1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
BigInt
========================================
``BigInt`` is Botan's implementation of a multiple-precision integer. Thanks to
C++'s operator overloading features, using ``BigInt`` is often quite similar to
using a native integer type. The number of functions related to ``BigInt`` is
quite large, and not all of them are documented here. You can find the complete
declarations in ``botan/bigint.h`` and ``botan/numthry.h``.
.. cpp:class:: BigInt
.. cpp:function:: BigInt()
Create a BigInt with value zero
.. cpp:function:: BigInt(uint64_t n)
Create a BigInt with value *n*
.. cpp:function:: BigInt(const std::string& str)
Create a BigInt from a string. By default decimal is expected. With an 0x
prefix instead it is treated as hexadecimal.
.. cpp:function:: BigInt(const uint8_t buf[], size_t length)
Create a BigInt from a binary array (big-endian encoding).
.. cpp:function:: BigInt(RandomNumberGenerator& rng, size_t bits, bool set_high_bit = true)
Create a random BigInt of the specified size.
.. cpp:function:: BigInt operator+(const BigInt& x, const BigInt& y)
Add ``x`` and ``y`` and return result.
.. cpp:function:: BigInt operator+(const BigInt& x, word y)
Add ``x`` and ``y`` and return result.
.. cpp:function:: BigInt operator+(word x, const BigInt& y)
Add ``x`` and ``y`` and return result.
.. cpp:function:: BigInt operator-(const BigInt& x, const BigInt& y)
Subtract ``y`` from ``x`` and return result.
.. cpp:function:: BigInt operator-(const BigInt& x, word y)
Subtract ``y`` from ``x`` and return result.
.. cpp:function:: BigInt operator*(const BigInt& x, const BigInt& y)
Multiply ``x`` and ``y`` and return result.
.. cpp:function:: BigInt operator/(const BigInt& x, const BigInt& y)
Divide ``x`` by ``y`` and return result.
.. cpp:function:: BigInt operator%(const BigInt& x, const BigInt& y)
Divide ``x`` by ``y`` and return remainder.
.. cpp:function:: word operator%(const BigInt& x, word y)
Divide ``x`` by ``y`` and return remainder.
.. cpp:function:: word operator<<(const BigInt& x, size_t n)
Left shift ``x`` by ``n`` and return result.
.. cpp:function:: word operator>>(const BigInt& x, size_t n)
Right shift ``x`` by ``n`` and return result.
.. cpp:function:: BigInt& operator+=(const BigInt& y)
Add y to ``*this``
.. cpp:function:: BigInt& operator+=(word y)
Add y to ``*this``
.. cpp:function:: BigInt& operator-=(const BigInt& y)
Subtract y from ``*this``
.. cpp:function:: BigInt& operator-=(word y)
Subtract y from ``*this``
.. cpp:function:: BigInt& operator*=(const BigInt& y)
Multiply ``*this`` with y
.. cpp:function:: BigInt& operator*=(word y)
Multiply ``*this`` with y
.. cpp:function:: BigInt& operator/=(const BigInt& y)
Divide ``*this`` by y
.. cpp:function:: BigInt& operator%=(const BigInt& y)
Divide ``*this`` by y and set ``*this`` to the remainder.
.. cpp:function:: word operator%=(word y)
Divide ``*this`` by y and set ``*this`` to the remainder.
.. cpp:function:: word operator<<=(size_t shift)
Left shift ``*this`` by *shift* bits
.. cpp:function:: word operator>>=(size_t shift)
Right shift ``*this`` by *shift* bits
.. cpp:function:: BigInt& operator++()
Increment ``*this`` by 1
.. cpp:function:: BigInt& operator--()
Decrement ``*this`` by 1
.. cpp:function:: BigInt operator++(int)
Postfix increment ``*this`` by 1
.. cpp:function:: BigInt operator--(int)
Postfix decrement ``*this`` by 1
.. cpp:function:: BigInt operator-() const
Negation operator
.. cpp:function:: bool operator !() const
Return true unless ``*this`` is zero
.. cpp:function:: void clear()
Set ``*this`` to zero
.. cpp:function:: size_t bytes() const
Return number of bytes need to represent value of ``*this``
.. cpp:function:: size_t bits() const
Return number of bits need to represent value of ``*this``
.. cpp:function:: bool is_even() const
Return true if ``*this`` is even
.. cpp:function:: bool is_odd() const
Return true if ``*this`` is odd
.. cpp:function:: bool is_nonzero() const
Return true if ``*this`` is not zero
.. cpp:function:: bool is_zero() const
Return true if ``*this`` is zero
.. cpp:function:: void set_bit(size_t n)
Set bit *n* of ``*this``
.. cpp:function:: void clear_bit(size_t n)
Clear bit *n* of ``*this``
.. cpp:function:: bool get_bit(size_t n) const
Get bit *n* of ``*this``
.. cpp:function:: uint32_t to_u32bit() const
Return value of ``*this`` as a 32-bit integer, if possible.
If the integer is negative or not in range, an exception is thrown.
.. cpp:function:: bool is_negative() const
Return true if ``*this`` is negative
.. cpp:function:: bool is_positive() const
Return true if ``*this`` is negative
.. cpp:function:: BigInt abs() const
Return absolute value of ``*this``
.. cpp:function:: void binary_encode(uint8_t buf[]) const
Encode this BigInt as a big-endian integer. The sign is ignored.
.. cpp:function:: void binary_encode(uint8_t buf[], size_t len) const
Encode this BigInt as a big-endian integer. The sign is ignored.
If ``len`` is less than ``bytes()`` then only the low ``len``
bytes are output. If ``len`` is greater than ``bytes()`` then
the output is padded with leading zeros.
.. cpp:function:: void binary_decode(uint8_t buf[])
Decode this BigInt as a big-endian integer.
.. cpp:function:: std::string to_dec_string() const
Encode the integer as a decimal string.
.. cpp:function:: std::string to_hex_string() const
Encode the integer as a hexadecimal string.
Number Theory
----------------------------------------
Number theoretic functions available include:
.. cpp:function:: BigInt gcd(BigInt x, BigInt y)
Returns the greatest common divisor of x and y
.. cpp:function:: BigInt lcm(BigInt x, BigInt y)
Returns an integer z which is the smallest integer such that z % x
== 0 and z % y == 0
.. cpp:function:: BigInt jacobi(BigInt a, BigInt n)
Return Jacobi symbol of (a|n).
.. cpp:function:: BigInt inverse_mod(BigInt x, BigInt m)
Returns the modular inverse of x modulo m, that is, an integer
y such that (x*y) % m == 1. If no such y exists, returns zero.
.. cpp:function:: BigInt power_mod(BigInt b, BigInt x, BigInt m)
Returns b to the xth power modulo m. If you are doing many
exponentiations with a single fixed modulus, it is faster to use a
``Power_Mod`` implementation.
.. cpp:function:: BigInt ressol(BigInt x, BigInt p)
Returns the square root modulo a prime, that is, returns a number y
such that (y*y) % p == x. Returns -1 if no such integer exists.
.. cpp:function:: bool is_prime(BigInt n, RandomNumberGenerator& rng, \
size_t prob = 56, double is_random = false)
Test *n* for primality using a probabilistic algorithm (Miller-Rabin). With
this algorithm, there is some non-zero probability that true will be returned
even if *n* is actually composite. Modifying *prob* allows you to decrease the
chance of such a false positive, at the cost of increased runtime. Sufficient
tests will be run such that the chance *n* is composite is no more than 1 in
2\ :sup:`prob`. Set *is_random* to true if (and only if) *n* was randomly
chosen (ie, there is no danger it was chosen maliciously) as far fewer tests
are needed in that case.
.. cpp:function:: BigInt random_prime(RandomNumberGenerator& rng, \
size_t bits, \
BigInt coprime = 1, \
size_t equiv = 1, \
size_t equiv_mod = 2)
Return a random prime number of ``bits`` bits long that is
relatively prime to ``coprime``, and equivalent to ``equiv`` modulo
``equiv_mod``.
|