summaryrefslogtreecommitdiffstats
path: root/comm/mailnews/extensions/fts3/fts3_porter.c
blob: e0e5d5ddaf159feb794514a3aa68e0f0e3fb63d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
/*
** 2006 September 30
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Implementation of the full-text-search tokenizer that implements
** a Porter stemmer.
**
*/

/*
 * This file is based on the SQLite FTS3 Porter Stemmer implementation.
 *
 * This is an attempt to provide some level of full-text search to users of
 *  Thunderbird who use languages that are not space/punctuation delimited.
 *  This is accomplished by performing bi-gram indexing of characters fall
 *  into the unicode space occupied by character sets used in such languages.
 *
 * Bi-gram indexing means that given the string "12345" we would index the
 *  pairs "12", "23", "34", and "45" (with position information).  We do this
 *  because we are not sure where the word/semantic boundaries are in that
 *  string.  Then, when a user searches for "234" the FTS3 engine tokenizes the
 *  search query into "23" and "34".  Using special phrase-logic FTS3 requires
 *  the matches to have the tokens "23" and "34" adjacent to each other and in
 *  that order.  In theory if the user searched for "2345" we we could just
 *  search for "23 NEAR/2 34".  Unfortunately, NEAR does not imply ordering,
 *  so even though that would be more efficient, we would lose correctness
 *  and cannot do it.
 *
 * The efficiency and usability of bi-gram search assumes that the character
 *  space is large enough and actually observed bi-grams sufficiently
 *  distributed throughout the potential space so that the search bi-grams
 *  generated when the user issues a query find a 'reasonable' number of
 *  documents for each bi-gram match.
 *
 * Mozilla contributors:
 *   Makoto Kato <m_kato@ga2.so-net.ne.jp>
 *   Andrew Sutherland <asutherland@asutherland.org>
 */

/*
** The code in this file is only compiled if:
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#  include <assert.h>
#  include <stdlib.h>
#  include <stdio.h>
#  include <string.h>
#  include <ctype.h>

#  include "fts3_tokenizer.h"

/* need some defined to compile without sqlite3 code */

#  define sqlite3_malloc malloc
#  define sqlite3_free free
#  define sqlite3_realloc realloc

static const unsigned char sqlite3Utf8Trans1[] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
    0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
    0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00,
    0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
    0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
    0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
};

typedef unsigned char u8;

/**
 * SQLite helper macro from sqlite3.c (really utf.c) to encode a unicode
 * character into utf8.
 *
 * @param zOut A pointer to the current write position that is updated by
 *     the routine.  At entry it should point to one-past the last valid
 *     encoded byte.  The same holds true at exit.
 * @param c The character to encode; this should be an unsigned int.
 */
#  define WRITE_UTF8(zOut, c)                    \
    {                                            \
      if (c < 0x0080) {                          \
        *zOut++ = (u8)(c & 0xff);                \
      } else if (c < 0x0800) {                   \
        *zOut++ = 0xC0 + (u8)((c >> 6) & 0x1F);  \
        *zOut++ = 0x80 + (u8)(c & 0x3F);         \
      } else if (c < 0x10000) {                  \
        *zOut++ = 0xE0 + (u8)((c >> 12) & 0x0F); \
        *zOut++ = 0x80 + (u8)((c >> 6) & 0x3F);  \
        *zOut++ = 0x80 + (u8)(c & 0x3F);         \
      } else {                                   \
        *zOut++ = 0xf0 + (u8)((c >> 18) & 0x07); \
        *zOut++ = 0x80 + (u8)((c >> 12) & 0x3F); \
        *zOut++ = 0x80 + (u8)((c >> 6) & 0x3F);  \
        *zOut++ = 0x80 + (u8)(c & 0x3F);         \
      }                                          \
    }

/**
 * Fudge factor to avoid buffer overwrites when WRITE_UTF8 is involved.
 *
 * Our normalization table includes entries that may result in a larger
 *  utf-8 encoding.  Namely, 023a maps to 2c65.  This is a growth from 2 bytes
 *  as utf-8 encoded to 3 bytes.  This is currently the only transition possible
 *  because 1-byte encodings are known to stay 1-byte and our normalization
 *  table is 16-bit and so can't generate a 4-byte encoded output.
 *
 * For simplicity, we just multiple by 2 which covers the current case and
 *  potential growth for 2-byte to 4-byte growth.  We can afford to do this
 *  because we're not talking about a lot of memory here as a rule.
 */
#  define MAX_UTF8_GROWTH_FACTOR 2

/**
 * Helper from sqlite3.c to read a single UTF8 character.
 *
 * The clever bit with multi-byte reading is that you keep going until you find
 *  a byte whose top bits are not '10'.  A single-byte UTF8 character will have
 *  '00' or '01', and a multi-byte UTF8 character must start with '11'.
 *
 * In the event of illegal UTF-8 this macro may read an arbitrary number of
 *  characters but will never read past zTerm.  The resulting character value
 *  of illegal UTF-8 can be anything, although efforts are made to return the
 *  illegal character (0xfffd) for UTF-16 surrogates.
 *
 * @param zIn A pointer to the current position that is updated by the routine,
 *     pointing at the start of the next character when the routine returns.
 * @param zTerm A pointer one past the end of the buffer.
 * @param c The 'unsigned int' to hold the resulting character value.  Do not
 *      use a short or a char.
 */
#  define READ_UTF8(zIn, zTerm, c)                      \
    {                                                   \
      c = *(zIn++);                                     \
      if (c >= 0xc0) {                                  \
        c = sqlite3Utf8Trans1[c - 0xc0];                \
        while (zIn != zTerm && (*zIn & 0xc0) == 0x80) { \
          c = (c << 6) + (0x3f & *(zIn++));             \
        }                                               \
        if (c < 0x80 || (c & 0xFFFFF800) == 0xD800 ||   \
            (c & 0xFFFFFFFE) == 0xFFFE) {               \
          c = 0xFFFD;                                   \
        }                                               \
      }                                                 \
    }

/* end of compatible block to complie codes */

/*
** Class derived from sqlite3_tokenizer
*/
typedef struct porter_tokenizer {
  sqlite3_tokenizer base; /* Base class */
} porter_tokenizer;

/*
** Class derived from sqlit3_tokenizer_cursor
*/
typedef struct porter_tokenizer_cursor {
  sqlite3_tokenizer_cursor base;
  const char* zInput;    /* input we are tokenizing */
  int nInput;            /* size of the input */
  int iOffset;           /* current position in zInput */
  int iToken;            /* index of next token to be returned */
  unsigned char* zToken; /* storage for current token */
  int nAllocated;        /* space allocated to zToken buffer */
  /**
   * Store the offset of the second character in the bi-gram pair that we just
   *  emitted so that we can consider it being the first character in a bi-gram
   *  pair.
   * The value 0 indicates that there is no previous such character.  This is
   *  an acceptable sentinel value because the 0th offset can never be the
   *  offset of the second in a bi-gram pair.
   *
   * For example, let us say we are tokenizing a string of 4 CJK characters
   *  represented by the byte-string "11223344" where each repeated digit
   *  indicates 2-bytes of storage used to encode the character in UTF-8.
   *  (It actually takes 3, btw.)  Then on the passes to emit each token,
   *  the iOffset and iPrevGigramOffset values at entry will be:
   *
   * 1122: iOffset = 0, iPrevBigramOffset = 0
   * 2233: iOffset = 4, iPrevBigramOffset = 2
   * 3344: iOffset = 6, iPrevBigramOffset = 4
   * (nothing will be emitted): iOffset = 8, iPrevBigramOffset = 6
   */
  int iPrevBigramOffset; /* previous result was bi-gram */
} porter_tokenizer_cursor;

/* Forward declaration */
static const sqlite3_tokenizer_module porterTokenizerModule;

/* from normalize.c */
extern unsigned int normalize_character(const unsigned int c);

/*
** Create a new tokenizer instance.
*/
static int porterCreate(int argc, const char* const* argv,
                        sqlite3_tokenizer** ppTokenizer) {
  porter_tokenizer* t;
  t = (porter_tokenizer*)sqlite3_malloc(sizeof(*t));
  if (t == NULL) return SQLITE_NOMEM;
  memset(t, 0, sizeof(*t));
  *ppTokenizer = &t->base;
  return SQLITE_OK;
}

/*
** Destroy a tokenizer
*/
static int porterDestroy(sqlite3_tokenizer* pTokenizer) {
  sqlite3_free(pTokenizer);
  return SQLITE_OK;
}

/*
** Prepare to begin tokenizing a particular string.  The input
** string to be tokenized is zInput[0..nInput-1].  A cursor
** used to incrementally tokenize this string is returned in
** *ppCursor.
*/
static int porterOpen(
    sqlite3_tokenizer* pTokenizer,      /* The tokenizer */
    const char* zInput, int nInput,     /* String to be tokenized */
    sqlite3_tokenizer_cursor** ppCursor /* OUT: Tokenization cursor */
) {
  porter_tokenizer_cursor* c;

  c = (porter_tokenizer_cursor*)sqlite3_malloc(sizeof(*c));
  if (c == NULL) return SQLITE_NOMEM;

  c->zInput = zInput;
  if (zInput == 0) {
    c->nInput = 0;
  } else if (nInput < 0) {
    c->nInput = (int)strlen(zInput);
  } else {
    c->nInput = nInput;
  }
  c->iOffset = 0; /* start tokenizing at the beginning */
  c->iToken = 0;
  c->zToken = NULL; /* no space allocated, yet. */
  c->nAllocated = 0;
  c->iPrevBigramOffset = 0;

  *ppCursor = &c->base;
  return SQLITE_OK;
}

/*
** Close a tokenization cursor previously opened by a call to
** porterOpen() above.
*/
static int porterClose(sqlite3_tokenizer_cursor* pCursor) {
  porter_tokenizer_cursor* c = (porter_tokenizer_cursor*)pCursor;
  sqlite3_free(c->zToken);
  sqlite3_free(c);
  return SQLITE_OK;
}
/*
** Vowel or consonant
*/
static const char cType[] = {0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
                             1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1};

/*
** isConsonant() and isVowel() determine if their first character in
** the string they point to is a consonant or a vowel, according
** to Porter ruls.
**
** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
** 'Y' is a consonant unless it follows another consonant,
** in which case it is a vowel.
**
** In these routine, the letters are in reverse order.  So the 'y' rule
** is that 'y' is a consonant unless it is followed by another
** consonant.
*/
static int isVowel(const char*);
static int isConsonant(const char* z) {
  int j;
  char x = *z;
  if (x == 0) return 0;
  assert(x >= 'a' && x <= 'z');
  j = cType[x - 'a'];
  if (j < 2) return j;
  return z[1] == 0 || isVowel(z + 1);
}
static int isVowel(const char* z) {
  int j;
  char x = *z;
  if (x == 0) return 0;
  assert(x >= 'a' && x <= 'z');
  j = cType[x - 'a'];
  if (j < 2) return 1 - j;
  return isConsonant(z + 1);
}

/*
** Let any sequence of one or more vowels be represented by V and let
** C be sequence of one or more consonants.  Then every word can be
** represented as:
**
**           [C] (VC){m} [V]
**
** In prose:  A word is an optional consonant followed by zero or
** vowel-consonant pairs followed by an optional vowel.  "m" is the
** number of vowel consonant pairs.  This routine computes the value
** of m for the first i bytes of a word.
**
** Return true if the m-value for z is 1 or more.  In other words,
** return true if z contains at least one vowel that is followed
** by a consonant.
**
** In this routine z[] is in reverse order.  So we are really looking
** for an instance of of a consonant followed by a vowel.
*/
static int m_gt_0(const char* z) {
  while (isVowel(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isConsonant(z)) {
    z++;
  }
  return *z != 0;
}

/* Like mgt0 above except we are looking for a value of m which is
** exactly 1
*/
static int m_eq_1(const char* z) {
  while (isVowel(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isConsonant(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isVowel(z)) {
    z++;
  }
  if (*z == 0) return 1;
  while (isConsonant(z)) {
    z++;
  }
  return *z == 0;
}

/* Like mgt0 above except we are looking for a value of m>1 instead
** or m>0
*/
static int m_gt_1(const char* z) {
  while (isVowel(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isConsonant(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isVowel(z)) {
    z++;
  }
  if (*z == 0) return 0;
  while (isConsonant(z)) {
    z++;
  }
  return *z != 0;
}

/*
** Return TRUE if there is a vowel anywhere within z[0..n-1]
*/
static int hasVowel(const char* z) {
  while (isConsonant(z)) {
    z++;
  }
  return *z != 0;
}

/*
** Return TRUE if the word ends in a double consonant.
**
** The text is reversed here. So we are really looking at
** the first two characters of z[].
*/
static int doubleConsonant(const char* z) {
  return isConsonant(z) && z[0] == z[1] && isConsonant(z + 1);
}

/*
** Return TRUE if the word ends with three letters which
** are consonant-vowel-consonent and where the final consonant
** is not 'w', 'x', or 'y'.
**
** The word is reversed here.  So we are really checking the
** first three letters and the first one cannot be in [wxy].
*/
static int star_oh(const char* z) {
  return z[0] != 0 && isConsonant(z) && z[0] != 'w' && z[0] != 'x' &&
         z[0] != 'y' && z[1] != 0 && isVowel(z + 1) && z[2] != 0 &&
         isConsonant(z + 2);
}

/*
** If the word ends with zFrom and xCond() is true for the stem
** of the word that precedes the zFrom ending, then change the
** ending to zTo.
**
** The input word *pz and zFrom are both in reverse order.  zTo
** is in normal order.
**
** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
** match.  Not that TRUE is returned even if xCond() fails and
** no substitution occurs.
*/
static int stem(
    char** pz,                /* The word being stemmed (Reversed) */
    const char* zFrom,        /* If the ending matches this... (Reversed) */
    const char* zTo,          /* ... change the ending to this (not reversed) */
    int (*xCond)(const char*) /* Condition that must be true */
) {
  char* z = *pz;
  while (*zFrom && *zFrom == *z) {
    z++;
    zFrom++;
  }
  if (*zFrom != 0) return 0;
  if (xCond && !xCond(z)) return 1;
  while (*zTo) {
    *(--z) = *(zTo++);
  }
  *pz = z;
  return 1;
}

/**
 * Voiced sound mark is only on Japanese.  It is like accent.  It combines with
 * previous character.  Example, "サ" (Katakana) with "゛" (voiced sound mark)
 * is "ザ".  Although full-width character mapping has combined character like
 * "ザ", there is no combined character on half-width Katanaka character
 * mapping.
 */
static int isVoicedSoundMark(const unsigned int c) {
  if (c == 0xff9e || c == 0xff9f || c == 0x3099 || c == 0x309a) return 1;
  return 0;
}

/**
 * How many unicode characters to take from the front and back of a term in
 * |copy_stemmer|.
 */
#  define COPY_STEMMER_COPY_HALF_LEN 10

/**
 * Normalizing but non-stemming term copying.
 *
 * The original function would take 10 bytes from the front and 10 bytes from
 * the back if there were no digits in the string and it was more than 20
 * bytes long.  If there were digits involved that would decrease to 3 bytes
 * from the front and 3 from the back.  This would potentially corrupt utf-8
 * encoded characters, which is fine from the perspective of the FTS3 logic.
 *
 * In our revised form we now operate on a unicode character basis rather than
 * a byte basis.  Additionally we use the same length limit even if there are
 * digits involved because it's not clear digit token-space reduction is saving
 * us from anything and could be hurting.  Specifically, if no one is ever
 * going to search on things with digits, then we should just remove them.
 * Right now, the space reduction is going to increase false positives when
 * people do search on them and increase the number of collisions sufficiently
 * to make it really expensive.  The caveat is there will be some increase in
 * index size which could be meaningful if people are receiving lots of emails
 * full of distinct numbers.
 *
 * In order to do the copy-from-the-front and copy-from-the-back trick, once
 * we reach N characters in, we set zFrontEnd to the current value of zOut
 * (which represents the termination of the first part of the result string)
 * and set zBackStart to the value of zOutStart.  We then advanced zBackStart
 * along a character at a time as we write more characters.  Once we have
 * traversed the entire string, if zBackStart > zFrontEnd, then we know
 * the string should be shrunk using the characters in the two ranges.
 *
 * (It would be faster to scan from the back with specialized logic but that
 * particular logic seems easy to screw up and we don't have unit tests in here
 * to the extent required.)
 *
 * @param zIn Input string to normalize and potentially shrink.
 * @param nBytesIn The number of bytes in zIn, distinct from the number of
 *     unicode characters encoded in zIn.
 * @param zOut The string to write our output into.  This must have at least
 *     nBytesIn * MAX_UTF8_GROWTH_FACTOR in order to compensate for
 *     normalization that results in a larger utf-8 encoding.
 * @param pnBytesOut Integer to write the number of bytes in zOut into.
 */
static void copy_stemmer(const unsigned char* zIn, const int nBytesIn,
                         unsigned char* zOut, int* pnBytesOut) {
  const unsigned char* zInTerm = zIn + nBytesIn;
  unsigned char* zOutStart = zOut;
  unsigned int c;
  unsigned int charCount = 0;
  unsigned char *zFrontEnd = NULL, *zBackStart = NULL;
  unsigned int trashC;

  /* copy normalized character */
  while (zIn < zInTerm) {
    READ_UTF8(zIn, zInTerm, c);
    c = normalize_character(c);

    /* ignore voiced/semi-voiced sound mark */
    if (!isVoicedSoundMark(c)) {
      /* advance one non-voiced sound mark character. */
      if (zBackStart) READ_UTF8(zBackStart, zOut, trashC);

      WRITE_UTF8(zOut, c);
      charCount++;
      if (charCount == COPY_STEMMER_COPY_HALF_LEN) {
        zFrontEnd = zOut;
        zBackStart = zOutStart;
      }
    }
  }

  /* if we need to shrink the string, transplant the back bytes */
  if (zBackStart > zFrontEnd) { /* this handles when both are null too */
    size_t backBytes = zOut - zBackStart;
    memmove(zFrontEnd, zBackStart, backBytes);
    zOut = zFrontEnd + backBytes;
  }
  *zOut = 0;
  *pnBytesOut = zOut - zOutStart;
}

/*
** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
** zOut is at least big enough to hold nIn bytes.  Write the actual
** size of the output word (exclusive of the '\0' terminator) into *pnOut.
**
** Any upper-case characters in the US-ASCII character set ([A-Z])
** are converted to lower case.  Upper-case UTF characters are
** unchanged.
**
** Words that are longer than about 20 bytes are stemmed by retaining
** a few bytes from the beginning and the end of the word.  If the
** word contains digits, 3 bytes are taken from the beginning and
** 3 bytes from the end.  For long words without digits, 10 bytes
** are taken from each end.  US-ASCII case folding still applies.
**
** If the input word contains not digits but does characters not
** in [a-zA-Z] then no stemming is attempted and this routine just
** copies the input into the input into the output with US-ASCII
** case folding.
**
** Stemming never increases the length of the word.  So there is
** no chance of overflowing the zOut buffer.
*/
static void porter_stemmer(const unsigned char* zIn, unsigned int nIn,
                           unsigned char* zOut, int* pnOut) {
  unsigned int i, j, c;
  char zReverse[28];
  char *z, *z2;
  const unsigned char* zTerm = zIn + nIn;
  const unsigned char* zTmp = zIn;

  if (nIn < 3 || nIn >= sizeof(zReverse) - 7) {
    /* The word is too big or too small for the porter stemmer.
    ** Fallback to the copy stemmer */
    copy_stemmer(zIn, nIn, zOut, pnOut);
    return;
  }
  for (j = sizeof(zReverse) - 6; zTmp < zTerm; j--) {
    READ_UTF8(zTmp, zTerm, c);
    c = normalize_character(c);
    if (c >= 'a' && c <= 'z') {
      zReverse[j] = c;
    } else {
      /* The use of a character not in [a-zA-Z] means that we fallback
      ** to the copy stemmer */
      copy_stemmer(zIn, nIn, zOut, pnOut);
      return;
    }
  }
  memset(&zReverse[sizeof(zReverse) - 5], 0, 5);
  z = &zReverse[j + 1];

  /* Step 1a */
  if (z[0] == 's') {
    if (!stem(&z, "sess", "ss", 0) && !stem(&z, "sei", "i", 0) &&
        !stem(&z, "ss", "ss", 0)) {
      z++;
    }
  }

  /* Step 1b */
  z2 = z;
  if (stem(&z, "dee", "ee", m_gt_0)) {
    /* Do nothing.  The work was all in the test */
  } else if ((stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) &&
             z != z2) {
    if (stem(&z, "ta", "ate", 0) || stem(&z, "lb", "ble", 0) ||
        stem(&z, "zi", "ize", 0)) {
      /* Do nothing.  The work was all in the test */
    } else if (doubleConsonant(z) && (*z != 'l' && *z != 's' && *z != 'z')) {
      z++;
    } else if (m_eq_1(z) && star_oh(z)) {
      *(--z) = 'e';
    }
  }

  /* Step 1c */
  if (z[0] == 'y' && hasVowel(z + 1)) {
    z[0] = 'i';
  }

  /* Step 2 */
  switch (z[1]) {
    case 'a':
      (void)(stem(&z, "lanoita", "ate", m_gt_0) ||
             stem(&z, "lanoit", "tion", m_gt_0));
      break;
    case 'c':
      (void)(stem(&z, "icne", "ence", m_gt_0) ||
             stem(&z, "icna", "ance", m_gt_0));
      break;
    case 'e':
      (void)(stem(&z, "rezi", "ize", m_gt_0));
      break;
    case 'g':
      (void)(stem(&z, "igol", "log", m_gt_0));
      break;
    case 'l':
      (void)(stem(&z, "ilb", "ble", m_gt_0) || stem(&z, "illa", "al", m_gt_0) ||
             stem(&z, "iltne", "ent", m_gt_0) || stem(&z, "ile", "e", m_gt_0) ||
             stem(&z, "ilsuo", "ous", m_gt_0));
      break;
    case 'o':
      (void)(stem(&z, "noitazi", "ize", m_gt_0) ||
             stem(&z, "noita", "ate", m_gt_0) ||
             stem(&z, "rota", "ate", m_gt_0));
      break;
    case 's':
      (void)(stem(&z, "msila", "al", m_gt_0) ||
             stem(&z, "ssenevi", "ive", m_gt_0) ||
             stem(&z, "ssenluf", "ful", m_gt_0) ||
             stem(&z, "ssensuo", "ous", m_gt_0));
      break;
    case 't':
      (void)(stem(&z, "itila", "al", m_gt_0) ||
             stem(&z, "itivi", "ive", m_gt_0) ||
             stem(&z, "itilib", "ble", m_gt_0));
      break;
  }

  /* Step 3 */
  switch (z[0]) {
    case 'e':
      (void)(stem(&z, "etaci", "ic", m_gt_0) || stem(&z, "evita", "", m_gt_0) ||
             stem(&z, "ezila", "al", m_gt_0));
      break;
    case 'i':
      (void)(stem(&z, "itici", "ic", m_gt_0));
      break;
    case 'l':
      (void)(stem(&z, "laci", "ic", m_gt_0) || stem(&z, "luf", "", m_gt_0));
      break;
    case 's':
      (void)(stem(&z, "ssen", "", m_gt_0));
      break;
  }

  /* Step 4 */
  switch (z[1]) {
    case 'a':
      if (z[0] == 'l' && m_gt_1(z + 2)) {
        z += 2;
      }
      break;
    case 'c':
      if (z[0] == 'e' && z[2] == 'n' && (z[3] == 'a' || z[3] == 'e') &&
          m_gt_1(z + 4)) {
        z += 4;
      }
      break;
    case 'e':
      if (z[0] == 'r' && m_gt_1(z + 2)) {
        z += 2;
      }
      break;
    case 'i':
      if (z[0] == 'c' && m_gt_1(z + 2)) {
        z += 2;
      }
      break;
    case 'l':
      if (z[0] == 'e' && z[2] == 'b' && (z[3] == 'a' || z[3] == 'i') &&
          m_gt_1(z + 4)) {
        z += 4;
      }
      break;
    case 'n':
      if (z[0] == 't') {
        if (z[2] == 'a') {
          if (m_gt_1(z + 3)) {
            z += 3;
          }
        } else if (z[2] == 'e') {
          (void)(stem(&z, "tneme", "", m_gt_1) ||
                 stem(&z, "tnem", "", m_gt_1) || stem(&z, "tne", "", m_gt_1));
        }
      }
      break;
    case 'o':
      if (z[0] == 'u') {
        if (m_gt_1(z + 2)) {
          z += 2;
        }
      } else if (z[3] == 's' || z[3] == 't') {
        (void)(stem(&z, "noi", "", m_gt_1));
      }
      break;
    case 's':
      if (z[0] == 'm' && z[2] == 'i' && m_gt_1(z + 3)) {
        z += 3;
      }
      break;
    case 't':
      (void)(stem(&z, "eta", "", m_gt_1) || stem(&z, "iti", "", m_gt_1));
      break;
    case 'u':
      if (z[0] == 's' && z[2] == 'o' && m_gt_1(z + 3)) {
        z += 3;
      }
      break;
    case 'v':
    case 'z':
      if (z[0] == 'e' && z[2] == 'i' && m_gt_1(z + 3)) {
        z += 3;
      }
      break;
  }

  /* Step 5a */
  if (z[0] == 'e') {
    if (m_gt_1(z + 1)) {
      z++;
    } else if (m_eq_1(z + 1) && !star_oh(z + 1)) {
      z++;
    }
  }

  /* Step 5b */
  if (m_gt_1(z) && z[0] == 'l' && z[1] == 'l') {
    z++;
  }

  /* z[] is now the stemmed word in reverse order.  Flip it back
  ** around into forward order and return.
  */
  *pnOut = i = strlen(z);
  zOut[i] = 0;
  while (*z) {
    zOut[--i] = *(z++);
  }
}

/**
 * Indicate whether characters in the 0x30 - 0x7f region can be part of a token.
 * Letters and numbers can; punctuation (and 'del') can't.
 */
static const char porterIdChar[] = {
    /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
};

/**
 * Test whether a character is a (non-ascii) space character or not.  isDelim
 *  uses the existing porter stemmer logic for anything in the ASCII (< 0x80)
 *  space which covers 0x20.
 *
 * 0x2000-0x206F is the general punctuation table.  0x2000 - 0x200b are spaces.
 *  The spaces 0x2000 - 0x200a are all defined as roughly equivalent to a
 *  standard 0x20 space.  0x200b is a "zero width space" (ZWSP) and not like an
 *  0x20 space.  0x202f is a narrow no-break space and roughly equivalent to an
 *  0x20 space.  0x205f is a "medium mathematical space" and defined as roughly
 *  equivalent to an 0x20 space.
 */
#  define IS_UNI_SPACE(x) \
    (((x) >= 0x2000 && (x) <= 0x200a) || (x) == 0x202f || (x) == 0x205f)
/**
 * What we are checking for:
 * - 0x3001: Ideographic comma (-> 0x2c ',')
 * - 0x3002: Ideographic full stop (-> 0x2e '.')
 * - 0xff0c: fullwidth comma (~ wide 0x2c ',')
 * - 0xff0e: fullwidth full stop (~ wide 0x2e '.')
 * - 0xff61: halfwidth ideographic full stop (~ narrow 0x3002)
 * - 0xff64: halfwidth ideographic comma (~ narrow 0x3001)
 *
 * It is possible we should be treating other things as delimiters!
 */
#  define IS_JA_DELIM(x)                                      \
    (((x) == 0x3001) || ((x) == 0xFF64) || ((x) == 0xFF0E) || \
     ((x) == 0x3002) || ((x) == 0xFF61) || ((x) == 0xFF0C))

/**
 * The previous character was a delimiter (which includes the start of the
 *  string).
 */
#  define BIGRAM_RESET 0
/**
 * The previous character was a CJK character and we have only seen one of them.
 *  If we had seen more than one in a row it would be the BIGRAM_USE state.
 */
#  define BIGRAM_UNKNOWN 1
/**
 * We have seen two or more CJK characters in a row.
 */
#  define BIGRAM_USE 2
/**
 * The previous character was ASCII or something in the unicode general scripts
 *  area that we do not believe is a delimiter.  We call it 'alpha' as in
 *  alphabetic/alphanumeric and something that should be tokenized based on
 *  delimiters rather than on a bi-gram basis.
 */
#  define BIGRAM_ALPHA 3

static int isDelim(
    const unsigned char* zCur,  /* IN: current pointer of token */
    const unsigned char* zTerm, /* IN: one character beyond end of token */
    int* len,                   /* OUT: analyzed bytes in this token */
    int* state                  /* IN/OUT: analyze state */
) {
  const unsigned char* zIn = zCur;
  unsigned int c;
  int delim;

  /* get the unicode character to analyze */
  READ_UTF8(zIn, zTerm, c);
  c = normalize_character(c);
  *len = zIn - zCur;

  /* ASCII character range has rule */
  if (c < 0x80) {
    // This is original porter stemmer isDelim logic.
    // 0x0 - 0x1f are all control characters, 0x20 is space, 0x21-0x2f are
    //  punctuation.
    delim = (c < 0x30 || !porterIdChar[c - 0x30]);
    // cases: "&a", "&."
    if (*state == BIGRAM_USE || *state == BIGRAM_UNKNOWN) {
      /* previous maybe CJK and current is ascii */
      *state = BIGRAM_ALPHA; /*ascii*/
      delim = 1;             /* must break */
    } else if (delim == 1) {
      // cases: "a.", ".."
      /* this is delimiter character */
      *state = BIGRAM_RESET; /*reset*/
    } else {
      // cases: "aa", ".a"
      *state = BIGRAM_ALPHA; /*ascii*/
    }
    return delim;
  }

  // (at this point we must be a non-ASCII character)

  /* voiced/semi-voiced sound mark is ignore */
  if (isVoicedSoundMark(c) && *state != BIGRAM_ALPHA) {
    /* ignore this because it is combined with previous char */
    return 0;
  }

  /* this isn't CJK range, so return as no delim */
  // Anything less than 0x2000 (except to U+0E00-U+0EFF and  U+1780-U+17FF)
  // is the general scripts area and should not be bi-gram indexed.
  // 0xa000 - 0a4cf is the Yi area.  It is apparently a phonetic language whose
  //  usage does not appear to have simple delimiter rules, so we're leaving it
  //  as bigram processed.  This is a guess, if you know better, let us know.
  //  (We previously bailed on this range too.)
  // Addition, U+0E00-U+0E7F is Thai, U+0E80-U+0EFF is Laos,
  // and U+1780-U+17FF is Khmer.  It is no easy way to break each word.
  // So these should use bi-gram too.
  // cases: "aa", ".a", "&a"
  if (c < 0xe00 || (c >= 0xf00 && c < 0x1780) || (c >= 0x1800 && c < 0x2000)) {
    *state = BIGRAM_ALPHA; /* not really ASCII but same idea; tokenize it */
    return 0;
  }

  // (at this point we must be a bi-grammable char or delimiter)

  /* this is space character or delim character */
  // cases: "a.", "..", "&."
  if (IS_UNI_SPACE(c) || IS_JA_DELIM(c)) {
    *state = BIGRAM_RESET; /* reset */
    return 1;              /* it actually is a delimiter; report as such */
  }

  // (at this point we must be a bi-grammable char)

  // cases: "a&"
  if (*state == BIGRAM_ALPHA) {
    /* Previous is ascii and current maybe CJK */
    *state = BIGRAM_UNKNOWN; /* mark as unknown */
    return 1;                /* break to emit the ASCII token*/
  }

  /* We have no rule for CJK!. use bi-gram */
  // cases: "&&"
  if (*state == BIGRAM_UNKNOWN || *state == BIGRAM_USE) {
    /* previous state is unknown.  mark as bi-gram */
    *state = BIGRAM_USE;
    return 1; /* break to emit the digram */
  }

  // cases: ".&" (*state == BIGRAM_RESET)
  *state = BIGRAM_UNKNOWN; /* mark as unknown */
  return 0;                /* no need to break; nothing to emit */
}

/**
 * Generate a new token.  There are basically three types of token we can
 *  generate:
 * - A porter stemmed token.  This is a word entirely comprised of ASCII
 *    characters.  We run the porter stemmer algorithm against the word.
 *    Because we have no way to know what is and is not an English word
 *    (the only language for which the porter stemmer was designed), this
 *    could theoretically map multiple words that are not variations of the
 *    same word down to the same root, resulting in potentially unexpected
 *    result inclusions in the search results.  We accept this result because
 *    there's not a lot we can do about it and false positives are much
 *    better than false negatives.
 * - A copied token; case/accent-folded but not stemmed.  We call the porter
 *    stemmer for all non-CJK cases and it diverts to the copy stemmer if it
 *    sees any non-ASCII characters (after folding) or if the string is too
 *    long.  The copy stemmer will shrink the string if it is deemed too long.
 * - A bi-gram token; two CJK-ish characters.  For query reasons we generate a
 *    series of overlapping bi-grams.  (We can't require the user to start their
 *    search based on the arbitrary context of the indexed documents.)
 *
 * It may be useful to think of this function as operating at the points between
 *  characters.  While we are considering the 'current' character (the one after
 *  the 'point'), we are also interested in the 'previous' character (the one
 *  preceding the point).
 * At any 'point', there are a number of possible situations which I will
 *  illustrate with pairs of characters. 'a' means alphanumeric ASCII or a
 *  non-ASCII character that is not bi-grammable or a delimiter, '.'
 *  means a delimiter (space or punctuation), '&' means a bi-grammable
 *  character.
 * - aa: We are in the midst of a token.  State remains BIGRAM_ALPHA.
 * - a.: We will generate a porter stemmed or copied token.  State was
 *        BIGRAM_ALPHA, gets set to BIGRAM_RESET.
 * - a&: We will generate a porter stemmed or copied token; we will set our
 *        state to BIGRAM_UNKNOWN to indicate we have seen one bigram character
 *        but that it is not yet time to emit a bigram.
 * - .a: We are starting a token.  State was BIGRAM_RESET, gets set to
 *        BIGRAM_ALPHA.
 * - ..: We skip/eat the delimiters.  State stays BIGRAM_RESET.
 * - .&: State set to BIGRAM_UNKNOWN to indicate we have seen one bigram char.
 * - &a: If the state was BIGRAM_USE, we generate a bi-gram token.  If the state
 *        was BIGRAM_UNKNOWN we had only seen one CJK character and so don't do
 *        anything.  State is set to BIGRAM_ALPHA.
 * - &.: Same as the "&a" case, but state is set to BIGRAM_RESET.
 * - &&: We will generate a bi-gram token.  State was either BIGRAM_UNKNOWN or
 *        BIGRAM_USE, gets set to BIGRAM_USE.
 */
static int porterNext(
    sqlite3_tokenizer_cursor* pCursor, /* Cursor returned by porterOpen */
    const char** pzToken,              /* OUT: *pzToken is the token text */
    int* pnBytes,                      /* OUT: Number of bytes in token */
    int* piStartOffset,                /* OUT: Starting offset of token */
    int* piEndOffset,                  /* OUT: Ending offset of token */
    int* piPosition                    /* OUT: Position integer of token */
) {
  porter_tokenizer_cursor* c = (porter_tokenizer_cursor*)pCursor;
  const unsigned char* z = (unsigned char*)c->zInput;
  int len = 0;
  int state;

  while (c->iOffset < c->nInput) {
    int iStartOffset, numChars;

    /*
     * This loop basically has two modes of operation:
     * - general processing (iPrevBigramOffset == 0 here)
     * - CJK processing (iPrevBigramOffset != 0 here)
     *
     * In an general processing pass we skip over all the delimiters, leaving us
     *  at a character that promises to produce a token.  This could be a CJK
     *  token (state == BIGRAM_USE) or an ALPHA token (state == BIGRAM_ALPHA).
     * If it was a CJK token, we transition into CJK state for the next loop.
     * If it was an alpha token, our current offset is pointing at a delimiter
     *  (which could be a CJK character), so it is good that our next pass
     *  through the function and loop will skip over any delimiters.  If the
     *  delimiter we hit was a CJK character, the next time through we will
     *  not treat it as a delimiter though; the entry state for that scan is
     *  BIGRAM_RESET so the transition is not treated as a delimiter!
     *
     * The CJK pass always starts with the second character in a bi-gram emitted
     *  as a token in the previous step.  No delimiter skipping is required
     *  because we know that first character might produce a token for us.  It
     *  only 'might' produce a token because the previous pass performed no
     *  lookahead and cannot be sure it is followed by another CJK character.
     *  This is why
     */

    // If we have a previous bigram offset
    if (c->iPrevBigramOffset == 0) {
      /* Scan past delimiter characters */
      state = BIGRAM_RESET; /* reset */
      while (c->iOffset < c->nInput &&
             isDelim(z + c->iOffset, z + c->nInput, &len, &state)) {
        c->iOffset += len;
      }

    } else {
      /* for bigram indexing, use previous offset */
      c->iOffset = c->iPrevBigramOffset;
    }

    /* Count non-delimiter characters. */
    iStartOffset = c->iOffset;
    numChars = 0;

    // Start from a reset state.  This means the first character we see
    //  (which will not be a delimiter) determines which of ALPHA or CJK modes
    //  we are operating in.  (It won't be a delimiter because in a 'general'
    //  pass as defined above, we will have eaten all the delimiters, and in
    //  a CJK pass we are guaranteed that the first character is CJK.)
    state = BIGRAM_RESET; /* state is reset */
    // Advance until it is time to emit a token.
    // For ALPHA characters, this means advancing until we encounter a delimiter
    //  or a CJK character.  iOffset will be pointing at the delimiter or CJK
    //  character, aka one beyond the last ALPHA character.
    // For CJK characters this means advancing until we encounter an ALPHA
    //  character, a delimiter, or we have seen two consecutive CJK
    //  characters.  iOffset points at the ALPHA/delimiter in the first 2 cases
    //  and the second of two CJK characters in the last case.
    // Because of the way this loop is structured, iOffset is only updated
    //  when we don't terminate.  However, if we terminate, len still contains
    //  the number of bytes in the character found at iOffset.  (This is useful
    //  in the CJK case.)
    while (c->iOffset < c->nInput &&
           !isDelim(z + c->iOffset, z + c->nInput, &len, &state)) {
      c->iOffset += len;
      numChars++;
    }

    if (state == BIGRAM_USE) {
      /* Split word by bigram */
      // Right now iOffset is pointing at the second character in a pair.
      //  Save this offset so next-time through we start with that as the
      //  first character.
      c->iPrevBigramOffset = c->iOffset;
      // And now advance so that iOffset is pointing at the character after
      //  the second character in the bi-gram pair.  Also count the char.
      c->iOffset += len;
      numChars++;
    } else {
      /* Reset bigram offset */
      c->iPrevBigramOffset = 0;
    }

    /* We emit a token if:
     *  - there are two ideograms together,
     *  - there are three chars or more,
     *  - we think this is a query and wildcard magic is desired.
     * We think is a wildcard query when we have a single character, it starts
     *  at the start of the buffer, it's CJK, our current offset is one shy of
     *  nInput and the character at iOffset is '*'.  Because the state gets
     *  clobbered by the incidence of '*' our requirement for CJK is that the
     *  implied character length is at least 3 given that it takes at least 3
     *  bytes to encode to 0x2000.
     */
    // It is possible we have no token to emit here if iPrevBigramOffset was not
    //  0 on entry and there was no second CJK character.  iPrevBigramOffset
    //  will now be 0 if that is the case (and c->iOffset == iStartOffset).
    if (  // allow two-character words only if in bigram
        (numChars == 2 && state == BIGRAM_USE) ||
        // otherwise, drop two-letter words (considered stop-words)
        (numChars >= 3) ||
        // wildcard case:
        (numChars == 1 && iStartOffset == 0 && (c->iOffset >= 3) &&
         (c->iOffset == c->nInput - 1) && (z[c->iOffset] == '*'))) {
      /* figure out the number of bytes to copy/stem */
      int n = c->iOffset - iStartOffset;
      /* make sure there is enough buffer space */
      if (n * MAX_UTF8_GROWTH_FACTOR > c->nAllocated) {
        c->nAllocated = n * MAX_UTF8_GROWTH_FACTOR + 20;
        c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
        if (c->zToken == NULL) return SQLITE_NOMEM;
      }

      if (state == BIGRAM_USE) {
        /* This is by bigram. So it is unnecessary to convert word */
        copy_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
      } else {
        porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
      }
      *pzToken = (const char*)c->zToken;
      *piStartOffset = iStartOffset;
      *piEndOffset = c->iOffset;
      *piPosition = c->iToken++;
      return SQLITE_OK;
    }
  }
  return SQLITE_DONE;
}

/*
** The set of routines that implement the porter-stemmer tokenizer
*/
static const sqlite3_tokenizer_module porterTokenizerModule = {
    0, porterCreate, porterDestroy, porterOpen, porterClose, porterNext,
};

/*
** Allocate a new porter tokenizer.  Return a pointer to the new
** tokenizer in *ppModule
*/
void sqlite3Fts3PorterTokenizerModule(
    sqlite3_tokenizer_module const** ppModule) {
  *ppModule = &porterTokenizerModule;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */