diff options
Diffstat (limited to 'third_party/rust/rust_decimal/src/maths.rs')
-rw-r--r-- | third_party/rust/rust_decimal/src/maths.rs | 785 |
1 files changed, 785 insertions, 0 deletions
diff --git a/third_party/rust/rust_decimal/src/maths.rs b/third_party/rust/rust_decimal/src/maths.rs new file mode 100644 index 0000000000..c402453002 --- /dev/null +++ b/third_party/rust/rust_decimal/src/maths.rs @@ -0,0 +1,785 @@ +use crate::prelude::*; +use num_traits::pow::Pow; + +// Tolerance for inaccuracies when calculating exp +const EXP_TOLERANCE: Decimal = Decimal::from_parts(2, 0, 0, false, 7); +// Approximation of 1/ln(10) = 0.4342944819032518276511289189 +const LN10_INVERSE: Decimal = Decimal::from_parts_raw(1763037029, 1670682625, 235431510, 1835008); +// Total iterations of taylor series for Trig. +const TRIG_SERIES_UPPER_BOUND: usize = 6; +// PI / 8 +const EIGHTH_PI: Decimal = Decimal::from_parts_raw(2822163429, 3244459792, 212882598, 1835008); + +// Table representing {index}! +const FACTORIAL: [Decimal; 28] = [ + Decimal::from_parts(1, 0, 0, false, 0), + Decimal::from_parts(1, 0, 0, false, 0), + Decimal::from_parts(2, 0, 0, false, 0), + Decimal::from_parts(6, 0, 0, false, 0), + Decimal::from_parts(24, 0, 0, false, 0), + // 5! + Decimal::from_parts(120, 0, 0, false, 0), + Decimal::from_parts(720, 0, 0, false, 0), + Decimal::from_parts(5040, 0, 0, false, 0), + Decimal::from_parts(40320, 0, 0, false, 0), + Decimal::from_parts(362880, 0, 0, false, 0), + // 10! + Decimal::from_parts(3628800, 0, 0, false, 0), + Decimal::from_parts(39916800, 0, 0, false, 0), + Decimal::from_parts(479001600, 0, 0, false, 0), + Decimal::from_parts(1932053504, 1, 0, false, 0), + Decimal::from_parts(1278945280, 20, 0, false, 0), + // 15! + Decimal::from_parts(2004310016, 304, 0, false, 0), + Decimal::from_parts(2004189184, 4871, 0, false, 0), + Decimal::from_parts(4006445056, 82814, 0, false, 0), + Decimal::from_parts(3396534272, 1490668, 0, false, 0), + Decimal::from_parts(109641728, 28322707, 0, false, 0), + // 20! + Decimal::from_parts(2192834560, 566454140, 0, false, 0), + Decimal::from_parts(3099852800, 3305602358, 2, false, 0), + Decimal::from_parts(3772252160, 4003775155, 60, false, 0), + Decimal::from_parts(862453760, 1892515369, 1401, false, 0), + Decimal::from_parts(3519021056, 2470695900, 33634, false, 0), + // 25! + Decimal::from_parts(2076180480, 1637855376, 840864, false, 0), + Decimal::from_parts(2441084928, 3929534124, 21862473, false, 0), + Decimal::from_parts(1484783616, 3018206259, 590286795, false, 0), +]; + +/// Trait exposing various mathematical operations that can be applied using a Decimal. This is only +/// present when the `maths` feature has been enabled. +pub trait MathematicalOps { + /// The estimated exponential function, e<sup>x</sup>. Stops calculating when it is within + /// tolerance of roughly `0.0000002`. + fn exp(&self) -> Decimal; + + /// The estimated exponential function, e<sup>x</sup>. Stops calculating when it is within + /// tolerance of roughly `0.0000002`. Returns `None` on overflow. + fn checked_exp(&self) -> Option<Decimal>; + + /// The estimated exponential function, e<sup>x</sup> using the `tolerance` provided as a hint + /// as to when to stop calculating. A larger tolerance will cause the number to stop calculating + /// sooner at the potential cost of a slightly less accurate result. + fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal; + + /// The estimated exponential function, e<sup>x</sup> using the `tolerance` provided as a hint + /// as to when to stop calculating. A larger tolerance will cause the number to stop calculating + /// sooner at the potential cost of a slightly less accurate result. + /// Returns `None` on overflow. + fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal>; + + /// Raise self to the given integer exponent: x<sup>y</sup> + fn powi(&self, exp: i64) -> Decimal; + + /// Raise self to the given integer exponent x<sup>y</sup> returning `None` on overflow. + fn checked_powi(&self, exp: i64) -> Option<Decimal>; + + /// Raise self to the given unsigned integer exponent: x<sup>y</sup> + fn powu(&self, exp: u64) -> Decimal; + + /// Raise self to the given unsigned integer exponent x<sup>y</sup> returning `None` on overflow. + fn checked_powu(&self, exp: u64) -> Option<Decimal>; + + /// Raise self to the given floating point exponent: x<sup>y</sup> + fn powf(&self, exp: f64) -> Decimal; + + /// Raise self to the given floating point exponent x<sup>y</sup> returning `None` on overflow. + fn checked_powf(&self, exp: f64) -> Option<Decimal>; + + /// Raise self to the given Decimal exponent: x<sup>y</sup>. If `exp` is not whole then the approximation + /// e<sup>y*ln(x)</sup> is used. + fn powd(&self, exp: Decimal) -> Decimal; + + /// Raise self to the given Decimal exponent x<sup>y</sup> returning `None` on overflow. + /// If `exp` is not whole then the approximation e<sup>y*ln(x)</sup> is used. + fn checked_powd(&self, exp: Decimal) -> Option<Decimal>; + + /// The square root of a Decimal. Uses a standard Babylonian method. + fn sqrt(&self) -> Option<Decimal>; + + /// Calculates the natural logarithm for a Decimal calculated using Taylor's series. + fn ln(&self) -> Decimal; + + /// Calculates the checked natural logarithm for a Decimal calculated using Taylor's series. + /// Returns `None` for negative numbers or zero. + fn checked_ln(&self) -> Option<Decimal>; + + /// Calculates the base 10 logarithm of a specified Decimal number. + fn log10(&self) -> Decimal; + + /// Calculates the checked base 10 logarithm of a specified Decimal number. + /// Returns `None` for negative numbers or zero. + fn checked_log10(&self) -> Option<Decimal>; + + /// Abramowitz Approximation of Error Function from [wikipedia](https://en.wikipedia.org/wiki/Error_function#Numerical_approximations) + fn erf(&self) -> Decimal; + + /// The Cumulative distribution function for a Normal distribution + fn norm_cdf(&self) -> Decimal; + + /// The Probability density function for a Normal distribution. + fn norm_pdf(&self) -> Decimal; + + /// The Probability density function for a Normal distribution returning `None` on overflow. + fn checked_norm_pdf(&self) -> Option<Decimal>; + + /// Computes the sine of a number (in radians). + /// Panics upon overflow. + fn sin(&self) -> Decimal; + + /// Computes the checked sine of a number (in radians). + fn checked_sin(&self) -> Option<Decimal>; + + /// Computes the cosine of a number (in radians). + /// Panics upon overflow. + fn cos(&self) -> Decimal; + + /// Computes the checked cosine of a number (in radians). + fn checked_cos(&self) -> Option<Decimal>; + + /// Computes the tangent of a number (in radians). + /// Panics upon overflow or upon approaching a limit. + fn tan(&self) -> Decimal; + + /// Computes the checked tangent of a number (in radians). + /// Returns None on limit. + fn checked_tan(&self) -> Option<Decimal>; +} + +impl MathematicalOps for Decimal { + fn exp(&self) -> Decimal { + self.exp_with_tolerance(EXP_TOLERANCE) + } + + fn checked_exp(&self) -> Option<Decimal> { + self.checked_exp_with_tolerance(EXP_TOLERANCE) + } + + fn exp_with_tolerance(&self, tolerance: Decimal) -> Decimal { + match self.checked_exp_with_tolerance(tolerance) { + Some(d) => d, + None => { + if self.is_sign_negative() { + panic!("Exp underflowed") + } else { + panic!("Exp overflowed") + } + } + } + } + + fn checked_exp_with_tolerance(&self, tolerance: Decimal) -> Option<Decimal> { + if self.is_zero() { + return Some(Decimal::ONE); + } + if self.is_sign_negative() { + let mut flipped = *self; + flipped.set_sign_positive(true); + let exp = flipped.checked_exp_with_tolerance(tolerance)?; + return Decimal::ONE.checked_div(exp); + } + + let mut term = *self; + let mut result = self.checked_add(Decimal::ONE)?; + + for factorial in FACTORIAL.iter().skip(2) { + term = self.checked_mul(term)?; + let next = result + (term / factorial); + let diff = (next - result).abs(); + result = next; + if diff <= tolerance { + break; + } + } + + Some(result) + } + + fn powi(&self, exp: i64) -> Decimal { + match self.checked_powi(exp) { + Some(result) => result, + None => panic!("Pow overflowed"), + } + } + + fn checked_powi(&self, exp: i64) -> Option<Decimal> { + // For negative exponents we change x^-y into 1 / x^y. + // Otherwise, we calculate a standard unsigned exponent + if exp >= 0 { + return self.checked_powu(exp as u64); + } + + // Get the unsigned exponent + let exp = exp.unsigned_abs(); + let pow = match self.checked_powu(exp) { + Some(v) => v, + None => return None, + }; + Decimal::ONE.checked_div(pow) + } + + fn powu(&self, exp: u64) -> Decimal { + match self.checked_powu(exp) { + Some(result) => result, + None => panic!("Pow overflowed"), + } + } + + fn checked_powu(&self, exp: u64) -> Option<Decimal> { + match exp { + 0 => Some(Decimal::ONE), + 1 => Some(*self), + 2 => self.checked_mul(*self), + _ => { + // Get the squared value + let squared = match self.checked_mul(*self) { + Some(s) => s, + None => return None, + }; + // Square self once and make an infinite sized iterator of the square. + let iter = core::iter::repeat(squared); + + // We then take half of the exponent to create a finite iterator and then multiply those together. + let mut product = Decimal::ONE; + for x in iter.take((exp >> 1) as usize) { + match product.checked_mul(x) { + Some(r) => product = r, + None => return None, + }; + } + + // If the exponent is odd we still need to multiply once more + if exp & 0x1 > 0 { + match self.checked_mul(product) { + Some(p) => product = p, + None => return None, + } + } + product.normalize_assign(); + Some(product) + } + } + } + + fn powf(&self, exp: f64) -> Decimal { + match self.checked_powf(exp) { + Some(result) => result, + None => panic!("Pow overflowed"), + } + } + + fn checked_powf(&self, exp: f64) -> Option<Decimal> { + let exp = match Decimal::from_f64(exp) { + Some(f) => f, + None => return None, + }; + self.checked_powd(exp) + } + + fn powd(&self, exp: Decimal) -> Decimal { + match self.checked_powd(exp) { + Some(result) => result, + None => panic!("Pow overflowed"), + } + } + + fn checked_powd(&self, exp: Decimal) -> Option<Decimal> { + if exp.is_zero() { + return Some(Decimal::ONE); + } + if self.is_zero() { + return Some(Decimal::ZERO); + } + if self.is_one() { + return Some(Decimal::ONE); + } + if exp.is_one() { + return Some(*self); + } + + // If the scale is 0 then it's a trivial calculation + let exp = exp.normalize(); + if exp.scale() == 0 { + if exp.mid() != 0 || exp.hi() != 0 { + // Exponent way too big + return None; + } + + return if exp.is_sign_negative() { + self.checked_powi(-(exp.lo() as i64)) + } else { + self.checked_powu(exp.lo() as u64) + }; + } + + // We do some approximations since we've got a decimal exponent. + // For positive bases: a^b = exp(b*ln(a)) + let negative = self.is_sign_negative(); + let e = match self.abs().ln().checked_mul(exp) { + Some(e) => e, + None => return None, + }; + let mut result = e.checked_exp()?; + result.set_sign_negative(negative); + Some(result) + } + + fn sqrt(&self) -> Option<Decimal> { + if self.is_sign_negative() { + return None; + } + + if self.is_zero() { + return Some(Decimal::ZERO); + } + + // Start with an arbitrary number as the first guess + let mut result = self / Decimal::TWO; + // Too small to represent, so we start with self + // Future iterations could actually avoid using a decimal altogether and use a buffered + // vector, only combining back into a decimal on return + if result.is_zero() { + result = *self; + } + let mut last = result + Decimal::ONE; + + // Keep going while the difference is larger than the tolerance + let mut circuit_breaker = 0; + while last != result { + circuit_breaker += 1; + assert!(circuit_breaker < 1000, "geo mean circuit breaker"); + + last = result; + result = (result + self / result) / Decimal::TWO; + } + + Some(result) + } + + #[cfg(feature = "maths-nopanic")] + fn ln(&self) -> Decimal { + match self.checked_ln() { + Some(result) => result, + None => Decimal::ZERO, + } + } + + #[cfg(not(feature = "maths-nopanic"))] + fn ln(&self) -> Decimal { + match self.checked_ln() { + Some(result) => result, + None => { + if self.is_sign_negative() { + panic!("Unable to calculate ln for negative numbers") + } else if self.is_zero() { + panic!("Unable to calculate ln for zero") + } else { + panic!("Calculation of ln failed for unknown reasons") + } + } + } + } + + fn checked_ln(&self) -> Option<Decimal> { + if self.is_sign_negative() || self.is_zero() { + return None; + } + if self.is_one() { + return Some(Decimal::ZERO); + } + + // Approximate using Taylor Series + let mut x = *self; + let mut count = 0; + while x >= Decimal::ONE { + x *= Decimal::E_INVERSE; + count += 1; + } + while x <= Decimal::E_INVERSE { + x *= Decimal::E; + count -= 1; + } + x -= Decimal::ONE; + if x.is_zero() { + return Some(Decimal::new(count, 0)); + } + let mut result = Decimal::ZERO; + let mut iteration = 0; + let mut y = Decimal::ONE; + let mut last = Decimal::ONE; + while last != result && iteration < 100 { + iteration += 1; + last = result; + y *= -x; + result += y / Decimal::new(iteration, 0); + } + Some(Decimal::new(count, 0) - result) + } + + #[cfg(feature = "maths-nopanic")] + fn log10(&self) -> Decimal { + match self.checked_log10() { + Some(result) => result, + None => Decimal::ZERO, + } + } + + #[cfg(not(feature = "maths-nopanic"))] + fn log10(&self) -> Decimal { + match self.checked_log10() { + Some(result) => result, + None => { + if self.is_sign_negative() { + panic!("Unable to calculate log10 for negative numbers") + } else if self.is_zero() { + panic!("Unable to calculate log10 for zero") + } else { + panic!("Calculation of log10 failed for unknown reasons") + } + } + } + } + + fn checked_log10(&self) -> Option<Decimal> { + use crate::ops::array::{div_by_u32, is_all_zero}; + // Early exits + if self.is_sign_negative() || self.is_zero() { + return None; + } + if self.is_one() { + return Some(Decimal::ZERO); + } + + // This uses a very basic method for calculating log10. We know the following is true: + // log10(n) = ln(n) / ln(10) + // From this we can perform some small optimizations: + // 1. ln(10) is a constant + // 2. Multiplication is faster than division, so we can pre-calculate the constant 1/ln(10) + // This allows us to then simplify log10(n) to: + // log10(n) = C * ln(n) + + // Before doing all of this however, we see if there are simple calculations to be made. + let scale = self.scale(); + let mut working = self.mantissa_array3(); + + // Check for scales less than 1 as an early exit + if scale > 0 && working[2] == 0 && working[1] == 0 && working[0] == 1 { + return Some(Decimal::from_parts(scale, 0, 0, true, 0)); + } + + // Loop for detecting bordering base 10 values + let mut result = 0; + let mut base10 = true; + while !is_all_zero(&working) { + let remainder = div_by_u32(&mut working, 10u32); + if remainder != 0 { + base10 = false; + break; + } + result += 1; + if working[2] == 0 && working[1] == 0 && working[0] == 1 { + break; + } + } + if base10 { + return Some((result - scale as i32).into()); + } + + self.checked_ln().map(|result| LN10_INVERSE * result) + } + + fn erf(&self) -> Decimal { + if self.is_sign_positive() { + let one = &Decimal::ONE; + + let xa1 = self * Decimal::from_parts(705230784, 0, 0, false, 10); + let xa2 = self.powi(2) * Decimal::from_parts(422820123, 0, 0, false, 10); + let xa3 = self.powi(3) * Decimal::from_parts(92705272, 0, 0, false, 10); + let xa4 = self.powi(4) * Decimal::from_parts(1520143, 0, 0, false, 10); + let xa5 = self.powi(5) * Decimal::from_parts(2765672, 0, 0, false, 10); + let xa6 = self.powi(6) * Decimal::from_parts(430638, 0, 0, false, 10); + + let sum = one + xa1 + xa2 + xa3 + xa4 + xa5 + xa6; + one - (one / sum.powi(16)) + } else { + -self.abs().erf() + } + } + + fn norm_cdf(&self) -> Decimal { + (Decimal::ONE + (self / Decimal::from_parts(2318911239, 3292722, 0, false, 16)).erf()) / Decimal::TWO + } + + fn norm_pdf(&self) -> Decimal { + match self.checked_norm_pdf() { + Some(d) => d, + None => panic!("Norm Pdf overflowed"), + } + } + + fn checked_norm_pdf(&self) -> Option<Decimal> { + let sqrt2pi = Decimal::from_parts_raw(2133383024, 2079885984, 1358845910, 1835008); + let factor = -self.checked_powi(2)?; + let factor = factor.checked_div(Decimal::TWO)?; + factor.checked_exp()?.checked_div(sqrt2pi) + } + + fn sin(&self) -> Decimal { + match self.checked_sin() { + Some(x) => x, + None => panic!("Sin overflowed"), + } + } + + fn checked_sin(&self) -> Option<Decimal> { + if self.is_zero() { + return Some(Decimal::ZERO); + } + if self.is_sign_negative() { + // -Sin(-x) + return (-self).checked_sin().map(|x| -x); + } + if self >= &Decimal::TWO_PI { + // Reduce large numbers early - we can do this using rem to constrain to a range + let adjusted = self.checked_rem(Decimal::TWO_PI)?; + return adjusted.checked_sin(); + } + if self >= &Decimal::PI { + // -Sin(x-π) + return (self - Decimal::PI).checked_sin().map(|x| -x); + } + if self >= &Decimal::QUARTER_PI { + // Cos(π2-x) + return (Decimal::HALF_PI - self).checked_cos(); + } + + // Taylor series: + // ∑(n=0 to ∞) : ((−1)^n / (2n + 1)!) * x^(2n + 1) , x∈R + // First few expansions: + // x^1/1! - x^3/3! + x^5/5! - x^7/7! + x^9/9! + let mut result = Decimal::ZERO; + for n in 0..TRIG_SERIES_UPPER_BOUND { + let x = 2 * n + 1; + let element = self.checked_powi(x as i64)?.checked_div(FACTORIAL[x])?; + if n & 0x1 == 0 { + result += element; + } else { + result -= element; + } + } + Some(result) + } + + fn cos(&self) -> Decimal { + match self.checked_cos() { + Some(x) => x, + None => panic!("Cos overflowed"), + } + } + + fn checked_cos(&self) -> Option<Decimal> { + if self.is_zero() { + return Some(Decimal::ONE); + } + if self.is_sign_negative() { + // Cos(-x) + return (-self).checked_cos(); + } + if self >= &Decimal::TWO_PI { + // Reduce large numbers early - we can do this using rem to constrain to a range + let adjusted = self.checked_rem(Decimal::TWO_PI)?; + return adjusted.checked_cos(); + } + if self >= &Decimal::PI { + // -Cos(x-π) + return (self - Decimal::PI).checked_cos().map(|x| -x); + } + if self >= &Decimal::QUARTER_PI { + // Sin(π2-x) + return (Decimal::HALF_PI - self).checked_sin(); + } + + // Taylor series: + // ∑(n=0 to ∞) : ((−1)^n / (2n)!) * x^(2n) , x∈R + // First few expansions: + // x^0/0! - x^2/2! + x^4/4! - x^6/6! + x^8/8! + let mut result = Decimal::ZERO; + for n in 0..TRIG_SERIES_UPPER_BOUND { + let x = 2 * n; + let element = self.checked_powi(x as i64)?.checked_div(FACTORIAL[x])?; + if n & 0x1 == 0 { + result += element; + } else { + result -= element; + } + } + Some(result) + } + + fn tan(&self) -> Decimal { + match self.checked_tan() { + Some(x) => x, + None => panic!("Tan overflowed"), + } + } + + fn checked_tan(&self) -> Option<Decimal> { + if self.is_zero() { + return Some(Decimal::ZERO); + } + if self.is_sign_negative() { + // -Tan(-x) + return (-self).checked_tan().map(|x| -x); + } + if self >= &Decimal::TWO_PI { + // Reduce large numbers early - we can do this using rem to constrain to a range + let adjusted = self.checked_rem(Decimal::TWO_PI)?; + return adjusted.checked_tan(); + } + // Reduce to 0 <= x <= PI + if self >= &Decimal::PI { + // Tan(x-π) + return (self - Decimal::PI).checked_tan(); + } + // Reduce to 0 <= x <= PI/2 + if self > &Decimal::HALF_PI { + // We can use the symmetrical function inside the first quadrant + // e.g. tan(x) = -tan((PI/2 - x) + PI/2) + return ((Decimal::HALF_PI - self) + Decimal::HALF_PI).checked_tan().map(|x| -x); + } + + // It has now been reduced to 0 <= x <= PI/2. If it is >= PI/4 we can make it even smaller + // by calculating tan(PI/2 - x) and taking the reciprocal + if self > &Decimal::QUARTER_PI { + return match (Decimal::HALF_PI - self).checked_tan() { + Some(x) => Decimal::ONE.checked_div(x), + None => None, + }; + } + + // Due the way that tan(x) sharply tends towards infinity, we try to optimize + // the resulting accuracy by using Trigonometric identity when > PI/8. We do this by + // replacing the angle with one that is half as big. + if self > &EIGHTH_PI { + // Work out tan(x/2) + let tan_half = (self / Decimal::TWO).checked_tan()?; + // Work out the dividend i.e. 2tan(x/2) + let dividend = Decimal::TWO.checked_mul(tan_half)?; + + // Work out the divisor i.e. 1 - tan^2(x/2) + let squared = tan_half.checked_mul(tan_half)?; + let divisor = Decimal::ONE - squared; + // Treat this as infinity + if divisor.is_zero() { + return None; + } + return dividend.checked_div(divisor); + } + + // Do a polynomial approximation based upon the Maclaurin series. + // This can be simplified to something like: + // + // ∑(n=1,3,5,7,9)(f(n)(0)/n!)x^n + // + // First few expansions (which we leverage): + // (f'(0)/1!)x^1 + (f'''(0)/3!)x^3 + (f'''''(0)/5!)x^5 + (f'''''''/7!)x^7 + // + // x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 + (1382/155925)x^11 + // + // (Generated by https://www.wolframalpha.com/widgets/view.jsp?id=fe1ad8d4f5dbb3cb866d0c89beb527a6) + // The more terms, the better the accuracy. This generates accuracy within approx 10^-8 for angles + // less than PI/8. + const SERIES: [(Decimal, u64); 6] = [ + // 1 / 3 + (Decimal::from_parts_raw(89478485, 347537611, 180700362, 1835008), 3), + // 2 / 15 + (Decimal::from_parts_raw(894784853, 3574988881, 72280144, 1835008), 5), + // 17 / 315 + (Decimal::from_parts_raw(905437054, 3907911371, 2925624, 1769472), 7), + // 62 / 2835 + (Decimal::from_parts_raw(3191872741, 2108928381, 11855473, 1835008), 9), + // 1382 / 155925 + (Decimal::from_parts_raw(3482645539, 2612995122, 4804769, 1835008), 11), + // 21844 / 6081075 + (Decimal::from_parts_raw(4189029078, 2192791200, 1947296, 1835008), 13), + ]; + let mut result = *self; + for (fraction, pow) in SERIES { + result += fraction * self.powu(pow); + } + Some(result) + } +} + +impl Pow<Decimal> for Decimal { + type Output = Decimal; + + fn pow(self, rhs: Decimal) -> Self::Output { + MathematicalOps::powd(&self, rhs) + } +} + +impl Pow<u64> for Decimal { + type Output = Decimal; + + fn pow(self, rhs: u64) -> Self::Output { + MathematicalOps::powu(&self, rhs) + } +} + +impl Pow<i64> for Decimal { + type Output = Decimal; + + fn pow(self, rhs: i64) -> Self::Output { + MathematicalOps::powi(&self, rhs) + } +} + +impl Pow<f64> for Decimal { + type Output = Decimal; + + fn pow(self, rhs: f64) -> Self::Output { + MathematicalOps::powf(&self, rhs) + } +} + +#[cfg(test)] +mod test { + use super::*; + + #[cfg(not(feature = "std"))] + use alloc::string::ToString; + + #[test] + fn test_factorials() { + assert_eq!("1", FACTORIAL[0].to_string(), "0!"); + assert_eq!("1", FACTORIAL[1].to_string(), "1!"); + assert_eq!("2", FACTORIAL[2].to_string(), "2!"); + assert_eq!("6", FACTORIAL[3].to_string(), "3!"); + assert_eq!("24", FACTORIAL[4].to_string(), "4!"); + assert_eq!("120", FACTORIAL[5].to_string(), "5!"); + assert_eq!("720", FACTORIAL[6].to_string(), "6!"); + assert_eq!("5040", FACTORIAL[7].to_string(), "7!"); + assert_eq!("40320", FACTORIAL[8].to_string(), "8!"); + assert_eq!("362880", FACTORIAL[9].to_string(), "9!"); + assert_eq!("3628800", FACTORIAL[10].to_string(), "10!"); + assert_eq!("39916800", FACTORIAL[11].to_string(), "11!"); + assert_eq!("479001600", FACTORIAL[12].to_string(), "12!"); + assert_eq!("6227020800", FACTORIAL[13].to_string(), "13!"); + assert_eq!("87178291200", FACTORIAL[14].to_string(), "14!"); + assert_eq!("1307674368000", FACTORIAL[15].to_string(), "15!"); + assert_eq!("20922789888000", FACTORIAL[16].to_string(), "16!"); + assert_eq!("355687428096000", FACTORIAL[17].to_string(), "17!"); + assert_eq!("6402373705728000", FACTORIAL[18].to_string(), "18!"); + assert_eq!("121645100408832000", FACTORIAL[19].to_string(), "19!"); + assert_eq!("2432902008176640000", FACTORIAL[20].to_string(), "20!"); + assert_eq!("51090942171709440000", FACTORIAL[21].to_string(), "21!"); + assert_eq!("1124000727777607680000", FACTORIAL[22].to_string(), "22!"); + assert_eq!("25852016738884976640000", FACTORIAL[23].to_string(), "23!"); + assert_eq!("620448401733239439360000", FACTORIAL[24].to_string(), "24!"); + assert_eq!("15511210043330985984000000", FACTORIAL[25].to_string(), "25!"); + assert_eq!("403291461126605635584000000", FACTORIAL[26].to_string(), "26!"); + assert_eq!("10888869450418352160768000000", FACTORIAL[27].to_string(), "27!"); + } +} |