1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
//
// Copyright 2021 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// CircularBuffer.h:
// An array class with an index that loops through the elements.
//
#ifndef COMMON_CIRCULARBUFFER_H_
#define COMMON_CIRCULARBUFFER_H_
#include "common/debug.h"
#include <algorithm>
#include <array>
namespace angle
{
template <class T, size_t N, class Storage = std::array<T, N>>
class CircularBuffer final
{
public:
using value_type = typename Storage::value_type;
using size_type = typename Storage::size_type;
using reference = typename Storage::reference;
using const_reference = typename Storage::const_reference;
using pointer = typename Storage::pointer;
using const_pointer = typename Storage::const_pointer;
using iterator = typename Storage::iterator;
using const_iterator = typename Storage::const_iterator;
CircularBuffer();
CircularBuffer(const value_type &value);
CircularBuffer(const CircularBuffer<T, N, Storage> &other);
CircularBuffer(CircularBuffer<T, N, Storage> &&other);
CircularBuffer<T, N, Storage> &operator=(const CircularBuffer<T, N, Storage> &other);
CircularBuffer<T, N, Storage> &operator=(CircularBuffer<T, N, Storage> &&other);
~CircularBuffer();
// begin() and end() are used to iterate over all elements regardless of the current position of
// the front of the buffer. Useful for initialization and clean up, as otherwise only the front
// element is expected to be accessed.
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
size_type size() const;
reference front();
const_reference front() const;
void swap(CircularBuffer<T, N, Storage> &other);
// Move the front forward to the next index, looping back to the beginning if the end of the
// array is reached.
void next();
private:
Storage mData;
size_type mFrontIndex;
};
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage>::CircularBuffer() : mFrontIndex(0)
{}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage>::CircularBuffer(const value_type &value) : CircularBuffer()
{
std::fill(begin(), end(), value);
}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage>::CircularBuffer(const CircularBuffer<T, N, Storage> &other)
{
*this = other;
}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage>::CircularBuffer(CircularBuffer<T, N, Storage> &&other)
: CircularBuffer()
{
swap(other);
}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage> &CircularBuffer<T, N, Storage>::operator=(
const CircularBuffer<T, N, Storage> &other)
{
std::copy(other.begin(), other.end(), begin());
mFrontIndex = other.mFrontIndex;
return *this;
}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage> &CircularBuffer<T, N, Storage>::operator=(
CircularBuffer<T, N, Storage> &&other)
{
swap(other);
return *this;
}
template <class T, size_t N, class Storage>
CircularBuffer<T, N, Storage>::~CircularBuffer() = default;
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::iterator CircularBuffer<T, N, Storage>::begin()
{
return mData.begin();
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::const_iterator
CircularBuffer<T, N, Storage>::begin() const
{
return mData.begin();
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::iterator CircularBuffer<T, N, Storage>::end()
{
return mData.end();
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::const_iterator
CircularBuffer<T, N, Storage>::end() const
{
return mData.end();
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::size_type CircularBuffer<T, N, Storage>::size()
const
{
return N;
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::reference
CircularBuffer<T, N, Storage>::front()
{
ASSERT(mFrontIndex < size());
return mData[mFrontIndex];
}
template <class T, size_t N, class Storage>
ANGLE_INLINE typename CircularBuffer<T, N, Storage>::const_reference
CircularBuffer<T, N, Storage>::front() const
{
ASSERT(mFrontIndex < size());
return mData[mFrontIndex];
}
template <class T, size_t N, class Storage>
void CircularBuffer<T, N, Storage>::swap(CircularBuffer<T, N, Storage> &other)
{
std::swap(mData, other.mData);
std::swap(mFrontIndex, other.mFrontIndex);
}
template <class T, size_t N, class Storage>
void CircularBuffer<T, N, Storage>::next()
{
mFrontIndex = (mFrontIndex + 1) % size();
}
} // namespace angle
#endif // COMMON_CIRCULARBUFFER_H_
|