffman_index, 0, 3, HUFFMAN_INDEX); + huff_lut = &(*ac_huff_lut)[huffman_index * kJpegHuffmanLutSize]; + } else { + JXL_JPEG_VERIFY_INPUT(huffman_index, 0, 3, HUFFMAN_INDEX); + huff_lut = &(*dc_huff_lut)[huffman_index * kJpegHuffmanLutSize]; + } + huff.counts[0] = 0; + int total_count = 0; + int space = 1 << kJpegHuffmanMaxBitLength; + int max_depth = 1; + for (size_t i = 1; i <= kJpegHuffmanMaxBitLength; ++i) { + int count = ReadUint8(data, pos); + if (count != 0) { + max_depth = i; + } + huff.counts[i] = count; + total_count += count; + space -= count * (1 << (kJpegHuffmanMaxBitLength - i)); + } + if (is_ac_table) { + JXL_JPEG_VERIFY_INPUT(total_count, 0, kJpegHuffmanAlphabetSize, + HUFFMAN_CODE); + } else { + JXL_JPEG_VERIFY_INPUT(total_count, 0, kJpegDCAlphabetSize, HUFFMAN_CODE); + } + JXL_JPEG_VERIFY_LEN(total_count); + std::vector<bool> values_seen(256, false); + for (int i = 0; i < total_count; ++i) { + int value = ReadUint8(data, pos); + if (!is_ac_table) { + JXL_JPEG_VERIFY_INPUT(value, 0, kJpegDCAlphabetSize - 1, HUFFMAN_CODE); + } + if (values_seen[value]) { + return JXL_FAILURE("Duplicate Huffman code value %d", value); + } + values_seen[value] = true; + huff.values[i] = value; + } + // Add an invalid symbol that will have the all 1 code. + ++huff.counts[max_depth]; + huff.values[total_count] = kJpegHuffmanAlphabetSize; + space -= (1 << (kJpegHuffmanMaxBitLength - max_depth)); + if (space < 0) { + return JXL_FAILURE("Invalid Huffman code lengths."); + } else if (space > 0 && huff_lut[0].value != 0xffff) { + // Re-initialize the values to an invalid symbol so that we can recognize + // it when reading the bit stream using a Huffman code with space > 0. + for (int i = 0; i < kJpegHuffmanLutSize; ++i) { + huff_lut[i].bits = 0; + huff_lut[i].value = 0xffff; + } + } + huff.is_last = (*pos == start_pos + marker_len); + if (mode == JpegReadMode::kReadAll) { + BuildJpegHuffmanTable(&huff.counts[0], &huff.values[0], huff_lut); + } + jpg->huffman_code.push_back(huff); + } + JXL_JPEG_VERIFY_MARKER_END(); + return true; +} + +// Reads the Define Quantization Table (DQT) marker segment and fills in *jpg +// with the parsed data. +bool ProcessDQT(const uint8_t* data, const size_t len, size_t* pos, + JPEGData* jpg) { + const size_t start_pos = *pos; + JXL_JPEG_VERIFY_LEN(2); + size_t marker_len = ReadUint16(data, pos); + if (marker_len == 2) { + return JXL_FAILURE("DQT marker: no quantization table found"); + } + while (*pos < start_pos + marker_len && jpg->quant.size() < kMaxQuantTables) { + JXL_JPEG_VERIFY_LEN(1); + int quant_table_index = ReadUint8(data, pos); + int quant_table_precision = quant_table_index >> 4; + JXL_JPEG_VERIFY_INPUT(quant_table_precision, 0, 1, QUANT_TBL_PRECISION); + quant_table_index &= 0xf; + JXL_JPEG_VERIFY_INPUT(quant_table_index, 0, 3, QUANT_TBL_INDEX); + JXL_JPEG_VERIFY_LEN((quant_table_precision + 1) * kDCTBlockSize); + JPEGQuantTable table; + table.index = quant_table_index; + table.precision = quant_table_precision; + for (size_t i = 0; i < kDCTBlockSize; ++i) { + int quant_val = + quant_table_precision ? ReadUint16(data, pos) : ReadUint8(data, pos); + JXL_JPEG_VERIFY_INPUT(quant_val, 1, 65535, QUANT_VAL); + table.values[kJPEGNaturalOrder[i]] = quant_val; + } + table.is_last = (*pos == start_pos + marker_len); + jpg->quant.push_back(table); + } + JXL_JPEG_VERIFY_MARKER_END(); + return true; +} + +// Reads the DRI marker and saves the restart interval into *jpg. +bool ProcessDRI(const uint8_t* data, const size_t len, size_t* pos, + bool* found_dri, JPEGData* jpg) { + if (*found_dri) { + return JXL_FAILURE("Duplicate DRI marker."); + } + *found_dri = true; + const size_t start_pos = *pos; + JXL_JPEG_VERIFY_LEN(4); + size_t marker_len = ReadUint16(data, pos); + int restart_interval = ReadUint16(data, pos); + jpg->restart_interval = restart_interval; + JXL_JPEG_VERIFY_MARKER_END(); + return true; +} + +// Saves the APP marker segment as a string to *jpg. +bool ProcessAPP(const uint8_t* data, const size_t len, size_t* pos, + JPEGData* jpg) { + JXL_JPEG_VERIFY_LEN(2); + size_t marker_len = ReadUint16(data, pos); + JXL_JPEG_VERIFY_INPUT(marker_len, 2, 65535, MARKER_LEN); + JXL_JPEG_VERIFY_LEN(marker_len - 2); + JXL_DASSERT(*pos >= 3); + // Save the marker type together with the app data. + const uint8_t* app_str_start = data + *pos - 3; + std::vector<uint8_t> app_str(app_str_start, app_str_start + marker_len + 1); + *pos += marker_len - 2; + jpg->app_data.push_back(app_str); + return true; +} + +// Saves the COM marker segment as a string to *jpg. +bool ProcessCOM(const uint8_t* data, const size_t len, size_t* pos, + JPEGData* jpg) { + JXL_JPEG_VERIFY_LEN(2); + size_t marker_len = ReadUint16(data, pos); + JXL_JPEG_VERIFY_INPUT(marker_len, 2, 65535, MARKER_LEN); + JXL_JPEG_VERIFY_LEN(marker_len - 2); + const uint8_t* com_str_start = data + *pos - 3; + std::vector<uint8_t> com_str(com_str_start, com_str_start + marker_len + 1); + *pos += marker_len - 2; + jpg->com_data.push_back(com_str); + return true; +} + +// Helper structure to read bits from the entropy coded data segment. +struct BitReaderState { + BitReaderState(const uint8_t* data, const size_t len, size_t pos) + : data_(data), len_(len) { + Reset(pos); + } + + void Reset(size_t pos) { + pos_ = pos; + val_ = 0; + bits_left_ = 0; + next_marker_pos_ = len_ - 2; + FillBitWindow(); + } + + // Returns the next byte and skips the 0xff/0x00 escape sequences. + uint8_t GetNextByte() { + if (pos_ >= next_marker_pos_) { + ++pos_; + return 0; + } + uint8_t c = data_[pos_++]; + if (c == 0xff) { + uint8_t escape = data_[pos_]; + if (escape == 0) { + ++pos_; + } else { + // 0xff was followed by a non-zero byte, which means that we found the + // start of the next marker segment. + next_marker_pos_ = pos_ - 1; + } + } + return c; + } + + void FillBitWindow() { + if (bits_left_ <= 16) { + while (bits_left_ <= 56) { + val_ <<= 8; + val_ |= (uint64_t)GetNextByte(); + bits_left_ += 8; + } + } + } + + int ReadBits(int nbits) { + FillBitWindow(); + uint64_t val = (val_ >> (bits_left_ - nbits)) & ((1ULL << nbits) - 1); + bits_left_ -= nbits; + return val; + } + + // Sets *pos to the next stream position where parsing should continue. + // Enqueue the padding bits seen (0 or 1). + // Returns false if there is inconsistent or invalid padding or the stream + // ended too early. + bool FinishStream(JPEGData* jpg, size_t* pos) { + int npadbits = bits_left_ & 7; + if (npadbits > 0) { + uint64_t padmask = (1ULL << npadbits) - 1; + uint64_t padbits = (val_ >> (bits_left_ - npadbits)) & padmask; + if (padbits != padmask) { + jpg->has_zero_padding_bit = true; + } + for (int i = npadbits - 1; i >= 0; --i) { + jpg->padding_bits.push_back((padbits >> i) & 1); + } + } + // Give back some bytes that we did not use. + int unused_bytes_left = bits_left_ >> 3; + while (unused_bytes_left-- > 0) { + --pos_; + // If we give back a 0 byte, we need to check if it was a 0xff/0x00 escape + // sequence, and if yes, we need to give back one more byte. + if (pos_ < next_marker_pos_ && data_[pos_] == 0 && + data_[pos_ - 1] == 0xff) { + --pos_; + } + } + if (pos_ > next_marker_pos_) { + // Data ran out before the scan was complete. + return JXL_FAILURE("Unexpected end of scan."); + } + *pos = pos_; + return true; + } + + const uint8_t* data_; + const size_t len_; + size_t pos_; + uint64_t val_; + int bits_left_; + size_t next_marker_pos_; +}; + +// Returns the next Huffman-coded symbol. +int ReadSymbol(const HuffmanTableEntry* table, BitReaderState* br) { + int nbits; + br->FillBitWindow(); + int val = (br->val_ >> (br->bits_left_ - 8)) & 0xff; + table += val; + nbits = table->bits - 8; + if (nbits > 0) { + br->bits_left_ -= 8; + table += table->value; + val = (br->val_ >> (br->bits_left_ - nbits)) & ((1 << nbits) - 1); + table += val; + } + br->bits_left_ -= table->bits; + return table->value; +} + +/** + * Returns the DC diff or AC value for extra bits value x and prefix code s. + * + * CCITT Rec. T.81 (1992 E) + * Table F.1 – Difference magnitude categories for DC coding + * SSSS | DIFF values + * ------+-------------------------- + * 0 | 0 + * 1 | –1, 1 + * 2 | –3, –2, 2, 3 + * 3 | –7..–4, 4..7 + * ......|.......................... + * 11 | –2047..–1024, 1024..2047 + * + * CCITT Rec. T.81 (1992 E) + * Table F.2 – Categories assigned to coefficient values + * [ Same as Table F.1, but does not include SSSS equal to 0 and 11] + * + * + * CCITT Rec. T.81 (1992 E) + * F.1.2.1.1 Structure of DC code table + * For each category,... additional bits... appended... to uniquely identify + * which difference... occurred... When DIFF is positive... SSSS... bits of DIFF + * are appended. When DIFF is negative... SSSS... bits of (DIFF – 1) are + * appended... Most significant bit... is 0 for negative differences and 1 for + * positive differences. + * + * In other words the upper half of extra bits range represents DIFF as is. + * The lower half represents the negative DIFFs with an offset. + */ +int HuffExtend(int x, int s) { + JXL_DASSERT(s >= 1); + int half = 1 << (s - 1); + if (x >= half) { + JXL_DASSERT(x < (1 << s)); + return x; + } else { + return x - (1 << s) + 1; + } +} + +// Decodes one 8x8 block of DCT coefficients from the bit stream. +bool DecodeDCTBlock(const HuffmanTableEntry* dc_huff, + const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al, + int* eobrun, bool* reset_state, int* num_zero_runs, + BitReaderState* br, JPEGData* jpg, coeff_t* last_dc_coeff, + coeff_t* coeffs) { + // Nowadays multiplication is even faster than variable shift. + int Am = 1 << Al; + bool eobrun_allowed = Ss > 0; + if (Ss == 0) { + int s = ReadSymbol(dc_huff, br); + if (s >= kJpegDCAlphabetSize) { + return JXL_FAILURE("Invalid Huffman symbol %d for DC coefficient.", s); + } + int diff = 0; + if (s > 0) { + int bits = br->ReadBits(s); + diff = HuffExtend(bits, s); + } + int coeff = diff + *last_dc_coeff; + const int dc_coeff = coeff * Am; + coeffs[0] = dc_coeff; + // TODO(eustas): is there a more elegant / explicit way to check this? + if (dc_coeff != coeffs[0]) { + return JXL_FAILURE("Invalid DC coefficient %d", dc_coeff); + } + *last_dc_coeff = coeff; + ++Ss; + } + if (Ss > Se) { + return true; + } + if (*eobrun > 0) { + --(*eobrun); + return true; + } + *num_zero_runs = 0; + for (int k = Ss; k <= Se; k++) { + int sr = ReadSymbol(ac_huff, br); + if (sr >= kJpegHuffmanAlphabetSize) { + return JXL_FAILURE("Invalid Huffman symbol %d for AC coefficient %d", sr, + k); + } + int r = sr >> 4; + int s = sr & 15; + if (s > 0) { + k += r; + if (k > Se) { + return JXL_FAILURE("Out-of-band coefficient %d band was %d-%d", k, Ss, + Se); + } + if (s + Al >= kJpegDCAlphabetSize) { + return JXL_FAILURE( + "Out of range AC coefficient value: s = %d Al = %d k = %d", s, Al, + k); + } + int bits = br->ReadBits(s); + int coeff = HuffExtend(bits, s); + coeffs[kJPEGNaturalOrder[k]] = coeff * Am; + *num_zero_runs = 0; + } else if (r == 15) { + k += 15; + ++(*num_zero_runs); + } else { + if (eobrun_allowed && k == Ss && *eobrun == 0) { + // We have two end-of-block runs right after each other, so we signal + // the jpeg encoder to force a state reset at this point. + *reset_state = true; + } + *eobrun = 1 << r; + if (r > 0) { + if (!eobrun_allowed) { + return JXL_FAILURE("End-of-block run crossing DC coeff."); + } + *eobrun += br->ReadBits(r); + } + break; + } + } + --(*eobrun); + return true; +} + +bool RefineDCTBlock(const HuffmanTableEntry* ac_huff, int Ss, int Se, int Al, + int* eobrun, bool* reset_state, BitReaderState* br, + JPEGData* jpg, coeff_t* coeffs) { + // Nowadays multiplication is even faster than variable shift. + int Am = 1 << Al; + bool eobrun_allowed = Ss > 0; + if (Ss == 0) { + int s = br->ReadBits(1); + coeff_t dc_coeff = coeffs[0]; + dc_coeff |= s * Am; + coeffs[0] = dc_coeff; + ++Ss; + } + if (Ss > Se) { + return true; + } + int p1 = Am; + int m1 = -Am; + int k = Ss; + int r; + int s; + bool in_zero_run = false; + if (*eobrun <= 0) { + for (; k <= Se; k++) { + s = ReadSymbol(ac_huff, br); + if (s >= kJpegHuffmanAlphabetSize) { + return JXL_FAILURE("Invalid Huffman symbol %d for AC coefficient %d", s, + k); + } + r = s >> 4; + s &= 15; + if (s) { + if (s != 1) { + return JXL_FAILURE("Invalid Huffman symbol %d for AC coefficient %d", + s, k); + } + s = br->ReadBits(1) ? p1 : m1; + in_zero_run = false; + } else { + if (r != 15) { + if (eobrun_allowed && k == Ss && *eobrun == 0) { + // We have two end-of-block runs right after each other, so we + // signal the jpeg encoder to force a state reset at this point. + *reset_state = true; + } + *eobrun = 1 << r; + if (r > 0) { + if (!eobrun_allowed) { + return JXL_FAILURE("End-of-block run crossing DC coeff."); + } + *eobrun += br->ReadBits(r); + } + break; + } + in_zero_run = true; + } + do { + coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]]; + if (thiscoef != 0) { + if (br->ReadBits(1)) { + if ((thiscoef & p1) == 0) { + if (thiscoef >= 0) { + thiscoef += p1; + } else { + thiscoef += m1; + } + } + } + coeffs[kJPEGNaturalOrder[k]] = thiscoef; + } else { + if (--r < 0) { + break; + } + } + k++; + } while (k <= Se); + if (s) { + if (k > Se) { + return JXL_FAILURE("Out-of-band coefficient %d band was %d-%d", k, Ss, + Se); + } + coeffs[kJPEGNaturalOrder[k]] = s; + } + } + } + if (in_zero_run) { + return JXL_FAILURE("Extra zero run before end-of-block."); + } + if (*eobrun > 0) { + for (; k <= Se; k++) { + coeff_t thiscoef = coeffs[kJPEGNaturalOrder[k]]; + if (thiscoef != 0) { + if (br->ReadBits(1)) { + if ((thiscoef & p1) == 0) { + if (thiscoef >= 0) { + thiscoef += p1; + } else { + thiscoef += m1; + } + } + } + coeffs[kJPEGNaturalOrder[k]] = thiscoef; + } + } + } + --(*eobrun); + return true; +} + +bool ProcessRestart(const uint8_t* data, const size_t len, + int* next_restart_marker, BitReaderState* br, + JPEGData* jpg) { + size_t pos = 0; + if (!br->FinishStream(jpg, &pos)) { + return JXL_FAILURE("Invalid scan"); + } + int expected_marker = 0xd0 + *next_restart_marker; + JXL_JPEG_EXPECT_MARKER(); + int marker = data[pos + 1]; + if (marker != expected_marker) { + return JXL_FAILURE("Did not find expected restart marker %d actual %d", + expected_marker, marker); + } + br->Reset(pos + 2); + *next_restart_marker += 1; + *next_restart_marker &= 0x7; + return true; +} + +bool ProcessScan(const uint8_t* data, const size_t len, + const std::vector<HuffmanTableEntry>& dc_huff_lut, + const std::vector<HuffmanTableEntry>& ac_huff_lut, + uint16_t scan_progression[kMaxComponents][kDCTBlockSize], + bool is_progressive, size_t* pos, JPEGData* jpg) { + if (!ProcessSOS(data, len, pos, jpg)) { + return false; + } + JPEGScanInfo* scan_info = &jpg->scan_info.back(); + bool is_interleaved = (scan_info->num_components > 1); + int max_h_samp_factor = 1; + int max_v_samp_factor = 1; + for (size_t i = 0; i < jpg->components.size(); ++i) { + max_h_samp_factor = + std::max(max_h_samp_factor, jpg->components[i].h_samp_factor); + max_v_samp_factor = + std::max(max_v_samp_factor, jpg->components[i].v_samp_factor); + } + + int MCU_rows = DivCeil(jpg->height, max_v_samp_factor * 8); + int MCUs_per_row = DivCeil(jpg->width, max_h_samp_factor * 8); + if (!is_interleaved) { + const JPEGComponent& c = jpg->components[scan_info->components[0].comp_idx]; + MCUs_per_row = DivCeil(jpg->width * c.h_samp_factor, 8 * max_h_samp_factor); + MCU_rows = DivCeil(jpg->height * c.v_samp_factor, 8 * max_v_samp_factor); + } + coeff_t last_dc_coeff[kMaxComponents] = {0}; + BitReaderState br(data, len, *pos); + int restarts_to_go = jpg->restart_interval; + int next_restart_marker = 0; + int eobrun = -1; + int block_scan_index = 0; + const int Al = is_progressive ? scan_info->Al : 0; + const int Ah = is_progressive ? scan_info->Ah : 0; + const int Ss = is_progressive ? scan_info->Ss : 0; + const int Se = is_progressive ? scan_info->Se : 63; + const uint16_t scan_bitmask = Ah == 0 ? (0xffff << Al) : (1u << Al); + const uint16_t refinement_bitmask = (1 << Al) - 1; + for (size_t i = 0; i < scan_info->num_components; ++i) { + int comp_idx = scan_info->components[i].comp_idx; + for (int k = Ss; k <= Se; ++k) { + if (scan_progression[comp_idx][k] & scan_bitmask) { + return JXL_FAILURE( + "Overlapping scans: component=%d k=%d prev_mask: %u cur_mask %u", + comp_idx, k, scan_progression[i][k], scan_bitmask); + } + if (scan_progression[comp_idx][k] & refinement_bitmask) { + return JXL_FAILURE( + "Invalid scan order, a more refined scan was already done: " + "component=%d k=%d prev_mask=%u cur_mask=%u", + comp_idx, k, scan_progression[i][k], scan_bitmask); + } + scan_progression[comp_idx][k] |= scan_bitmask; + } + } + if (Al > 10) { + return JXL_FAILURE("Scan parameter Al=%d is not supported.", Al); + } + for (int mcu_y = 0; mcu_y < MCU_rows; ++mcu_y) { + for (int mcu_x = 0; mcu_x < MCUs_per_row; ++mcu_x) { + // Handle the restart intervals. + if (jpg->restart_interval > 0) { + if (restarts_to_go == 0) { + if (ProcessRestart(data, len, &next_restart_marker, &br, jpg)) { + restarts_to_go = jpg->restart_interval; + memset(static_cast<void*>(last_dc_coeff), 0, sizeof(last_dc_coeff)); + if (eobrun > 0) { + return JXL_FAILURE("End-of-block run too long."); + } + eobrun = -1; // fresh start + } else { + return JXL_FAILURE("Could not process restart."); + } + } + --restarts_to_go; + } + // Decode one MCU. + for (size_t i = 0; i < scan_info->num_components; ++i) { + JPEGComponentScanInfo* si = &scan_info->components[i]; + JPEGComponent* c = &jpg->components[si->comp_idx]; + const HuffmanTableEntry* dc_lut = + &dc_huff_lut[si->dc_tbl_idx * kJpegHuffmanLutSize]; + const HuffmanTableEntry* ac_lut = + &ac_huff_lut[si->ac_tbl_idx * kJpegHuffmanLutSize]; + int nblocks_y = is_interleaved ? c->v_samp_factor : 1; + int nblocks_x = is_interleaved ? c->h_samp_factor : 1; + for (int iy = 0; iy < nblocks_y; ++iy) { + for (int ix = 0; ix < nblocks_x; ++ix) { + int block_y = mcu_y * nblocks_y + iy; + int block_x = mcu_x * nblocks_x + ix; + int block_idx = block_y * c->width_in_blocks + block_x; + bool reset_state = false; + int num_zero_runs = 0; + coeff_t* coeffs = &c->coeffs[block_idx * kDCTBlockSize]; + if (Ah == 0) { + if (!DecodeDCTBlock(dc_lut, ac_lut, Ss, Se, Al, &eobrun, + &reset_state, &num_zero_runs, &br, jpg, + &last_dc_coeff[si->comp_idx], coeffs)) { + return false; + } + } else { + if (!RefineDCTBlock(ac_lut, Ss, Se, Al, &eobrun, &reset_state, + &br, jpg, coeffs)) { + return false; + } + } + if (reset_state) { + scan_info->reset_points.emplace_back(block_scan_index); + } + if (num_zero_runs > 0) { + JPEGScanInfo::ExtraZeroRunInfo info; + info.block_idx = block_scan_index; + info.num_extra_zero_runs = num_zero_runs; + scan_info->extra_zero_runs.push_back(info); + } + ++block_scan_index; + } + } + } + } + } + if (eobrun > 0) { + return JXL_FAILURE("End-of-block run too long."); + } + if (!br.FinishStream(jpg, pos)) { + return JXL_FAILURE("Invalid scan."); + } + if (*pos > len) { + return JXL_FAILURE("Unexpected end of file during scan. pos=%" PRIuS + " len=%" PRIuS, + *pos, len); + } + return true; +} + +// Changes the quant_idx field of the components to refer to the index of the +// quant table in the jpg->quant array. +bool FixupIndexes(JPEGData* jpg) { + for (size_t i = 0; i < jpg->components.size(); ++i) { + JPEGComponent* c = &jpg->components[i]; + bool found_index = false; + for (size_t j = 0; j < jpg->quant.size(); ++j) { + if (jpg->quant[j].index == c->quant_idx) { + c->quant_idx = j; + found_index = true; + break; + } + } + if (!found_index) { + return JXL_FAILURE("Quantization table with index %u not found", + c->quant_idx); + } + } + return true; +} + +size_t FindNextMarker(const uint8_t* data, const size_t len, size_t pos) { + // kIsValidMarker[i] == 1 means (0xc0 + i) is a valid marker. + static const uint8_t kIsValidMarker[] = { + 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, + 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, + }; + size_t num_skipped = 0; + while (pos + 1 < len && (data[pos] != 0xff || data[pos + 1] < 0xc0 || + !kIsValidMarker[data[pos + 1] - 0xc0])) { + ++pos; + ++num_skipped; + } + return num_skipped; +} + +} // namespace + +bool ReadJpeg(const uint8_t* data, const size_t len, JpegReadMode mode, + JPEGData* jpg) { + size_t pos = 0; + // Check SOI marker. + JXL_JPEG_EXPECT_MARKER(); + int marker = data[pos + 1]; + pos += 2; + if (marker != 0xd8) { + return JXL_FAILURE("Did not find expected SOI marker, actual=%d", marker); + } + int lut_size = kMaxHuffmanTables * kJpegHuffmanLutSize; + std::vector<HuffmanTableEntry> dc_huff_lut(lut_size); + std::vector<HuffmanTableEntry> ac_huff_lut(lut_size); + bool found_sof = false; + bool found_dri = false; + uint16_t scan_progression[kMaxComponents][kDCTBlockSize] = {{0}}; + + jpg->padding_bits.resize(0); + bool is_progressive = false; // default + do { + // Read next marker. + size_t num_skipped = FindNextMarker(data, len, pos); + if (num_skipped > 0) { + // Add a fake marker to indicate arbitrary in-between-markers data. + jpg->marker_order.push_back(0xff); + jpg->inter_marker_data.emplace_back(data + pos, data + pos + num_skipped); + pos += num_skipped; + } + JXL_JPEG_EXPECT_MARKER(); + marker = data[pos + 1]; + pos += 2; + bool ok = true; + switch (marker) { + case 0xc0: + case 0xc1: + case 0xc2: + is_progressive = (marker == 0xc2); + ok = ProcessSOF(data, len, mode, &pos, jpg); + found_sof = true; + break; + case 0xc4: + ok = ProcessDHT(data, len, mode, &dc_huff_lut, &ac_huff_lut, &pos, jpg); + break; + case 0xd0: + case 0xd1: + case 0xd2: + case 0xd3: + case 0xd4: + case 0xd5: + case 0xd6: + case 0xd7: + // RST markers do not have any data. + break; + case 0xd9: + // Found end marker. + break; + case 0xda: + if (mode == JpegReadMode::kReadAll) { + ok = ProcessScan(data, len, dc_huff_lut, ac_huff_lut, + scan_progression, is_progressive, &pos, jpg); + } + break; + case 0xdb: + ok = ProcessDQT(data, len, &pos, jpg); + break; + case 0xdd: + ok = ProcessDRI(data, len, &pos, &found_dri, jpg); + break; + case 0xe0: + case 0xe1: + case 0xe2: + case 0xe3: + case 0xe4: + case 0xe5: + case 0xe6: + case 0xe7: + case 0xe8: + case 0xe9: + case 0xea: + case 0xeb: + case 0xec: + case 0xed: + case 0xee: + case 0xef: + if (mode != JpegReadMode::kReadTables) { + ok = ProcessAPP(data, len, &pos, jpg); + } + break; + case 0xfe: + if (mode != JpegReadMode::kReadTables) { + ok = ProcessCOM(data, len, &pos, jpg); + } + break; + default: + return JXL_FAILURE("Unsupported marker: %d pos=%" PRIuS " len=%" PRIuS, + marker, pos, len); + } + if (!ok) { + return false; + } + jpg->marker_order.push_back(marker); + if (mode == JpegReadMode::kReadHeader && found_sof) { + break; + } + } while (marker != 0xd9); + + if (!found_sof) { + return JXL_FAILURE("Missing SOF marker."); + } + + // Supplemental checks. + if (mode == JpegReadMode::kReadAll) { + if (pos < len) { + jpg->tail_data = std::vector<uint8_t>(data + pos, data + len); + } + if (!FixupIndexes(jpg)) { + return false; + } + if (jpg->huffman_code.empty()) { + // Section B.2.4.2: "If a table has never been defined for a particular + // destination, then when this destination is specified in a scan header, + // the results are unpredictable." + return JXL_FAILURE("Need at least one Huffman code table."); + } + if (jpg->huffman_code.size() >= kMaxDHTMarkers) { + return JXL_FAILURE("Too many Huffman tables."); + } + } + return true; +} + +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.h b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.h new file mode 100644 index 0000000000..3fad820e9d --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_data_reader.h @@ -0,0 +1,36 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Functions for reading a jpeg byte stream into a JPEGData object. + +#ifndef LIB_JXL_JPEG_ENC_JPEG_DATA_READER_H_ +#define LIB_JXL_JPEG_ENC_JPEG_DATA_READER_H_ + +#include <stddef.h> +#include <stdint.h> + +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +enum class JpegReadMode { + kReadHeader, // only basic headers + kReadTables, // headers and tables (quant, Huffman, ...) + kReadAll, // everything +}; + +// Parses the JPEG stream contained in data[*pos ... len) and fills in *jpg with +// the parsed information. +// If mode is kReadHeader, it fills in only the image dimensions in *jpg. +// Returns false if the data is not valid JPEG, or if it contains an unsupported +// JPEG feature. +bool ReadJpeg(const uint8_t* data, const size_t len, JpegReadMode mode, + JPEGData* jpg); + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_ENC_JPEG_DATA_READER_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.cc b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.cc new file mode 100644 index 0000000000..38282e640a --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.cc @@ -0,0 +1,103 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/enc_jpeg_huffman_decode.h" + +#include "lib/jxl/jpeg/jpeg_data.h" + +namespace jxl { +namespace jpeg { + +// Returns the table width of the next 2nd level table, count is the histogram +// of bit lengths for the remaining symbols, len is the code length of the next +// processed symbol. +static inline int NextTableBitSize(const int* count, int len) { + int left = 1 << (len - kJpegHuffmanRootTableBits); + while (len < static_cast<int>(kJpegHuffmanMaxBitLength)) { + left -= count[len]; + if (left <= 0) break; + ++len; + left <<= 1; + } + return len - kJpegHuffmanRootTableBits; +} + +void BuildJpegHuffmanTable(const uint32_t* count, const uint32_t* symbols, + HuffmanTableEntry* lut) { + HuffmanTableEntry code; // current table entry + HuffmanTableEntry* table; // next available space in table + int len; // current code length + int idx; // symbol index + int key; // prefix code + int reps; // number of replicate key values in current table + int low; // low bits for current root entry + int table_bits; // key length of current table + int table_size; // size of current table + + // Make a local copy of the input bit length histogram. + int tmp_count[kJpegHuffmanMaxBitLength + 1] = {0}; + int total_count = 0; + for (len = 1; len <= static_cast<int>(kJpegHuffmanMaxBitLength); ++len) { + tmp_count[len] = count[len]; + total_count += tmp_count[len]; + } + + table = lut; + table_bits = kJpegHuffmanRootTableBits; + table_size = 1 << table_bits; + + // Special case code with only one value. + if (total_count == 1) { + code.bits = 0; + code.value = symbols[0]; + for (key = 0; key < table_size; ++key) { + table[key] = code; + } + return; + } + + // Fill in root table. + key = 0; + idx = 0; + for (len = 1; len <= kJpegHuffmanRootTableBits; ++len) { + for (; tmp_count[len] > 0; --tmp_count[len]) { + code.bits = len; + code.value = symbols[idx++]; + reps = 1 << (kJpegHuffmanRootTableBits - len); + while (reps--) { + table[key++] = code; + } + } + } + + // Fill in 2nd level tables and add pointers to root table. + table += table_size; + table_size = 0; + low = 0; + for (len = kJpegHuffmanRootTableBits + 1; + len <= static_cast<int>(kJpegHuffmanMaxBitLength); ++len) { + for (; tmp_count[len] > 0; --tmp_count[len]) { + // Start a new sub-table if the previous one is full. + if (low >= table_size) { + table += table_size; + table_bits = NextTableBitSize(tmp_count, len); + table_size = 1 << table_bits; + low = 0; + lut[key].bits = table_bits + kJpegHuffmanRootTableBits; + lut[key].value = (table - lut) - key; + ++key; + } + code.bits = len - kJpegHuffmanRootTableBits; + code.value = symbols[idx++]; + reps = 1 << (table_bits - code.bits); + while (reps--) { + table[low++] = code; + } + } + } +} + +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.h b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.h new file mode 100644 index 0000000000..b8a60e4107 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/enc_jpeg_huffman_decode.h @@ -0,0 +1,41 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Utility function for building a Huffman lookup table for the jpeg decoder. + +#ifndef LIB_JXL_JPEG_ENC_JPEG_HUFFMAN_DECODE_H_ +#define LIB_JXL_JPEG_ENC_JPEG_HUFFMAN_DECODE_H_ + +#include <stdint.h> + +namespace jxl { +namespace jpeg { + +constexpr int kJpegHuffmanRootTableBits = 8; +// Maximum huffman lookup table size. +// According to zlib/examples/enough.c, 758 entries are always enough for +// an alphabet of 257 symbols (256 + 1 special symbol for the all 1s code) and +// max bit length 16 if the root table has 8 bits. +constexpr int kJpegHuffmanLutSize = 758; + +struct HuffmanTableEntry { + // Initialize the value to an invalid symbol so that we can recognize it + // when reading the bit stream using a Huffman code with space > 0. + HuffmanTableEntry() : bits(0), value(0xffff) {} + + uint8_t bits; // number of bits used for this symbol + uint16_t value; // symbol value or table offset +}; + +// Builds jpeg-style Huffman lookup table from the given symbols. +// The symbols are in order of increasing bit lengths. The number of symbols +// with bit length n is given in counts[n] for each n >= 1. +void BuildJpegHuffmanTable(const uint32_t* counts, const uint32_t* symbols, + HuffmanTableEntry* lut); + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_ENC_JPEG_HUFFMAN_DECODE_H_ diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.cc b/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.cc new file mode 100644 index 0000000000..430707b9ed --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.cc @@ -0,0 +1,451 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/jpeg/jpeg_data.h" + +#include "lib/jxl/base/printf_macros.h" +#include "lib/jxl/base/status.h" + +namespace jxl { +namespace jpeg { + +#if JPEGXL_ENABLE_TRANSCODE_JPEG + +namespace { +enum JPEGComponentType : uint32_t { + kGray = 0, + kYCbCr = 1, + kRGB = 2, + kCustom = 3, +}; + +struct JPEGInfo { + size_t num_app_markers = 0; + size_t num_com_markers = 0; + size_t num_scans = 0; + size_t num_intermarker = 0; + bool has_dri = false; +}; + +Status VisitMarker(uint8_t* marker, Visitor* visitor, JPEGInfo* info) { + uint32_t marker32 = *marker - 0xc0; + JXL_RETURN_IF_ERROR(visitor->Bits(6, 0x00, &marker32)); + *marker = marker32 + 0xc0; + if ((*marker & 0xf0) == 0xe0) { + info->num_app_markers++; + } + if (*marker == 0xfe) { + info->num_com_markers++; + } + if (*marker == 0xda) { + info->num_scans++; + } + // We use a fake 0xff marker to signal intermarker data. + if (*marker == 0xff) { + info->num_intermarker++; + } + if (*marker == 0xdd) { + info->has_dri = true; + } + return true; +} + +} // namespace + +Status JPEGData::VisitFields(Visitor* visitor) { + bool is_gray = components.size() == 1; + JXL_RETURN_IF_ERROR(visitor->Bool(false, &is_gray)); + if (visitor->IsReading()) { + components.resize(is_gray ? 1 : 3); + } + JPEGInfo info; + if (visitor->IsReading()) { + uint8_t marker = 0xc0; + do { + JXL_RETURN_IF_ERROR(VisitMarker(&marker, visitor, &info)); + marker_order.push_back(marker); + if (marker_order.size() > 16384) { + return JXL_FAILURE("Too many markers: %" PRIuS "\n", + marker_order.size()); + } + } while (marker != 0xd9); + } else { + if (marker_order.size() > 16384) { + return JXL_FAILURE("Too many markers: %" PRIuS "\n", marker_order.size()); + } + for (size_t i = 0; i < marker_order.size(); i++) { + JXL_RETURN_IF_ERROR(VisitMarker(&marker_order[i], visitor, &info)); + } + if (!marker_order.empty()) { + // Last marker should always be EOI marker. + JXL_CHECK(marker_order.back() == 0xd9); + } + } + + // Size of the APP and COM markers. + if (visitor->IsReading()) { + app_data.resize(info.num_app_markers); + app_marker_type.resize(info.num_app_markers); + com_data.resize(info.num_com_markers); + scan_info.resize(info.num_scans); + } + JXL_ASSERT(app_data.size() == info.num_app_markers); + JXL_ASSERT(app_marker_type.size() == info.num_app_markers); + JXL_ASSERT(com_data.size() == info.num_com_markers); + JXL_ASSERT(scan_info.size() == info.num_scans); + for (size_t i = 0; i < app_data.size(); i++) { + auto& app = app_data[i]; + // Encodes up to 8 different values. + JXL_RETURN_IF_ERROR( + visitor->U32(Val(0), Val(1), BitsOffset(1, 2), BitsOffset(2, 4), 0, + reinterpret_cast<uint32_t*>(&app_marker_type[i]))); + if (app_marker_type[i] != AppMarkerType::kUnknown && + app_marker_type[i] != AppMarkerType::kICC && + app_marker_type[i] != AppMarkerType::kExif && + app_marker_type[i] != AppMarkerType::kXMP) { + return JXL_FAILURE("Unknown app marker type %u", + static_cast<uint32_t>(app_marker_type[i])); + } + uint32_t len = app.size() - 1; + JXL_RETURN_IF_ERROR(visitor->Bits(16, 0, &len)); + if (visitor->IsReading()) app.resize(len + 1); + if (app.size() < 3) { + return JXL_FAILURE("Invalid marker size: %" PRIuS "\n", app.size()); + } + } + for (auto& com : com_data) { + uint32_t len = com.size() - 1; + JXL_RETURN_IF_ERROR(visitor->Bits(16, 0, &len)); + if (visitor->IsReading()) com.resize(len + 1); + if (com.size() < 3) { + return JXL_FAILURE("Invalid marker size: %" PRIuS "\n", com.size()); + } + } + + uint32_t num_quant_tables = quant.size(); + JXL_RETURN_IF_ERROR( + visitor->U32(Val(1), Val(2), Val(3), Val(4), 2, &num_quant_tables)); + if (num_quant_tables == 4) { + return JXL_FAILURE("Invalid number of quant tables"); + } + if (visitor->IsReading()) { + quant.resize(num_quant_tables); + } + for (size_t i = 0; i < num_quant_tables; i++) { + if (quant[i].precision > 1) { + return JXL_FAILURE( + "Quant tables with more than 16 bits are not supported"); + } + JXL_RETURN_IF_ERROR(visitor->Bits(1, 0, &quant[i].precision)); + JXL_RETURN_IF_ERROR(visitor->Bits(2, i, &quant[i].index)); + JXL_RETURN_IF_ERROR(visitor->Bool(true, &quant[i].is_last)); + } + + JPEGComponentType component_type = + components.size() == 1 && components[0].id == 1 ? JPEGComponentType::kGray + : components.size() == 3 && components[0].id == 1 && + components[1].id == 2 && components[2].id == 3 + ? JPEGComponentType::kYCbCr + : components.size() == 3 && components[0].id == 'R' && + components[1].id == 'G' && components[2].id == 'B' + ? JPEGComponentType::kRGB + : JPEGComponentType::kCustom; + JXL_RETURN_IF_ERROR( + visitor->Bits(2, JPEGComponentType::kYCbCr, + reinterpret_cast<uint32_t*>(&component_type))); + uint32_t num_components; + if (component_type == JPEGComponentType::kGray) { + num_components = 1; + } else if (component_type != JPEGComponentType::kCustom) { + num_components = 3; + } else { + num_components = components.size(); + JXL_RETURN_IF_ERROR( + visitor->U32(Val(1), Val(2), Val(3), Val(4), 3, &num_components)); + if (num_components != 1 && num_components != 3) { + return JXL_FAILURE("Invalid number of components: %u", num_components); + } + } + if (visitor->IsReading()) { + components.resize(num_components); + } + if (component_type == JPEGComponentType::kCustom) { + for (size_t i = 0; i < components.size(); i++) { + JXL_RETURN_IF_ERROR(visitor->Bits(8, 0, &components[i].id)); + } + } else if (component_type == JPEGComponentType::kGray) { + components[0].id = 1; + } else if (component_type == JPEGComponentType::kRGB) { + components[0].id = 'R'; + components[1].id = 'G'; + components[2].id = 'B'; + } else { + components[0].id = 1; + components[1].id = 2; + components[2].id = 3; + } + size_t used_tables = 0; + for (size_t i = 0; i < components.size(); i++) { + JXL_RETURN_IF_ERROR(visitor->Bits(2, 0, &components[i].quant_idx)); + if (components[i].quant_idx >= quant.size()) { + return JXL_FAILURE("Invalid quant table for component %" PRIuS ": %u\n", + i, components[i].quant_idx); + } + used_tables |= 1U << components[i].quant_idx; + } + for (size_t i = 0; i < quant.size(); i++) { + if (used_tables & (1 << i)) continue; + if (i == 0) return JXL_FAILURE("First quant table unused."); + // Unused quant table has to be set to copy of previous quant table + for (size_t j = 0; j < 64; j++) { + if (quant[i].values[j] != quant[i - 1].values[j]) { + return JXL_FAILURE("Non-trivial unused quant table"); + } + } + } + + uint32_t num_huff = huffman_code.size(); + JXL_RETURN_IF_ERROR(visitor->U32(Val(4), BitsOffset(3, 2), BitsOffset(4, 10), + BitsOffset(6, 26), 4, &num_huff)); + if (visitor->IsReading()) { + huffman_code.resize(num_huff); + } + for (JPEGHuffmanCode& hc : huffman_code) { + bool is_ac = hc.slot_id >> 4; + uint32_t id = hc.slot_id & 0xF; + JXL_RETURN_IF_ERROR(visitor->Bool(false, &is_ac)); + JXL_RETURN_IF_ERROR(visitor->Bits(2, 0, &id)); + hc.slot_id = (static_cast<uint32_t>(is_ac) << 4) | id; + JXL_RETURN_IF_ERROR(visitor->Bool(true, &hc.is_last)); + size_t num_symbols = 0; + for (size_t i = 0; i <= 16; i++) { + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), Val(1), BitsOffset(3, 2), + Bits(8), 0, &hc.counts[i])); + num_symbols += hc.counts[i]; + } + if (num_symbols < 1) { + // Actually, at least 2 symbols are required, since one of them is EOI. + return JXL_FAILURE("Empty Huffman table"); + } + if (num_symbols > hc.values.size()) { + return JXL_FAILURE("Huffman code too large (%" PRIuS ")", num_symbols); + } + // Presence flags for 4 * 64 + 1 values. + uint64_t value_slots[5] = {}; + for (size_t i = 0; i < num_symbols; i++) { + // Goes up to 256, included. Might have the same symbol appear twice... + JXL_RETURN_IF_ERROR(visitor->U32(Bits(2), BitsOffset(2, 4), + BitsOffset(4, 8), BitsOffset(8, 1), 0, + &hc.values[i])); + value_slots[hc.values[i] >> 6] |= (uint64_t)1 << (hc.values[i] & 0x3F); + } + if (hc.values[num_symbols - 1] != kJpegHuffmanAlphabetSize) { + return JXL_FAILURE("Missing EOI symbol"); + } + // Last element, denoting EOI, have to be 1 after the loop. + JXL_ASSERT(value_slots[4] == 1); + size_t num_values = 1; + for (size_t i = 0; i < 4; ++i) num_values += hwy::PopCount(value_slots[i]); + if (num_values != num_symbols) { + return JXL_FAILURE("Duplicate Huffman symbols"); + } + if (!is_ac) { + bool only_dc = ((value_slots[0] >> kJpegDCAlphabetSize) | value_slots[1] | + value_slots[2] | value_slots[3]) == 0; + if (!only_dc) return JXL_FAILURE("Huffman symbols out of DC range"); + } + } + + for (auto& scan : scan_info) { + JXL_RETURN_IF_ERROR( + visitor->U32(Val(1), Val(2), Val(3), Val(4), 1, &scan.num_components)); + if (scan.num_components >= 4) { + return JXL_FAILURE("Invalid number of components in SOS marker"); + } + JXL_RETURN_IF_ERROR(visitor->Bits(6, 0, &scan.Ss)); + JXL_RETURN_IF_ERROR(visitor->Bits(6, 63, &scan.Se)); + JXL_RETURN_IF_ERROR(visitor->Bits(4, 0, &scan.Al)); + JXL_RETURN_IF_ERROR(visitor->Bits(4, 0, &scan.Ah)); + for (size_t i = 0; i < scan.num_components; i++) { + JXL_RETURN_IF_ERROR(visitor->Bits(2, 0, &scan.components[i].comp_idx)); + if (scan.components[i].comp_idx >= components.size()) { + return JXL_FAILURE("Invalid component idx in SOS marker"); + } + JXL_RETURN_IF_ERROR(visitor->Bits(2, 0, &scan.components[i].ac_tbl_idx)); + JXL_RETURN_IF_ERROR(visitor->Bits(2, 0, &scan.components[i].dc_tbl_idx)); + } + // TODO(veluca): actually set and use this value. + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), Val(1), Val(2), BitsOffset(3, 3), + kMaxNumPasses - 1, + &scan.last_needed_pass)); + } + + // From here on, this is data that is not strictly necessary to get a valid + // JPEG, but necessary for bit-exact JPEG reconstruction. + if (info.has_dri) { + JXL_RETURN_IF_ERROR(visitor->Bits(16, 0, &restart_interval)); + } + + for (auto& scan : scan_info) { + uint32_t num_reset_points = scan.reset_points.size(); + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), BitsOffset(2, 1), BitsOffset(4, 4), + BitsOffset(16, 20), 0, &num_reset_points)); + if (visitor->IsReading()) { + scan.reset_points.resize(num_reset_points); + } + int last_block_idx = -1; + for (auto& block_idx : scan.reset_points) { + block_idx -= last_block_idx + 1; + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), BitsOffset(3, 1), + BitsOffset(5, 9), BitsOffset(28, 41), 0, + &block_idx)); + block_idx += last_block_idx + 1; + if (static_cast<int>(block_idx) < last_block_idx + 1) { + return JXL_FAILURE("Invalid block ID: %u, last block was %d", block_idx, + last_block_idx); + } + // TODO(eustas): better upper boundary could be given at this point; also + // it could be applied during reset_points reading. + if (block_idx > (1u << 30)) { + // At most 8K x 8K x num_channels blocks are expected. That is, + // typically, 1.5 * 2^27. 2^30 should be sufficient for any sane + // image. + return JXL_FAILURE("Invalid block ID: %u", block_idx); + } + last_block_idx = block_idx; + } + + uint32_t num_extra_zero_runs = scan.extra_zero_runs.size(); + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), BitsOffset(2, 1), BitsOffset(4, 4), + BitsOffset(16, 20), 0, + &num_extra_zero_runs)); + if (visitor->IsReading()) { + scan.extra_zero_runs.resize(num_extra_zero_runs); + } + last_block_idx = -1; + for (size_t i = 0; i < scan.extra_zero_runs.size(); ++i) { + uint32_t& block_idx = scan.extra_zero_runs[i].block_idx; + JXL_RETURN_IF_ERROR(visitor->U32( + Val(1), BitsOffset(2, 2), BitsOffset(4, 5), BitsOffset(8, 20), 1, + &scan.extra_zero_runs[i].num_extra_zero_runs)); + block_idx -= last_block_idx + 1; + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), BitsOffset(3, 1), + BitsOffset(5, 9), BitsOffset(28, 41), 0, + &block_idx)); + block_idx += last_block_idx + 1; + if (static_cast<int>(block_idx) < last_block_idx + 1) { + return JXL_FAILURE("Invalid block ID: %u, last block was %d", block_idx, + last_block_idx); + } + if (block_idx > (1u << 30)) { + // At most 8K x 8K x num_channels blocks are expected. That is, + // typically, 1.5 * 2^27. 2^30 should be sufficient for any sane + // image. + return JXL_FAILURE("Invalid block ID: %u", block_idx); + } + last_block_idx = block_idx; + } + } + std::vector<uint32_t> inter_marker_data_sizes; + inter_marker_data_sizes.reserve(info.num_intermarker); + for (size_t i = 0; i < info.num_intermarker; ++i) { + uint32_t len = visitor->IsReading() ? 0 : inter_marker_data[i].size(); + JXL_RETURN_IF_ERROR(visitor->Bits(16, 0, &len)); + if (visitor->IsReading()) inter_marker_data_sizes.emplace_back(len); + } + uint32_t tail_data_len = tail_data.size(); + if (!visitor->IsReading() && tail_data_len > 4260096) { + return JXL_FAILURE("Tail data too large (max size = 4260096, size = %u).", + tail_data_len); + } + JXL_RETURN_IF_ERROR(visitor->U32(Val(0), BitsOffset(8, 1), + BitsOffset(16, 257), BitsOffset(22, 65793), + 0, &tail_data_len)); + + JXL_RETURN_IF_ERROR(visitor->Bool(false, &has_zero_padding_bit)); + if (has_zero_padding_bit) { + uint32_t nbit = padding_bits.size(); + JXL_RETURN_IF_ERROR(visitor->Bits(24, 0, &nbit)); + if (visitor->IsReading()) { + padding_bits.reserve(std::min<uint32_t>(1024u, nbit)); + for (uint32_t i = 0; i < nbit; i++) { + bool bbit = false; + JXL_RETURN_IF_ERROR(visitor->Bool(false, &bbit)); + padding_bits.push_back(bbit); + } + } else { + for (uint8_t& bit : padding_bits) { + bool bbit = bit; + JXL_RETURN_IF_ERROR(visitor->Bool(false, &bbit)); + bit = bbit; + } + } + } + + // Apply postponed actions. + if (visitor->IsReading()) { + tail_data.resize(tail_data_len); + JXL_ASSERT(inter_marker_data_sizes.size() == info.num_intermarker); + inter_marker_data.reserve(info.num_intermarker); + for (size_t i = 0; i < info.num_intermarker; ++i) { + inter_marker_data.emplace_back(inter_marker_data_sizes[i]); + } + } + + return true; +} + +#endif // JPEGXL_ENABLE_TRANSCODE_JPEG + +void JPEGData::CalculateMcuSize(const JPEGScanInfo& scan, int* MCUs_per_row, + int* MCU_rows) const { + const bool is_interleaved = (scan.num_components > 1); + const JPEGComponent& base_component = components[scan.components[0].comp_idx]; + // h_group / v_group act as numerators for converting number of blocks to + // number of MCU. In interleaved mode it is 1, so MCU is represented with + // max_*_samp_factor blocks. In non-interleaved mode we choose numerator to + // be the samping factor, consequently MCU is always represented with single + // block. + const int h_group = is_interleaved ? 1 : base_component.h_samp_factor; + const int v_group = is_interleaved ? 1 : base_component.v_samp_factor; + int max_h_samp_factor = 1; + int max_v_samp_factor = 1; + for (const auto& c : components) { + max_h_samp_factor = std::max(c.h_samp_factor, max_h_samp_factor); + max_v_samp_factor = std::max(c.v_samp_factor, max_v_samp_factor); + } + *MCUs_per_row = DivCeil(width * h_group, 8 * max_h_samp_factor); + *MCU_rows = DivCeil(height * v_group, 8 * max_v_samp_factor); +} + +#if JPEGXL_ENABLE_TRANSCODE_JPEG + +Status SetJPEGDataFromICC(const PaddedBytes& icc, jpeg::JPEGData* jpeg_data) { + size_t icc_pos = 0; + for (size_t i = 0; i < jpeg_data->app_data.size(); i++) { + if (jpeg_data->app_marker_type[i] != jpeg::AppMarkerType::kICC) { + continue; + } + size_t len = jpeg_data->app_data[i].size() - 17; + if (icc_pos + len > icc.size()) { + return JXL_FAILURE( + "ICC length is less than APP markers: requested %" PRIuS + " more bytes, " + "%" PRIuS " available", + len, icc.size() - icc_pos); + } + memcpy(&jpeg_data->app_data[i][17], icc.data() + icc_pos, len); + icc_pos += len; + } + if (icc_pos != icc.size() && icc_pos != 0) { + return JXL_FAILURE("ICC length is more than APP markers"); + } + return true; +} + +#endif // JPEGXL_ENABLE_TRANSCODE_JPEG + +} // namespace jpeg +} // namespace jxl diff --git a/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.h b/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.h new file mode 100644 index 0000000000..70ff4f8e05 --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/jpeg/jpeg_data.h @@ -0,0 +1,216 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Data structures that represent the non-pixel contents of a jpeg file. + +#ifndef LIB_JXL_JPEG_JPEG_DATA_H_ +#define LIB_JXL_JPEG_JPEG_DATA_H_ + +#include <stddef.h> +#include <stdint.h> + +#include <array> +#include <vector> + +#include "lib/jxl/common.h" // JPEGXL_ENABLE_TRANSCODE_JPEG +#include "lib/jxl/fields.h" + +namespace jxl { +namespace jpeg { + +constexpr int kMaxComponents = 4; +constexpr int kMaxQuantTables = 4; +constexpr int kMaxHuffmanTables = 4; +constexpr size_t kJpegHuffmanMaxBitLength = 16; +constexpr int kJpegHuffmanAlphabetSize = 256; +constexpr int kJpegDCAlphabetSize = 12; +constexpr int kMaxDHTMarkers = 512; +constexpr int kMaxDimPixels = 65535; +constexpr uint8_t kApp1 = 0xE1; +constexpr uint8_t kApp2 = 0xE2; +const uint8_t kIccProfileTag[12] = "ICC_PROFILE"; +const uint8_t kExifTag[6] = "Exif\0"; +const uint8_t kXMPTag[29] = "http://ns.adobe.com/xap/1.0/"; + +/* clang-format off */ +constexpr uint32_t kJPEGNaturalOrder[80] = { + 0, 1, 8, 16, 9, 2, 3, 10, + 17, 24, 32, 25, 18, 11, 4, 5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13, 6, 7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63, + // extra entries for safety in decoder + 63, 63, 63, 63, 63, 63, 63, 63, + 63, 63, 63, 63, 63, 63, 63, 63 +}; + +constexpr uint32_t kJPEGZigZagOrder[64] = { + 0, 1, 5, 6, 14, 15, 27, 28, + 2, 4, 7, 13, 16, 26, 29, 42, + 3, 8, 12, 17, 25, 30, 41, 43, + 9, 11, 18, 24, 31, 40, 44, 53, + 10, 19, 23, 32, 39, 45, 52, 54, + 20, 22, 33, 38, 46, 51, 55, 60, + 21, 34, 37, 47, 50, 56, 59, 61, + 35, 36, 48, 49, 57, 58, 62, 63 +}; +/* clang-format on */ + +// Quantization values for an 8x8 pixel block. +struct JPEGQuantTable { + std::array<int32_t, kDCTBlockSize> values; + uint32_t precision = 0; + // The index of this quantization table as it was parsed from the input JPEG. + // Each DQT marker segment contains an 'index' field, and we save this index + // here. Valid values are 0 to 3. + uint32_t index = 0; + // Set to true if this table is the last one within its marker segment. + bool is_last = true; +}; + +// Huffman code and decoding lookup table used for DC and AC coefficients. +struct JPEGHuffmanCode { + // Bit length histogram. + std::array<uint32_t, kJpegHuffmanMaxBitLength + 1> counts = {}; + // Symbol values sorted by increasing bit lengths. + std::array<uint32_t, kJpegHuffmanAlphabetSize + 1> values = {}; + // The index of the Huffman code in the current set of Huffman codes. For AC + // component Huffman codes, 0x10 is added to the index. + int slot_id = 0; + // Set to true if this Huffman code is the last one within its marker segment. + bool is_last = true; +}; + +// Huffman table indexes used for one component of one scan. +struct JPEGComponentScanInfo { + uint32_t comp_idx; + uint32_t dc_tbl_idx; + uint32_t ac_tbl_idx; +}; + +// Contains information that is used in one scan. +struct JPEGScanInfo { + // Parameters used for progressive scans (named the same way as in the spec): + // Ss : Start of spectral band in zig-zag sequence. + // Se : End of spectral band in zig-zag sequence. + // Ah : Successive approximation bit position, high. + // Al : Successive approximation bit position, low. + uint32_t Ss; + uint32_t Se; + uint32_t Ah; + uint32_t Al; + uint32_t num_components = 0; + std::array<JPEGComponentScanInfo, 4> components; + // Last codestream pass that is needed to write this scan. + uint32_t last_needed_pass = 0; + + // Extra information required for bit-precise JPEG file reconstruction. + + // Set of block indexes where the JPEG encoder has to flush the end-of-block + // runs and refinement bits. + std::vector<uint32_t> reset_points; + // The number of extra zero runs (Huffman symbol 0xf0) before the end of + // block (if nonzero), indexed by block index. + // All of these symbols can be omitted without changing the pixel values, but + // some jpeg encoders put these at the end of blocks. + typedef struct { + uint32_t block_idx; + uint32_t num_extra_zero_runs; + } ExtraZeroRunInfo; + std::vector<ExtraZeroRunInfo> extra_zero_runs; +}; + +typedef int16_t coeff_t; + +// Represents one component of a jpeg file. +struct JPEGComponent { + JPEGComponent() + : id(0), + h_samp_factor(1), + v_samp_factor(1), + quant_idx(0), + width_in_blocks(0), + height_in_blocks(0) {} + + // One-byte id of the component. + uint32_t id; + // Horizontal and vertical sampling factors. + // In interleaved mode, each minimal coded unit (MCU) has + // h_samp_factor x v_samp_factor DCT blocks from this component. + int h_samp_factor; + int v_samp_factor; + // The index of the quantization table used for this component. + uint32_t quant_idx; + // The dimensions of the component measured in 8x8 blocks. + uint32_t width_in_blocks; + uint32_t height_in_blocks; + // The DCT coefficients of this component, laid out block-by-block, divided + // through the quantization matrix values. + std::vector<coeff_t> coeffs; +}; + +enum class AppMarkerType : uint32_t { + kUnknown = 0, + kICC = 1, + kExif = 2, + kXMP = 3, +}; + +// Represents a parsed jpeg file. +struct JPEGData : public Fields { + JPEGData() + : width(0), height(0), restart_interval(0), has_zero_padding_bit(false) {} + + JXL_FIELDS_NAME(JPEGData) +#if JPEGXL_ENABLE_TRANSCODE_JPEG + // Doesn't serialize everything - skips brotli-encoded data and what is + // already encoded in the codestream. + Status VisitFields(Visitor* visitor) override; +#else + Status VisitFields(Visitor* /* visitor */) override { + JXL_ABORT("JPEG transcoding support not enabled"); + } +#endif // JPEGXL_ENABLE_TRANSCODE_JPEG + + void CalculateMcuSize(const JPEGScanInfo& scan, int* MCUs_per_row, + int* MCU_rows) const; + + int width; + int height; + uint32_t restart_interval; + std::vector<std::vector<uint8_t>> app_data; + std::vector<AppMarkerType> app_marker_type; + std::vector<std::vector<uint8_t>> com_data; + std::vector<JPEGQuantTable> quant; + std::vector<JPEGHuffmanCode> huffman_code; + std::vector<JPEGComponent> components; + std::vector<JPEGScanInfo> scan_info; + std::vector<uint8_t> marker_order; + std::vector<std::vector<uint8_t>> inter_marker_data; + std::vector<uint8_t> tail_data; + + // Extra information required for bit-precise JPEG file reconstruction. + + bool has_zero_padding_bit; + std::vector<uint8_t> padding_bits; +}; + +#if JPEGXL_ENABLE_TRANSCODE_JPEG +// Set ICC profile in jpeg_data. +Status SetJPEGDataFromICC(const PaddedBytes& icc, jpeg::JPEGData* jpeg_data); +#else +static JXL_INLINE Status SetJPEGDataFromICC(const PaddedBytes& /* icc */, + jpeg::JPEGData* /* jpeg_data */) { + JXL_ABORT("JPEG transcoding support not enabled"); +} +#endif // JPEGXL_ENABLE_TRANSCODE_JPEG + +} // namespace jpeg +} // namespace jxl + +#endif // LIB_JXL_JPEG_JPEG_DATA_H_ |