diff options
Diffstat (limited to 'third_party/libwebrtc/test/fake_encoder.cc')
-rw-r--r-- | third_party/libwebrtc/test/fake_encoder.cc | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/third_party/libwebrtc/test/fake_encoder.cc b/third_party/libwebrtc/test/fake_encoder.cc new file mode 100644 index 0000000000..bfc72c123d --- /dev/null +++ b/third_party/libwebrtc/test/fake_encoder.cc @@ -0,0 +1,441 @@ +/* + * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "test/fake_encoder.h" + +#include <string.h> + +#include <algorithm> +#include <cstdint> +#include <memory> +#include <string> + +#include "api/video/video_content_type.h" +#include "modules/video_coding/codecs/h264/include/h264_globals.h" +#include "modules/video_coding/include/video_codec_interface.h" +#include "modules/video_coding/include/video_error_codes.h" +#include "rtc_base/checks.h" +#include "system_wrappers/include/sleep.h" + +namespace webrtc { +namespace test { +namespace { +const int kKeyframeSizeFactor = 5; + +// Inverse of proportion of frames assigned to each temporal layer for all +// possible temporal layers numbers. +const int kTemporalLayerRateFactor[4][4] = { + {1, 0, 0, 0}, // 1/1 + {2, 2, 0, 0}, // 1/2 + 1/2 + {4, 4, 2, 0}, // 1/4 + 1/4 + 1/2 + {8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2 +}; + +void WriteCounter(unsigned char* payload, uint32_t counter) { + payload[0] = (counter & 0x00FF); + payload[1] = (counter & 0xFF00) >> 8; + payload[2] = (counter & 0xFF0000) >> 16; + payload[3] = (counter & 0xFF000000) >> 24; +} + +} // namespace + +FakeEncoder::FakeEncoder(Clock* clock) + : clock_(clock), + num_initializations_(0), + callback_(nullptr), + max_target_bitrate_kbps_(-1), + pending_keyframe_(true), + counter_(0), + debt_bytes_(0) { + for (bool& used : used_layers_) { + used = false; + } +} + +void FakeEncoder::SetFecControllerOverride( + FecControllerOverride* fec_controller_override) { + // Ignored. +} + +void FakeEncoder::SetMaxBitrate(int max_kbps) { + RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it. + MutexLock lock(&mutex_); + max_target_bitrate_kbps_ = max_kbps; + SetRatesLocked(current_rate_settings_); +} + +void FakeEncoder::SetQp(int qp) { + MutexLock lock(&mutex_); + qp_ = qp; +} + +int32_t FakeEncoder::InitEncode(const VideoCodec* config, + const Settings& settings) { + MutexLock lock(&mutex_); + config_ = *config; + ++num_initializations_; + current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000); + current_rate_settings_.framerate_fps = config_.maxFramerate; + pending_keyframe_ = true; + last_frame_info_ = FrameInfo(); + return 0; +} + +int32_t FakeEncoder::Encode(const VideoFrame& input_image, + const std::vector<VideoFrameType>* frame_types) { + unsigned char max_framerate; + unsigned char num_simulcast_streams; + SimulcastStream simulcast_streams[kMaxSimulcastStreams]; + EncodedImageCallback* callback; + RateControlParameters rates; + bool keyframe; + uint32_t counter; + absl::optional<int> qp; + { + MutexLock lock(&mutex_); + max_framerate = config_.maxFramerate; + num_simulcast_streams = config_.numberOfSimulcastStreams; + for (int i = 0; i < num_simulcast_streams; ++i) { + simulcast_streams[i] = config_.simulcastStream[i]; + } + callback = callback_; + rates = current_rate_settings_; + if (rates.framerate_fps <= 0.0) { + rates.framerate_fps = max_framerate; + } + keyframe = pending_keyframe_; + pending_keyframe_ = false; + counter = counter_++; + qp = qp_; + } + + FrameInfo frame_info = + NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate, + simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5)); + for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { + constexpr int kMinPayLoadLength = 14; + if (frame_info.layers[i].size < kMinPayLoadLength) { + // Drop this temporal layer. + continue; + } + + auto buffer = EncodedImageBuffer::Create(frame_info.layers[i].size); + // Fill the buffer with arbitrary data. Write someting to make Asan happy. + memset(buffer->data(), 9, frame_info.layers[i].size); + // Write a counter to the image to make each frame unique. + WriteCounter(buffer->data() + frame_info.layers[i].size - 4, counter); + + EncodedImage encoded; + encoded.SetEncodedData(buffer); + + encoded.SetTimestamp(input_image.timestamp()); + encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey + : VideoFrameType::kVideoFrameDelta; + encoded._encodedWidth = simulcast_streams[i].width; + encoded._encodedHeight = simulcast_streams[i].height; + if (qp) + encoded.qp_ = *qp; + encoded.SetSpatialIndex(i); + CodecSpecificInfo codec_specific = EncodeHook(encoded, buffer); + + if (callback->OnEncodedImage(encoded, &codec_specific).error != + EncodedImageCallback::Result::OK) { + return -1; + } + } + return 0; +} + +CodecSpecificInfo FakeEncoder::EncodeHook( + EncodedImage& encoded_image, + rtc::scoped_refptr<EncodedImageBuffer> buffer) { + CodecSpecificInfo codec_specific; + codec_specific.codecType = kVideoCodecGeneric; + return codec_specific; +} + +FakeEncoder::FrameInfo FakeEncoder::NextFrame( + const std::vector<VideoFrameType>* frame_types, + bool keyframe, + uint8_t num_simulcast_streams, + const VideoBitrateAllocation& target_bitrate, + SimulcastStream simulcast_streams[kMaxSimulcastStreams], + int framerate) { + FrameInfo frame_info; + frame_info.keyframe = keyframe; + + if (frame_types) { + for (VideoFrameType frame_type : *frame_types) { + if (frame_type == VideoFrameType::kVideoFrameKey) { + frame_info.keyframe = true; + break; + } + } + } + + MutexLock lock(&mutex_); + for (uint8_t i = 0; i < num_simulcast_streams; ++i) { + if (target_bitrate.GetBitrate(i, 0) > 0) { + int temporal_id = last_frame_info_.layers.size() > i + ? ++last_frame_info_.layers[i].temporal_id % + simulcast_streams[i].numberOfTemporalLayers + : 0; + frame_info.layers.emplace_back(0, temporal_id); + } + } + + if (last_frame_info_.layers.size() < frame_info.layers.size()) { + // A new keyframe is needed since a new layer will be added. + frame_info.keyframe = true; + } + + for (uint8_t i = 0; i < frame_info.layers.size(); ++i) { + FrameInfo::SpatialLayer& layer_info = frame_info.layers[i]; + if (frame_info.keyframe) { + layer_info.temporal_id = 0; + size_t avg_frame_size = + (target_bitrate.GetBitrate(i, 0) + 7) * + kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / + (8 * framerate); + + // The first frame is a key frame and should be larger. + // Store the overshoot bytes and distribute them over the coming frames, + // so that we on average meet the bitrate target. + debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size; + layer_info.size = kKeyframeSizeFactor * avg_frame_size; + } else { + size_t avg_frame_size = + (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) * + kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] / + (8 * framerate); + layer_info.size = avg_frame_size; + if (debt_bytes_ > 0) { + // Pay at most half of the frame size for old debts. + size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_); + debt_bytes_ -= payment_size; + layer_info.size -= payment_size; + } + } + } + last_frame_info_ = frame_info; + return frame_info; +} + +int32_t FakeEncoder::RegisterEncodeCompleteCallback( + EncodedImageCallback* callback) { + MutexLock lock(&mutex_); + callback_ = callback; + return 0; +} + +int32_t FakeEncoder::Release() { + return 0; +} + +void FakeEncoder::SetRates(const RateControlParameters& parameters) { + MutexLock lock(&mutex_); + SetRatesLocked(parameters); +} + +void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) { + current_rate_settings_ = parameters; + int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps(); + + // Scale bitrate allocation to not exceed the given max target bitrate. + if (max_target_bitrate_kbps_ > 0 && + allocated_bitrate_kbps > max_target_bitrate_kbps_) { + for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers; + ++spatial_idx) { + for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams; + ++temporal_idx) { + if (current_rate_settings_.bitrate.HasBitrate(spatial_idx, + temporal_idx)) { + uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate( + spatial_idx, temporal_idx); + bitrate = static_cast<uint32_t>( + (bitrate * int64_t{max_target_bitrate_kbps_}) / + allocated_bitrate_kbps); + current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx, + bitrate); + } + } + } + } +} + +const char* FakeEncoder::kImplementationName = "fake_encoder"; +VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const { + EncoderInfo info; + info.implementation_name = kImplementationName; + info.is_hardware_accelerated = true; + MutexLock lock(&mutex_); + for (int sid = 0; sid < config_.numberOfSimulcastStreams; ++sid) { + int number_of_temporal_layers = + config_.simulcastStream[sid].numberOfTemporalLayers; + info.fps_allocation[sid].clear(); + for (int tid = 0; tid < number_of_temporal_layers; ++tid) { + // {1/4, 1/2, 1} allocation for num layers = 3. + info.fps_allocation[sid].push_back(255 / + (number_of_temporal_layers - tid)); + } + } + return info; +} + +int FakeEncoder::GetConfiguredInputFramerate() const { + MutexLock lock(&mutex_); + return static_cast<int>(current_rate_settings_.framerate_fps + 0.5); +} + +int FakeEncoder::GetNumInitializations() const { + MutexLock lock(&mutex_); + return num_initializations_; +} + +const VideoCodec& FakeEncoder::config() const { + MutexLock lock(&mutex_); + return config_; +} + +FakeH264Encoder::FakeH264Encoder(Clock* clock) + : FakeEncoder(clock), idr_counter_(0) {} + +CodecSpecificInfo FakeH264Encoder::EncodeHook( + EncodedImage& encoded_image, + rtc::scoped_refptr<EncodedImageBuffer> buffer) { + static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1}; + const size_t kSpsSize = 8; + const size_t kPpsSize = 11; + const int kIdrFrequency = 10; + int current_idr_counter; + { + MutexLock lock(&local_mutex_); + current_idr_counter = idr_counter_; + ++idr_counter_; + } + for (size_t i = 0; i < encoded_image.size(); ++i) { + buffer->data()[i] = static_cast<uint8_t>(i); + } + + if (current_idr_counter % kIdrFrequency == 0 && + encoded_image.size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) { + const size_t kSpsNalHeader = 0x67; + const size_t kPpsNalHeader = 0x68; + const size_t kIdrNalHeader = 0x65; + uint8_t* data = buffer->data(); + memcpy(data, kStartCode.data(), kStartCode.size()); + data += kStartCode.size(); + data[0] = kSpsNalHeader; + data += kSpsSize; + + memcpy(data, kStartCode.data(), kStartCode.size()); + data += kStartCode.size(); + data[0] = kPpsNalHeader; + data += kPpsSize; + + memcpy(data, kStartCode.data(), kStartCode.size()); + data += kStartCode.size(); + data[0] = kIdrNalHeader; + } else { + memcpy(buffer->data(), kStartCode.data(), kStartCode.size()); + const size_t kNalHeader = 0x41; + buffer->data()[kStartCode.size()] = kNalHeader; + } + + CodecSpecificInfo codec_specific; + codec_specific.codecType = kVideoCodecH264; + codec_specific.codecSpecific.H264.packetization_mode = + H264PacketizationMode::NonInterleaved; + return codec_specific; +} + +DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) + : test::FakeEncoder(clock), delay_ms_(delay_ms) { + // The encoder could be created on a different thread than + // it is being used on. + sequence_checker_.Detach(); +} + +void DelayedEncoder::SetDelay(int delay_ms) { + RTC_DCHECK_RUN_ON(&sequence_checker_); + delay_ms_ = delay_ms; +} + +int32_t DelayedEncoder::Encode(const VideoFrame& input_image, + const std::vector<VideoFrameType>* frame_types) { + RTC_DCHECK_RUN_ON(&sequence_checker_); + + SleepMs(delay_ms_); + + return FakeEncoder::Encode(input_image, frame_types); +} + +MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder( + Clock* clock, + TaskQueueFactory* task_queue_factory) + : test::FakeH264Encoder(clock), + task_queue_factory_(task_queue_factory), + current_queue_(0), + queue1_(nullptr), + queue2_(nullptr) { + // The encoder could be created on a different thread than + // it is being used on. + sequence_checker_.Detach(); +} + +int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config, + const Settings& settings) { + RTC_DCHECK_RUN_ON(&sequence_checker_); + + queue1_ = task_queue_factory_->CreateTaskQueue( + "Queue 1", TaskQueueFactory::Priority::NORMAL); + queue2_ = task_queue_factory_->CreateTaskQueue( + "Queue 2", TaskQueueFactory::Priority::NORMAL); + + return FakeH264Encoder::InitEncode(config, settings); +} + +int32_t MultithreadedFakeH264Encoder::Encode( + const VideoFrame& input_image, + const std::vector<VideoFrameType>* frame_types) { + RTC_DCHECK_RUN_ON(&sequence_checker_); + + TaskQueueBase* queue = + (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get(); + + if (!queue) { + return WEBRTC_VIDEO_CODEC_UNINITIALIZED; + } + + queue->PostTask([this, input_image, frame_types = *frame_types] { + EncodeCallback(input_image, &frame_types); + }); + + return WEBRTC_VIDEO_CODEC_OK; +} + +int32_t MultithreadedFakeH264Encoder::EncodeCallback( + const VideoFrame& input_image, + const std::vector<VideoFrameType>* frame_types) { + return FakeH264Encoder::Encode(input_image, frame_types); +} + +int32_t MultithreadedFakeH264Encoder::Release() { + RTC_DCHECK_RUN_ON(&sequence_checker_); + + queue1_.reset(); + queue2_.reset(); + + return FakeH264Encoder::Release(); +} + +} // namespace test +} // namespace webrtc |