summaryrefslogtreecommitdiffstats
path: root/js/src/jit/MoveResolver.h
blob: d87182da3be24b2005098bb0ff19973a1d9dad40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_MoveResolver_h
#define jit_MoveResolver_h

#include <algorithm>

#include "jit/InlineList.h"
#include "jit/JitAllocPolicy.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"
#include "jit/shared/Assembler-shared.h"

namespace js {
namespace jit {

class MacroAssembler;

// This is similar to Operand, but carries more information. We're also not
// guaranteed that Operand looks like this on all ISAs.
class MoveOperand {
 public:
  enum class Kind : uint8_t {
    // A register in the "integer", aka "general purpose", class.
    Reg,
#ifdef JS_CODEGEN_REGISTER_PAIR
    // Two consecutive "integer" registers (aka "general purpose"). The even
    // register contains the lower part, the odd register has the high bits
    // of the content.
    RegPair,
#endif
    // A register in the "float" register class.
    FloatReg,
    // A memory region.
    Memory,
    // The address of a memory region.
    EffectiveAddress
  };

 private:
  Kind kind_;
  uint8_t code_;
  int32_t disp_;

  static_assert(std::max(Registers::Total, FloatRegisters::Total) <= UINT8_MAX,
                "Any register code must fit in code_");

 public:
  MoveOperand() = delete;
  explicit MoveOperand(Register reg)
      : kind_(Kind::Reg), code_(reg.code()), disp_(0) {}
  explicit MoveOperand(FloatRegister reg)
      : kind_(Kind::FloatReg), code_(reg.code()), disp_(0) {}
  MoveOperand(Register reg, int32_t disp, Kind kind = Kind::Memory)
      : kind_(kind), code_(reg.code()), disp_(disp) {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());

    // With a zero offset, this is a plain reg-to-reg move.
    if (disp == 0 && kind_ == Kind::EffectiveAddress) {
      kind_ = Kind::Reg;
    }
  }
  explicit MoveOperand(const Address& addr, Kind kind = Kind::Memory)
      : MoveOperand(AsRegister(addr.base), addr.offset, kind) {}
  MoveOperand(MacroAssembler& masm, const ABIArg& arg);
  MoveOperand(const MoveOperand& other) = default;
  bool isFloatReg() const { return kind_ == Kind::FloatReg; }
  bool isGeneralReg() const { return kind_ == Kind::Reg; }
  bool isGeneralRegPair() const {
#ifdef JS_CODEGEN_REGISTER_PAIR
    return kind_ == Kind::RegPair;
#else
    return false;
#endif
  }
  bool isMemory() const { return kind_ == Kind::Memory; }
  bool isEffectiveAddress() const { return kind_ == Kind::EffectiveAddress; }
  bool isMemoryOrEffectiveAddress() const {
    return isMemory() || isEffectiveAddress();
  }
  Register reg() const {
    MOZ_ASSERT(isGeneralReg());
    return Register::FromCode(code_);
  }
  Register evenReg() const {
    MOZ_ASSERT(isGeneralRegPair());
    return Register::FromCode(code_);
  }
  Register oddReg() const {
    MOZ_ASSERT(isGeneralRegPair());
    return Register::FromCode(code_ + 1);
  }
  FloatRegister floatReg() const {
    MOZ_ASSERT(isFloatReg());
    return FloatRegister::FromCode(code_);
  }
  Register base() const {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());
    return Register::FromCode(code_);
  }
  int32_t disp() const {
    MOZ_ASSERT(isMemoryOrEffectiveAddress());
    return disp_;
  }

  bool aliases(MoveOperand other) const {
    // These are not handled presently, but Memory and EffectiveAddress
    // only appear in controlled circumstances in the trampoline code
    // which ensures these cases never come up.

    MOZ_ASSERT_IF(isMemoryOrEffectiveAddress() && other.isGeneralReg(),
                  base() != other.reg());
    MOZ_ASSERT_IF(other.isMemoryOrEffectiveAddress() && isGeneralReg(),
                  other.base() != reg());

    // Check if one of the operand is a registe rpair, in which case, we
    // have to check any other register, or register pair.
    if (isGeneralRegPair() || other.isGeneralRegPair()) {
      if (isGeneralRegPair() && other.isGeneralRegPair()) {
        // Assume that register pairs are aligned on even registers.
        MOZ_ASSERT(!evenReg().aliases(other.oddReg()));
        MOZ_ASSERT(!oddReg().aliases(other.evenReg()));
        // Pair of registers are composed of consecutive registers, thus
        // if the first registers are aliased, then the second registers
        // are aliased too.
        MOZ_ASSERT(evenReg().aliases(other.evenReg()) ==
                   oddReg().aliases(other.oddReg()));
        return evenReg().aliases(other.evenReg());
      } else if (other.isGeneralReg()) {
        MOZ_ASSERT(isGeneralRegPair());
        return evenReg().aliases(other.reg()) || oddReg().aliases(other.reg());
      } else if (isGeneralReg()) {
        MOZ_ASSERT(other.isGeneralRegPair());
        return other.evenReg().aliases(reg()) || other.oddReg().aliases(reg());
      }
      return false;
    }

    if (kind_ != other.kind_) {
      return false;
    }
    if (kind_ == Kind::FloatReg) {
      return floatReg().aliases(other.floatReg());
    }
    if (code_ != other.code_) {
      return false;
    }
    if (isMemoryOrEffectiveAddress()) {
      return disp_ == other.disp_;
    }
    return true;
  }

  bool operator==(const MoveOperand& other) const {
    if (kind_ != other.kind_) {
      return false;
    }
    if (code_ != other.code_) {
      return false;
    }
    if (isMemoryOrEffectiveAddress()) {
      return disp_ == other.disp_;
    }
    return true;
  }
  bool operator!=(const MoveOperand& other) const { return !operator==(other); }
};

// This represents a move operation.
class MoveOp {
 protected:
  MoveOperand from_;
  MoveOperand to_;
  int32_t cycleBeginSlot_ = -1;
  int32_t cycleEndSlot_ = -1;
  bool cycleBegin_ = false;
  bool cycleEnd_ = false;

 public:
  enum Type : uint8_t { GENERAL, INT32, FLOAT32, DOUBLE, SIMD128 };

 protected:
  Type type_;

  // If cycleBegin_ is true, endCycleType_ is the type of the move at the end
  // of the cycle. For example, given these moves:
  //       INT32 move a -> b
  //     GENERAL move b -> a
  // the move resolver starts by copying b into a temporary location, so that
  // the last move can read it. This copy needs to use use type GENERAL.
  Type endCycleType_;

 public:
  MoveOp() = delete;
  MoveOp(const MoveOperand& from, const MoveOperand& to, Type type)
      : from_(from),
        to_(to),
        type_(type),
        endCycleType_(GENERAL)  // initialize to silence UBSan warning
  {}

  bool isCycleBegin() const { return cycleBegin_; }
  bool isCycleEnd() const { return cycleEnd_; }
  uint32_t cycleBeginSlot() const {
    MOZ_ASSERT(cycleBeginSlot_ != -1);
    return cycleBeginSlot_;
  }
  uint32_t cycleEndSlot() const {
    MOZ_ASSERT(cycleEndSlot_ != -1);
    return cycleEndSlot_;
  }
  const MoveOperand& from() const { return from_; }
  const MoveOperand& to() const { return to_; }
  Type type() const { return type_; }
  Type endCycleType() const {
    MOZ_ASSERT(isCycleBegin());
    return endCycleType_;
  }
  bool aliases(const MoveOperand& op) const {
    return from().aliases(op) || to().aliases(op);
  }
  bool aliases(const MoveOp& other) const {
    return aliases(other.from()) || aliases(other.to());
  }
#ifdef JS_CODEGEN_ARM
  void overwrite(MoveOperand& from, MoveOperand& to, Type type) {
    from_ = from;
    to_ = to;
    type_ = type;
  }
#endif
};

class MoveResolver {
 private:
  struct PendingMove : public MoveOp,
                       public TempObject,
                       public InlineListNode<PendingMove> {
    PendingMove() = delete;

    PendingMove(const MoveOperand& from, const MoveOperand& to, Type type)
        : MoveOp(from, to, type) {}

    void setCycleBegin(Type endCycleType, int cycleSlot) {
      MOZ_ASSERT(!cycleBegin_);
      cycleBegin_ = true;
      cycleBeginSlot_ = cycleSlot;
      endCycleType_ = endCycleType;
    }
    void setCycleEnd(int cycleSlot) {
      MOZ_ASSERT(!cycleEnd_);
      cycleEnd_ = true;
      cycleEndSlot_ = cycleSlot;
    }
  };

  using PendingMoveIterator = InlineList<MoveResolver::PendingMove>::iterator;

  js::Vector<MoveOp, 16, SystemAllocPolicy> orderedMoves_;
  int numCycles_;
  int curCycles_;
  TempObjectPool<PendingMove> movePool_;

  InlineList<PendingMove> pending_;

  PendingMove* findBlockingMove(const PendingMove* last);
  PendingMove* findCycledMove(PendingMoveIterator* stack,
                              PendingMoveIterator end,
                              const PendingMove* first);
  [[nodiscard]] bool addOrderedMove(const MoveOp& move);
  void reorderMove(size_t from, size_t to);

  // Internal reset function. Does not clear lists.
  void resetState();

#ifdef JS_CODEGEN_ARM
  bool isDoubleAliasedAsSingle(const MoveOperand& move);
#endif

 public:
  MoveResolver();

  // Resolves a move group into two lists of ordered moves. These moves must
  // be executed in the order provided. Some moves may indicate that they
  // participate in a cycle. For every cycle there are two such moves, and it
  // is guaranteed that cycles do not nest inside each other in the list.
  //
  // After calling addMove() for each parallel move, resolve() performs the
  // cycle resolution algorithm. Calling addMove() again resets the resolver.
  [[nodiscard]] bool addMove(const MoveOperand& from, const MoveOperand& to,
                             MoveOp::Type type);
  [[nodiscard]] bool resolve();
  void sortMemoryToMemoryMoves();

  size_t numMoves() const { return orderedMoves_.length(); }
  const MoveOp& getMove(size_t i) const { return orderedMoves_[i]; }
  uint32_t numCycles() const { return numCycles_; }
  bool hasNoPendingMoves() const { return pending_.empty(); }
  void setAllocator(TempAllocator& alloc) { movePool_.setAllocator(alloc); }
};

}  // namespace jit
}  // namespace js

#endif /* jit_MoveResolver_h */