summaryrefslogtreecommitdiffstats
path: root/third_party/libsrtp/src/crypto/hash/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/libsrtp/src/crypto/hash/sha1.c')
-rw-r--r--third_party/libsrtp/src/crypto/hash/sha1.c463
1 files changed, 463 insertions, 0 deletions
diff --git a/third_party/libsrtp/src/crypto/hash/sha1.c b/third_party/libsrtp/src/crypto/hash/sha1.c
new file mode 100644
index 0000000000..901a933250
--- /dev/null
+++ b/third_party/libsrtp/src/crypto/hash/sha1.c
@@ -0,0 +1,463 @@
+/*
+ * sha1.c
+ *
+ * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
+ * specified in FIPS 180-1
+ *
+ * David A. McGrew
+ * Cisco Systems, Inc.
+ */
+
+/*
+ *
+ * Copyright (c) 2001-2017, Cisco Systems, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * Neither the name of the Cisco Systems, Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "sha1.h"
+
+srtp_debug_module_t srtp_mod_sha1 = {
+ 0, /* debugging is off by default */
+ "sha-1" /* printable module name */
+};
+
+/* SN == Rotate left N bits */
+#define S1(X) ((X << 1) | (X >> 31))
+#define S5(X) ((X << 5) | (X >> 27))
+#define S30(X) ((X << 30) | (X >> 2))
+
+#define f0(B, C, D) ((B & C) | (~B & D))
+#define f1(B, C, D) (B ^ C ^ D)
+#define f2(B, C, D) ((B & C) | (B & D) | (C & D))
+#define f3(B, C, D) (B ^ C ^ D)
+
+/*
+ * nota bene: the variable K0 appears in the curses library, so we
+ * give longer names to these variables to avoid spurious warnings
+ * on systems that uses curses
+ */
+
+uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
+uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
+uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
+uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
+
+/*
+ * srtp_sha1_core(M, H) computes the core compression function, where M is
+ * the next part of the message (in network byte order) and H is the
+ * intermediate state { H0, H1, ...} (in host byte order)
+ *
+ * this function does not do any of the padding required in the
+ * complete SHA1 function
+ *
+ * this function is used in the SEAL 3.0 key setup routines
+ * (crypto/cipher/seal.c)
+ */
+
+void srtp_sha1_core(const uint32_t M[16], uint32_t hash_value[5])
+{
+ uint32_t H0;
+ uint32_t H1;
+ uint32_t H2;
+ uint32_t H3;
+ uint32_t H4;
+ uint32_t W[80];
+ uint32_t A, B, C, D, E, TEMP;
+ int t;
+
+ /* copy hash_value into H0, H1, H2, H3, H4 */
+ H0 = hash_value[0];
+ H1 = hash_value[1];
+ H2 = hash_value[2];
+ H3 = hash_value[3];
+ H4 = hash_value[4];
+
+ /* copy/xor message into array */
+
+ W[0] = be32_to_cpu(M[0]);
+ W[1] = be32_to_cpu(M[1]);
+ W[2] = be32_to_cpu(M[2]);
+ W[3] = be32_to_cpu(M[3]);
+ W[4] = be32_to_cpu(M[4]);
+ W[5] = be32_to_cpu(M[5]);
+ W[6] = be32_to_cpu(M[6]);
+ W[7] = be32_to_cpu(M[7]);
+ W[8] = be32_to_cpu(M[8]);
+ W[9] = be32_to_cpu(M[9]);
+ W[10] = be32_to_cpu(M[10]);
+ W[11] = be32_to_cpu(M[11]);
+ W[12] = be32_to_cpu(M[12]);
+ W[13] = be32_to_cpu(M[13]);
+ W[14] = be32_to_cpu(M[14]);
+ W[15] = be32_to_cpu(M[15]);
+ TEMP = W[13] ^ W[8] ^ W[2] ^ W[0];
+ W[16] = S1(TEMP);
+ TEMP = W[14] ^ W[9] ^ W[3] ^ W[1];
+ W[17] = S1(TEMP);
+ TEMP = W[15] ^ W[10] ^ W[4] ^ W[2];
+ W[18] = S1(TEMP);
+ TEMP = W[16] ^ W[11] ^ W[5] ^ W[3];
+ W[19] = S1(TEMP);
+ TEMP = W[17] ^ W[12] ^ W[6] ^ W[4];
+ W[20] = S1(TEMP);
+ TEMP = W[18] ^ W[13] ^ W[7] ^ W[5];
+ W[21] = S1(TEMP);
+ TEMP = W[19] ^ W[14] ^ W[8] ^ W[6];
+ W[22] = S1(TEMP);
+ TEMP = W[20] ^ W[15] ^ W[9] ^ W[7];
+ W[23] = S1(TEMP);
+ TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];
+ W[24] = S1(TEMP);
+ TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];
+ W[25] = S1(TEMP);
+ TEMP = W[23] ^ W[18] ^ W[12] ^ W[10];
+ W[26] = S1(TEMP);
+ TEMP = W[24] ^ W[19] ^ W[13] ^ W[11];
+ W[27] = S1(TEMP);
+ TEMP = W[25] ^ W[20] ^ W[14] ^ W[12];
+ W[28] = S1(TEMP);
+ TEMP = W[26] ^ W[21] ^ W[15] ^ W[13];
+ W[29] = S1(TEMP);
+ TEMP = W[27] ^ W[22] ^ W[16] ^ W[14];
+ W[30] = S1(TEMP);
+ TEMP = W[28] ^ W[23] ^ W[17] ^ W[15];
+ W[31] = S1(TEMP);
+
+ /* process the remainder of the array */
+ for (t = 32; t < 80; t++) {
+ TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
+ W[t] = S1(TEMP);
+ }
+
+ A = H0;
+ B = H1;
+ C = H2;
+ D = H3;
+ E = H4;
+
+ for (t = 0; t < 20; t++) {
+ TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 40; t++) {
+ TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 60; t++) {
+ TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 80; t++) {
+ TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+
+ hash_value[0] = H0 + A;
+ hash_value[1] = H1 + B;
+ hash_value[2] = H2 + C;
+ hash_value[3] = H3 + D;
+ hash_value[4] = H4 + E;
+
+ return;
+}
+
+void srtp_sha1_init(srtp_sha1_ctx_t *ctx)
+{
+ /* initialize state vector */
+ ctx->H[0] = 0x67452301;
+ ctx->H[1] = 0xefcdab89;
+ ctx->H[2] = 0x98badcfe;
+ ctx->H[3] = 0x10325476;
+ ctx->H[4] = 0xc3d2e1f0;
+
+ /* indicate that message buffer is empty */
+ ctx->octets_in_buffer = 0;
+
+ /* reset message bit-count to zero */
+ ctx->num_bits_in_msg = 0;
+}
+
+void srtp_sha1_update(srtp_sha1_ctx_t *ctx,
+ const uint8_t *msg,
+ int octets_in_msg)
+{
+ int i;
+ uint8_t *buf = (uint8_t *)ctx->M;
+
+ /* update message bit-count */
+ ctx->num_bits_in_msg += octets_in_msg * 8;
+
+ /* loop over 16-word blocks of M */
+ while (octets_in_msg > 0) {
+ if (octets_in_msg + ctx->octets_in_buffer >= 64) {
+ /*
+ * copy words of M into msg buffer until that buffer is full,
+ * converting them into host byte order as needed
+ */
+ octets_in_msg -= (64 - ctx->octets_in_buffer);
+ for (i = ctx->octets_in_buffer; i < 64; i++) {
+ buf[i] = *msg++;
+ }
+ ctx->octets_in_buffer = 0;
+
+ /* process a whole block */
+
+ debug_print0(srtp_mod_sha1, "(update) running srtp_sha1_core()");
+
+ srtp_sha1_core(ctx->M, ctx->H);
+
+ } else {
+ debug_print0(srtp_mod_sha1,
+ "(update) not running srtp_sha1_core()");
+
+ for (i = ctx->octets_in_buffer;
+ i < (ctx->octets_in_buffer + octets_in_msg); i++) {
+ buf[i] = *msg++;
+ }
+ ctx->octets_in_buffer += octets_in_msg;
+ octets_in_msg = 0;
+ }
+ }
+}
+
+/*
+ * srtp_sha1_final(ctx, output) computes the result for ctx and copies it
+ * into the twenty octets located at *output
+ */
+
+void srtp_sha1_final(srtp_sha1_ctx_t *ctx, uint32_t output[5])
+{
+ uint32_t A, B, C, D, E, TEMP;
+ uint32_t W[80];
+ int i, t;
+
+ /*
+ * process the remaining octets_in_buffer, padding and terminating as
+ * necessary
+ */
+ {
+ int tail = ctx->octets_in_buffer % 4;
+
+ /* copy/xor message into array */
+ for (i = 0; i < (ctx->octets_in_buffer + 3) / 4; i++) {
+ W[i] = be32_to_cpu(ctx->M[i]);
+ }
+
+ /* set the high bit of the octet immediately following the message */
+ switch (tail) {
+ case (3):
+ W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffffff00) | 0x80;
+ W[i] = 0x0;
+ break;
+ case (2):
+ W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffff0000) | 0x8000;
+ W[i] = 0x0;
+ break;
+ case (1):
+ W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xff000000) | 0x800000;
+ W[i] = 0x0;
+ break;
+ case (0):
+ W[i] = 0x80000000;
+ break;
+ }
+
+ /* zeroize remaining words */
+ for (i++; i < 15; i++) {
+ W[i] = 0x0;
+ }
+
+ /*
+ * if there is room at the end of the word array, then set the
+ * last word to the bit-length of the message; otherwise, set that
+ * word to zero and then we need to do one more run of the
+ * compression algo.
+ */
+ if (ctx->octets_in_buffer < 56) {
+ W[15] = ctx->num_bits_in_msg;
+ } else if (ctx->octets_in_buffer < 60) {
+ W[15] = 0x0;
+ }
+
+ /* process the word array */
+ for (t = 16; t < 80; t++) {
+ TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
+ W[t] = S1(TEMP);
+ }
+
+ A = ctx->H[0];
+ B = ctx->H[1];
+ C = ctx->H[2];
+ D = ctx->H[3];
+ E = ctx->H[4];
+
+ for (t = 0; t < 20; t++) {
+ TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 40; t++) {
+ TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 60; t++) {
+ TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 80; t++) {
+ TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+
+ ctx->H[0] += A;
+ ctx->H[1] += B;
+ ctx->H[2] += C;
+ ctx->H[3] += D;
+ ctx->H[4] += E;
+ }
+
+ debug_print0(srtp_mod_sha1, "(final) running srtp_sha1_core()");
+
+ if (ctx->octets_in_buffer >= 56) {
+ debug_print0(srtp_mod_sha1, "(final) running srtp_sha1_core() again");
+
+ /* we need to do one final run of the compression algo */
+
+ /*
+ * set initial part of word array to zeros, and set the
+ * final part to the number of bits in the message
+ */
+ for (i = 0; i < 15; i++) {
+ W[i] = 0x0;
+ }
+ W[15] = ctx->num_bits_in_msg;
+
+ /* process the word array */
+ for (t = 16; t < 80; t++) {
+ TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
+ W[t] = S1(TEMP);
+ }
+
+ A = ctx->H[0];
+ B = ctx->H[1];
+ C = ctx->H[2];
+ D = ctx->H[3];
+ E = ctx->H[4];
+
+ for (t = 0; t < 20; t++) {
+ TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 40; t++) {
+ TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 60; t++) {
+ TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+ for (; t < 80; t++) {
+ TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
+ E = D;
+ D = C;
+ C = S30(B);
+ B = A;
+ A = TEMP;
+ }
+
+ ctx->H[0] += A;
+ ctx->H[1] += B;
+ ctx->H[2] += C;
+ ctx->H[3] += D;
+ ctx->H[4] += E;
+ }
+
+ /* copy result into output buffer */
+ output[0] = be32_to_cpu(ctx->H[0]);
+ output[1] = be32_to_cpu(ctx->H[1]);
+ output[2] = be32_to_cpu(ctx->H[2]);
+ output[3] = be32_to_cpu(ctx->H[3]);
+ output[4] = be32_to_cpu(ctx->H[4]);
+
+ /* indicate that message buffer in context is empty */
+ ctx->octets_in_buffer = 0;
+
+ return;
+}