1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define FILTER_PROCESSING_SCALAR
#include "FilterProcessingSIMD-inl.h"
#include "Logging.h"
namespace mozilla {
namespace gfx {
void FilterProcessing::ExtractAlpha_Scalar(const IntSize& size,
uint8_t* sourceData,
int32_t sourceStride,
uint8_t* alphaData,
int32_t alphaStride) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + 4 * x;
int32_t targetIndex = y * alphaStride + x;
alphaData[targetIndex] =
sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ConvertToB8G8R8A8_Scalar(
SourceSurface* aSurface) {
return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
}
template <MorphologyOperator Operator>
static void ApplyMorphologyHorizontal_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost(); y++) {
int32_t startX = aDestRect.X() - aRadius;
int32_t endX = aDestRect.X() + aRadius;
for (int32_t x = aDestRect.X(); x < aDestRect.XMost();
x++, startX++, endX++) {
int32_t sourceIndex = y * aSourceStride + 4 * startX;
uint8_t u[4];
for (size_t i = 0; i < 4; i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += 4;
for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
for (size_t i = 0; i < 4; i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (size_t i = 0; i < 4; i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyHorizontal_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
template <MorphologyOperator Operator>
static void ApplyMorphologyVertical_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
int32_t startY = aDestRect.Y() - aRadius;
int32_t endY = aDestRect.Y() + aRadius;
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost();
y++, startY++, endY++) {
for (int32_t x = aDestRect.X(); x < aDestRect.XMost(); x++) {
int32_t sourceIndex = startY * aSourceStride + 4 * x;
uint8_t u[4];
for (size_t i = 0; i < 4; i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += aSourceStride;
for (int32_t iy = startY + 1; iy <= endY;
iy++, sourceIndex += aSourceStride) {
for (size_t i = 0; i < 4; i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (size_t i = 0; i < 4; i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyVertical_Scalar(
uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ApplyColorMatrix_Scalar(
DataSourceSurface* aInput, const Matrix5x4& aMatrix) {
return ApplyColorMatrix_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput, aMatrix);
}
void FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource,
DataSourceSurface* aDest,
CompositeOperator aOperator) {
return ApplyComposition_SIMD<simd::Scalari32x4_t, simd::Scalaru16x8_t,
simd::Scalaru8x16_t>(aSource, aDest, aOperator);
}
void FilterProcessing::SeparateColorChannels_Scalar(
const IntSize& size, uint8_t* sourceData, int32_t sourceStride,
uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data,
uint8_t* channel3Data, int32_t channelStride) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + 4 * x;
int32_t targetIndex = y * channelStride + x;
channel0Data[targetIndex] = sourceData[sourceIndex];
channel1Data[targetIndex] = sourceData[sourceIndex + 1];
channel2Data[targetIndex] = sourceData[sourceIndex + 2];
channel3Data[targetIndex] = sourceData[sourceIndex + 3];
}
}
}
void FilterProcessing::CombineColorChannels_Scalar(
const IntSize& size, int32_t resultStride, uint8_t* resultData,
int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data,
uint8_t* channel2Data, uint8_t* channel3Data) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t resultIndex = y * resultStride + 4 * x;
int32_t channelIndex = y * channelStride + x;
resultData[resultIndex] = channel0Data[channelIndex];
resultData[resultIndex + 1] = channel1Data[channelIndex];
resultData[resultIndex + 2] = channel2Data[channelIndex];
resultData[resultIndex + 3] = channel3Data[channelIndex];
}
}
}
void FilterProcessing::DoPremultiplicationCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride) {
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
FastDivideBy255<uint8_t>(
aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] *
alpha);
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
}
}
}
void FilterProcessing::DoUnpremultiplicationCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride) {
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
uint16_t alphaFactor = sAlphaFactors[alpha];
// inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t
// because the input is premultiplied and thus inputColor <= inputAlpha.
// The maximum value this can attain is 65520 (which is less than 65535)
// for color == alpha == 244:
// 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] *
alphaFactor +
128) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
}
}
}
void FilterProcessing::DoOpacityCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(roundf(255.f * aValue));
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] * alpha) >>
8;
}
}
}
void FilterProcessing::DoOpacityCalculationA8_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(255.f * aValue);
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride;
int32_t targetIndex = y * aTargetStride;
aTargetData[targetIndex] =
FastDivideBy255<uint8_t>(aSourceData[inputIndex] * alpha);
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::RenderTurbulence_Scalar(
const IntSize& aSize, const Point& aOffset, const Size& aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch,
const Rect& aTileRect) {
return RenderTurbulence_SIMD<simd::Scalarf32x4_t, simd::Scalari32x4_t,
simd::Scalaru8x16_t>(
aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch,
aTileRect);
}
already_AddRefed<DataSourceSurface>
FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1,
DataSourceSurface* aInput2,
Float aK1, Float aK2, Float aK3,
Float aK4) {
return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput1, aInput2, aK1,
aK2, aK3, aK4);
}
} // namespace gfx
} // namespace mozilla
|