summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Assembler-arm.h
blob: fdbac15a800134d40f1f9e7d81174ac1f27bf6a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_arm_Assembler_arm_h
#define jit_arm_Assembler_arm_h

#include "mozilla/Attributes.h"
#include "mozilla/MathAlgorithms.h"

#include <algorithm>
#include <iterator>
#include <type_traits>

#include "jit/arm/Architecture-arm.h"
#include "jit/arm/disasm/Disasm-arm.h"
#include "jit/CompactBuffer.h"
#include "jit/JitCode.h"
#include "jit/shared/Assembler-shared.h"
#include "jit/shared/Disassembler-shared.h"
#include "jit/shared/IonAssemblerBufferWithConstantPools.h"
#include "wasm/WasmTypeDecls.h"

union PoolHintPun;

namespace js {
namespace jit {

using LiteralDoc = DisassemblerSpew::LiteralDoc;
using LabelDoc = DisassemblerSpew::LabelDoc;

// NOTE: there are duplicates in this list! Sometimes we want to specifically
// refer to the link register as a link register (bl lr is much clearer than bl
// r14). HOWEVER, this register can easily be a gpr when it is not busy holding
// the return address.
static constexpr Register r0{Registers::r0};
static constexpr Register r1{Registers::r1};
static constexpr Register r2{Registers::r2};
static constexpr Register r3{Registers::r3};
static constexpr Register r4{Registers::r4};
static constexpr Register r5{Registers::r5};
static constexpr Register r6{Registers::r6};
static constexpr Register r7{Registers::r7};
static constexpr Register r8{Registers::r8};
static constexpr Register r9{Registers::r9};
static constexpr Register r10{Registers::r10};
static constexpr Register r11{Registers::r11};
static constexpr Register r12{Registers::ip};
static constexpr Register ip{Registers::ip};
static constexpr Register sp{Registers::sp};
static constexpr Register r14{Registers::lr};
static constexpr Register lr{Registers::lr};
static constexpr Register pc{Registers::pc};

static constexpr Register ScratchRegister{Registers::ip};

// Helper class for ScratchRegister usage. Asserts that only one piece
// of code thinks it has exclusive ownership of the scratch register.
struct ScratchRegisterScope : public AutoRegisterScope {
  explicit ScratchRegisterScope(MacroAssembler& masm)
      : AutoRegisterScope(masm, ScratchRegister) {}
};

struct SecondScratchRegisterScope : public AutoRegisterScope {
  explicit SecondScratchRegisterScope(MacroAssembler& masm);
};

static constexpr Register OsrFrameReg = r3;
static constexpr Register CallTempReg0 = r5;
static constexpr Register CallTempReg1 = r6;
static constexpr Register CallTempReg2 = r7;
static constexpr Register CallTempReg3 = r8;
static constexpr Register CallTempReg4 = r0;
static constexpr Register CallTempReg5 = r1;

static constexpr Register IntArgReg0 = r0;
static constexpr Register IntArgReg1 = r1;
static constexpr Register IntArgReg2 = r2;
static constexpr Register IntArgReg3 = r3;
static constexpr Register HeapReg = r10;
static constexpr Register CallTempNonArgRegs[] = {r5, r6, r7, r8};
static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);

// These register assignments for the 64-bit atomic ops are frequently too
// constraining, but we have no way of expressing looser constraints to the
// register allocator.

// CompareExchange: Any two odd/even pairs would do for `new` and `out`, and any
// pair would do for `old`, so long as none of them overlap.

static constexpr Register CmpXchgOldLo = r4;
static constexpr Register CmpXchgOldHi = r5;
static constexpr Register64 CmpXchgOld64 =
    Register64(CmpXchgOldHi, CmpXchgOldLo);
static constexpr Register CmpXchgNewLo = IntArgReg2;
static constexpr Register CmpXchgNewHi = IntArgReg3;
static constexpr Register64 CmpXchgNew64 =
    Register64(CmpXchgNewHi, CmpXchgNewLo);
static constexpr Register CmpXchgOutLo = IntArgReg0;
static constexpr Register CmpXchgOutHi = IntArgReg1;
static constexpr Register64 CmpXchgOut64 =
    Register64(CmpXchgOutHi, CmpXchgOutLo);

// Exchange: Any two non-equal odd/even pairs would do for `new` and `out`.

static constexpr Register XchgNewLo = IntArgReg2;
static constexpr Register XchgNewHi = IntArgReg3;
static constexpr Register64 XchgNew64 = Register64(XchgNewHi, XchgNewLo);
static constexpr Register XchgOutLo = IntArgReg0;
static constexpr Register XchgOutHi = IntArgReg1;

// Atomic rmw operations: Any two odd/even pairs would do for `tmp` and `out`,
// and any pair would do for `val`, so long as none of them overlap.

static constexpr Register FetchOpValLo = r4;
static constexpr Register FetchOpValHi = r5;
static constexpr Register64 FetchOpVal64 =
    Register64(FetchOpValHi, FetchOpValLo);
static constexpr Register FetchOpTmpLo = IntArgReg2;
static constexpr Register FetchOpTmpHi = IntArgReg3;
static constexpr Register64 FetchOpTmp64 =
    Register64(FetchOpTmpHi, FetchOpTmpLo);
static constexpr Register FetchOpOutLo = IntArgReg0;
static constexpr Register FetchOpOutHi = IntArgReg1;
static constexpr Register64 FetchOpOut64 =
    Register64(FetchOpOutHi, FetchOpOutLo);

class ABIArgGenerator {
  unsigned intRegIndex_;
  unsigned floatRegIndex_;
  uint32_t stackOffset_;
  ABIArg current_;

  // ARM can either use HardFp (use float registers for float arguments), or
  // SoftFp (use general registers for float arguments) ABI.  We keep this
  // switch as a runtime switch because wasm always use the HardFp back-end
  // while the calls to native functions have to use the one provided by the
  // system.
  bool useHardFp_;

  ABIArg softNext(MIRType argType);
  ABIArg hardNext(MIRType argType);

 public:
  ABIArgGenerator();

  void setUseHardFp(bool useHardFp) {
    MOZ_ASSERT(intRegIndex_ == 0 && floatRegIndex_ == 0);
    useHardFp_ = useHardFp;
  }
  ABIArg next(MIRType argType);
  ABIArg& current() { return current_; }
  uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
  void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
};

bool IsUnaligned(const wasm::MemoryAccessDesc& access);

// These registers may be volatile or nonvolatile.
static constexpr Register ABINonArgReg0 = r4;
static constexpr Register ABINonArgReg1 = r5;
static constexpr Register ABINonArgReg2 = r6;
static constexpr Register ABINonArgReg3 = r7;

// This register may be volatile or nonvolatile. Avoid d15 which is the
// ScratchDoubleReg_.
static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::d8,
                                                  VFPRegister::Double};

// These registers may be volatile or nonvolatile.
// Note: these three registers are all guaranteed to be different
static constexpr Register ABINonArgReturnReg0 = r4;
static constexpr Register ABINonArgReturnReg1 = r5;
static constexpr Register ABINonVolatileReg = r6;

// This register is guaranteed to be clobberable during the prologue and
// epilogue of an ABI call which must preserve both ABI argument, return
// and non-volatile registers.
static constexpr Register ABINonArgReturnVolatileReg = lr;

// Instance pointer argument register for WebAssembly functions. This must not
// alias any other register used for passing function arguments or return
// values. Preserved by WebAssembly functions.
static constexpr Register InstanceReg = r9;

// Registers used for wasm table calls. These registers must be disjoint
// from the ABI argument registers, InstanceReg and each other.
static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;

// Registers used for ref calls.
static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmCallRefReg = ABINonArgReg3;

// Register used as a scratch along the return path in the fast js -> wasm stub
// code.  This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
// It must be a volatile register.
static constexpr Register WasmJitEntryReturnScratch = r5;

static constexpr Register PreBarrierReg = r1;

static constexpr Register InterpreterPCReg = r9;

static constexpr Register InvalidReg{Registers::invalid_reg};
static constexpr FloatRegister InvalidFloatReg;

static constexpr Register JSReturnReg_Type = r3;
static constexpr Register JSReturnReg_Data = r2;
static constexpr Register StackPointer = sp;
static constexpr Register FramePointer = r11;
static constexpr Register ReturnReg = r0;
static constexpr Register64 ReturnReg64(r1, r0);

// The attribute '__value_in_regs' alters the calling convention of a function
// so that a structure of up to four elements can be returned via the argument
// registers rather than being written to memory.
static constexpr Register ReturnRegVal0 = IntArgReg0;
static constexpr Register ReturnRegVal1 = IntArgReg1;
static constexpr Register ReturnRegVal2 = IntArgReg2;
static constexpr Register ReturnRegVal3 = IntArgReg3;

static constexpr FloatRegister ReturnFloat32Reg = {FloatRegisters::d0,
                                                   VFPRegister::Single};
static constexpr FloatRegister ReturnDoubleReg = {FloatRegisters::d0,
                                                  VFPRegister::Double};
static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg;
static constexpr FloatRegister ScratchFloat32Reg_ = {FloatRegisters::s30,
                                                     VFPRegister::Single};
static constexpr FloatRegister ScratchDoubleReg_ = {FloatRegisters::d15,
                                                    VFPRegister::Double};
static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg;
static constexpr FloatRegister ScratchUIntReg = {FloatRegisters::d15,
                                                 VFPRegister::UInt};
static constexpr FloatRegister ScratchIntReg = {FloatRegisters::d15,
                                                VFPRegister::Int};

// Do not reference ScratchFloat32Reg_ directly, use ScratchFloat32Scope
// instead.
struct ScratchFloat32Scope : public AutoFloatRegisterScope {
  explicit ScratchFloat32Scope(MacroAssembler& masm)
      : AutoFloatRegisterScope(masm, ScratchFloat32Reg_) {}
};

// Do not reference ScratchDoubleReg_ directly, use ScratchDoubleScope instead.
struct ScratchDoubleScope : public AutoFloatRegisterScope {
  explicit ScratchDoubleScope(MacroAssembler& masm)
      : AutoFloatRegisterScope(masm, ScratchDoubleReg_) {}
};

// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
// JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;

// Registers used by RegExpExecTest stub (do not use ReturnReg).
static constexpr Register RegExpExecTestRegExpReg = CallTempReg0;
static constexpr Register RegExpExecTestStringReg = CallTempReg1;

// Registers used by RegExpSearcher stub (do not use ReturnReg).
static constexpr Register RegExpSearcherRegExpReg = CallTempReg0;
static constexpr Register RegExpSearcherStringReg = CallTempReg1;
static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2;

static constexpr FloatRegister d0 = {FloatRegisters::d0, VFPRegister::Double};
static constexpr FloatRegister d1 = {FloatRegisters::d1, VFPRegister::Double};
static constexpr FloatRegister d2 = {FloatRegisters::d2, VFPRegister::Double};
static constexpr FloatRegister d3 = {FloatRegisters::d3, VFPRegister::Double};
static constexpr FloatRegister d4 = {FloatRegisters::d4, VFPRegister::Double};
static constexpr FloatRegister d5 = {FloatRegisters::d5, VFPRegister::Double};
static constexpr FloatRegister d6 = {FloatRegisters::d6, VFPRegister::Double};
static constexpr FloatRegister d7 = {FloatRegisters::d7, VFPRegister::Double};
static constexpr FloatRegister d8 = {FloatRegisters::d8, VFPRegister::Double};
static constexpr FloatRegister d9 = {FloatRegisters::d9, VFPRegister::Double};
static constexpr FloatRegister d10 = {FloatRegisters::d10, VFPRegister::Double};
static constexpr FloatRegister d11 = {FloatRegisters::d11, VFPRegister::Double};
static constexpr FloatRegister d12 = {FloatRegisters::d12, VFPRegister::Double};
static constexpr FloatRegister d13 = {FloatRegisters::d13, VFPRegister::Double};
static constexpr FloatRegister d14 = {FloatRegisters::d14, VFPRegister::Double};
static constexpr FloatRegister d15 = {FloatRegisters::d15, VFPRegister::Double};

// For maximal awesomeness, 8 should be sufficent. ldrd/strd (dual-register
// load/store) operate in a single cycle when the address they are dealing with
// is 8 byte aligned. Also, the ARM abi wants the stack to be 8 byte aligned at
// function boundaries. I'm trying to make sure this is always true.
static constexpr uint32_t ABIStackAlignment = 8;
static constexpr uint32_t CodeAlignment = 8;
static constexpr uint32_t JitStackAlignment = 8;

static constexpr uint32_t JitStackValueAlignment =
    JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 &&
                  JitStackValueAlignment >= 1,
              "Stack alignment should be a non-zero multiple of sizeof(Value)");

static constexpr uint32_t SimdMemoryAlignment = 8;

static_assert(CodeAlignment % SimdMemoryAlignment == 0,
              "Code alignment should be larger than any of the alignments "
              "which are used for "
              "the constant sections of the code buffer.  Thus it should be "
              "larger than the "
              "alignment for SIMD constants.");

static_assert(JitStackAlignment % SimdMemoryAlignment == 0,
              "Stack alignment should be larger than any of the alignments "
              "which are used for "
              "spilled values.  Thus it should be larger than the alignment "
              "for SIMD accesses.");

static const uint32_t WasmStackAlignment = SimdMemoryAlignment;
static const uint32_t WasmTrapInstructionLength = 4;

// See comments in wasm::GenerateFunctionPrologue.  The difference between these
// is the size of the largest callable prologue on the platform.
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;

static const Scale ScalePointer = TimesFour;

class Instruction;
class InstBranchImm;
uint32_t RM(Register r);
uint32_t RS(Register r);
uint32_t RD(Register r);
uint32_t RT(Register r);
uint32_t RN(Register r);

uint32_t maybeRD(Register r);
uint32_t maybeRT(Register r);
uint32_t maybeRN(Register r);

Register toRN(Instruction i);
Register toRM(Instruction i);
Register toRD(Instruction i);
Register toR(Instruction i);

class VFPRegister;
uint32_t VD(VFPRegister vr);
uint32_t VN(VFPRegister vr);
uint32_t VM(VFPRegister vr);

// For being passed into the generic vfp instruction generator when there is an
// instruction that only takes two registers.
static constexpr VFPRegister NoVFPRegister(VFPRegister::Double, 0, false, true);

struct ImmTag : public Imm32 {
  explicit ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {}
};

struct ImmType : public ImmTag {
  explicit ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {}
};

enum Index {
  Offset = 0 << 21 | 1 << 24,
  PreIndex = 1 << 21 | 1 << 24,
  PostIndex = 0 << 21 | 0 << 24
  // The docs were rather unclear on this. It sounds like
  // 1 << 21 | 0 << 24 encodes dtrt.
};

enum IsImmOp2_ { IsImmOp2 = 1 << 25, IsNotImmOp2 = 0 << 25 };
enum IsImmDTR_ { IsImmDTR = 0 << 25, IsNotImmDTR = 1 << 25 };
// For the extra memory operations, ldrd, ldrsb, ldrh.
enum IsImmEDTR_ { IsImmEDTR = 1 << 22, IsNotImmEDTR = 0 << 22 };

enum ShiftType {
  LSL = 0,   // << 5
  LSR = 1,   // << 5
  ASR = 2,   // << 5
  ROR = 3,   // << 5
  RRX = ROR  // RRX is encoded as ROR with a 0 offset.
};

// Modes for STM/LDM. Names are the suffixes applied to the instruction.
enum DTMMode {
  A = 0 << 24,  // empty / after
  B = 1 << 24,  // full / before
  D = 0 << 23,  // decrement
  I = 1 << 23,  // increment
  DA = D | A,
  DB = D | B,
  IA = I | A,
  IB = I | B
};

enum DTMWriteBack { WriteBack = 1 << 21, NoWriteBack = 0 << 21 };

// Condition code updating mode.
enum SBit {
  SetCC = 1 << 20,   // Set condition code.
  LeaveCC = 0 << 20  // Leave condition code unchanged.
};

enum LoadStore { IsLoad = 1 << 20, IsStore = 0 << 20 };

// You almost never want to use this directly. Instead, you wantto pass in a
// signed constant, and let this bit be implicitly set for you. This is however,
// necessary if we want a negative index.
enum IsUp_ { IsUp = 1 << 23, IsDown = 0 << 23 };
enum ALUOp {
  OpMov = 0xd << 21,
  OpMvn = 0xf << 21,
  OpAnd = 0x0 << 21,
  OpBic = 0xe << 21,
  OpEor = 0x1 << 21,
  OpOrr = 0xc << 21,
  OpAdc = 0x5 << 21,
  OpAdd = 0x4 << 21,
  OpSbc = 0x6 << 21,
  OpSub = 0x2 << 21,
  OpRsb = 0x3 << 21,
  OpRsc = 0x7 << 21,
  OpCmn = 0xb << 21,
  OpCmp = 0xa << 21,
  OpTeq = 0x9 << 21,
  OpTst = 0x8 << 21,
  OpInvalid = -1
};

enum MULOp {
  OpmMul = 0 << 21,
  OpmMla = 1 << 21,
  OpmUmaal = 2 << 21,
  OpmMls = 3 << 21,
  OpmUmull = 4 << 21,
  OpmUmlal = 5 << 21,
  OpmSmull = 6 << 21,
  OpmSmlal = 7 << 21
};
enum BranchTag {
  OpB = 0x0a000000,
  OpBMask = 0x0f000000,
  OpBDestMask = 0x00ffffff,
  OpBl = 0x0b000000,
  OpBlx = 0x012fff30,
  OpBx = 0x012fff10
};

// Just like ALUOp, but for the vfp instruction set.
enum VFPOp {
  OpvMul = 0x2 << 20,
  OpvAdd = 0x3 << 20,
  OpvSub = 0x3 << 20 | 0x1 << 6,
  OpvDiv = 0x8 << 20,
  OpvMov = 0xB << 20 | 0x1 << 6,
  OpvAbs = 0xB << 20 | 0x3 << 6,
  OpvNeg = 0xB << 20 | 0x1 << 6 | 0x1 << 16,
  OpvSqrt = 0xB << 20 | 0x3 << 6 | 0x1 << 16,
  OpvCmp = 0xB << 20 | 0x1 << 6 | 0x4 << 16,
  OpvCmpz = 0xB << 20 | 0x1 << 6 | 0x5 << 16
};

// Negate the operation, AND negate the immediate that we were passed in.
ALUOp ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm,
             Register* negDest);
bool can_dbl(ALUOp op);
bool condsAreSafe(ALUOp op);

// If there is a variant of op that has a dest (think cmp/sub) return that
// variant of it.
ALUOp getDestVariant(ALUOp op);

static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type,
                                              JSReturnReg_Data};
static const ValueOperand softfpReturnOperand = ValueOperand(r1, r0);

// All of these classes exist solely to shuffle data into the various operands.
// For example Operand2 can be an imm8, a register-shifted-by-a-constant or a
// register-shifted-by-a-register. We represent this in C++ by having a base
// class Operand2, which just stores the 32 bits of data as they will be encoded
// in the instruction. You cannot directly create an Operand2 since it is
// tricky, and not entirely sane to do so. Instead, you create one of its child
// classes, e.g. Imm8. Imm8's constructor takes a single integer argument. Imm8
// will verify that its argument can be encoded as an ARM 12 bit imm8, encode it
// using an Imm8data, and finally call its parent's (Operand2) constructor with
// the Imm8data. The Operand2 constructor will then call the Imm8data's encode()
// function to extract the raw bits from it.
//
// In the future, we should be able to extract data from the Operand2 by asking
// it for its component Imm8data structures. The reason this is so horribly
// round-about is we wanted to have Imm8 and RegisterShiftedRegister inherit
// directly from Operand2 but have all of them take up only a single word of
// storage. We also wanted to avoid passing around raw integers at all since
// they are error prone.
class Op2Reg;
class O2RegImmShift;
class O2RegRegShift;

namespace datastore {

class Reg {
  // The "second register".
  uint32_t rm_ : 4;
  // Do we get another register for shifting.
  uint32_t rrs_ : 1;
  uint32_t type_ : 2;
  // We'd like this to be a more sensible encoding, but that would need to be
  // a struct and that would not pack :(
  uint32_t shiftAmount_ : 5;

 protected:
  // Mark as a protected field to avoid unused private field warnings.
  uint32_t pad_ : 20;

 public:
  Reg(uint32_t rm, ShiftType type, uint32_t rsr, uint32_t shiftAmount)
      : rm_(rm), rrs_(rsr), type_(type), shiftAmount_(shiftAmount), pad_(0) {}
  explicit Reg(const Op2Reg& op) { memcpy(this, &op, sizeof(*this)); }

  uint32_t shiftAmount() const { return shiftAmount_; }

  uint32_t encode() const {
    return rm_ | (rrs_ << 4) | (type_ << 5) | (shiftAmount_ << 7);
  }
};

// Op2 has a mode labelled "<imm8m>", which is arm's magical immediate encoding.
// Some instructions actually get 8 bits of data, which is called Imm8Data
// below. These should have edit distance > 1, but this is how it is for now.
class Imm8mData {
  uint32_t data_ : 8;
  uint32_t rot_ : 4;

 protected:
  // Mark as a protected field to avoid unused private field warnings.
  uint32_t buff_ : 19;

 private:
  // Throw in an extra bit that will be 1 if we can't encode this properly.
  // if we can encode it properly, a simple "|" will still suffice to meld it
  // into the instruction.
  uint32_t invalid_ : 1;

 public:
  // Default constructor makes an invalid immediate.
  Imm8mData() : data_(0xff), rot_(0xf), buff_(0), invalid_(true) {}

  Imm8mData(uint32_t data, uint32_t rot)
      : data_(data), rot_(rot), buff_(0), invalid_(false) {
    MOZ_ASSERT(data == data_);
    MOZ_ASSERT(rot == rot_);
  }

  bool invalid() const { return invalid_; }

  uint32_t encode() const {
    MOZ_ASSERT(!invalid_);
    return data_ | (rot_ << 8);
  };
};

class Imm8Data {
  uint32_t imm4L_ : 4;

 protected:
  // Mark as a protected field to avoid unused private field warnings.
  uint32_t pad_ : 4;

 private:
  uint32_t imm4H_ : 4;

 public:
  explicit Imm8Data(uint32_t imm) : imm4L_(imm & 0xf), imm4H_(imm >> 4) {
    MOZ_ASSERT(imm <= 0xff);
  }

  uint32_t encode() const { return imm4L_ | (imm4H_ << 8); };
};

// VLDR/VSTR take an 8 bit offset, which is implicitly left shifted by 2.
class Imm8VFPOffData {
  uint32_t data_;

 public:
  explicit Imm8VFPOffData(uint32_t imm) : data_(imm) {
    MOZ_ASSERT((imm & ~(0xff)) == 0);
  }
  uint32_t encode() const { return data_; };
};

// ARM can magically encode 256 very special immediates to be moved into a
// register.
struct Imm8VFPImmData {
  // This structure's members are public and it has no constructor to
  // initialize them, for a very special reason. Were this structure to
  // have a constructor, the initialization for DoubleEncoder's internal
  // table (see below) would require a rather large static constructor on
  // some of our supported compilers. The known solution to this is to mark
  // the constructor constexpr, but, again, some of our supported
  // compilers don't support constexpr! So we are reduced to public
  // members and eschewing a constructor in hopes that the initialization
  // of DoubleEncoder's table is correct.
  uint32_t imm4L : 4;
  uint32_t imm4H : 4;
  int32_t isInvalid : 24;

  uint32_t encode() const {
    // This assert is an attempting at ensuring that we don't create random
    // instances of this structure and then asking to encode() it.
    MOZ_ASSERT(isInvalid == 0);
    return imm4L | (imm4H << 16);
  };
};

class Imm12Data {
  uint32_t data_ : 12;

 public:
  explicit Imm12Data(uint32_t imm) : data_(imm) { MOZ_ASSERT(data_ == imm); }

  uint32_t encode() const { return data_; }
};

class RIS {
  uint32_t shiftAmount_ : 5;

 public:
  explicit RIS(uint32_t imm) : shiftAmount_(imm) {
    MOZ_ASSERT(shiftAmount_ == imm);
  }

  explicit RIS(Reg r) : shiftAmount_(r.shiftAmount()) {}

  uint32_t encode() const { return shiftAmount_; }
};

class RRS {
 protected:
  // Mark as a protected field to avoid unused private field warnings.
  uint32_t mustZero_ : 1;

 private:
  // The register that holds the shift amount.
  uint32_t rs_ : 4;

 public:
  explicit RRS(uint32_t rs) : rs_(rs) { MOZ_ASSERT(rs_ == rs); }

  uint32_t encode() const { return rs_ << 1; }
};

}  // namespace datastore

class MacroAssemblerARM;
class Operand;

class Operand2 {
  friend class Operand;
  friend class MacroAssemblerARM;
  friend class InstALU;

  uint32_t oper_ : 31;
  uint32_t invalid_ : 1;

 protected:
  explicit Operand2(datastore::Imm8mData base)
      : oper_(base.invalid() ? -1 : (base.encode() | uint32_t(IsImmOp2))),
        invalid_(base.invalid()) {}

  explicit Operand2(datastore::Reg base)
      : oper_(base.encode() | uint32_t(IsNotImmOp2)), invalid_(false) {}

 private:
  explicit Operand2(uint32_t blob) : oper_(blob), invalid_(false) {}

 public:
  bool isO2Reg() const { return !(oper_ & IsImmOp2); }

  Op2Reg toOp2Reg() const;

  bool isImm8() const { return oper_ & IsImmOp2; }

  bool invalid() const { return invalid_; }

  uint32_t encode() const { return oper_; }
};

class Imm8 : public Operand2 {
 public:
  explicit Imm8(uint32_t imm) : Operand2(EncodeImm(imm)) {}

  static datastore::Imm8mData EncodeImm(uint32_t imm) {
    // RotateLeft below may not be called with a shift of zero.
    if (imm <= 0xFF) {
      return datastore::Imm8mData(imm, 0);
    }

    // An encodable integer has a maximum of 8 contiguous set bits,
    // with an optional wrapped left rotation to even bit positions.
    for (int rot = 1; rot < 16; rot++) {
      uint32_t rotimm = mozilla::RotateLeft(imm, rot * 2);
      if (rotimm <= 0xFF) {
        return datastore::Imm8mData(rotimm, rot);
      }
    }
    return datastore::Imm8mData();
  }

  // Pair template?
  struct TwoImm8mData {
    datastore::Imm8mData fst_, snd_;

    TwoImm8mData() = default;

    TwoImm8mData(datastore::Imm8mData fst, datastore::Imm8mData snd)
        : fst_(fst), snd_(snd) {}

    datastore::Imm8mData fst() const { return fst_; }
    datastore::Imm8mData snd() const { return snd_; }
  };

  static TwoImm8mData EncodeTwoImms(uint32_t);
};

class Op2Reg : public Operand2 {
 public:
  explicit Op2Reg(Register rm, ShiftType type, datastore::RIS shiftImm)
      : Operand2(datastore::Reg(rm.code(), type, 0, shiftImm.encode())) {}

  explicit Op2Reg(Register rm, ShiftType type, datastore::RRS shiftReg)
      : Operand2(datastore::Reg(rm.code(), type, 1, shiftReg.encode())) {}
};

static_assert(sizeof(Op2Reg) == sizeof(datastore::Reg),
              "datastore::Reg(const Op2Reg&) constructor relies on Reg/Op2Reg "
              "having same size");

class O2RegImmShift : public Op2Reg {
 public:
  explicit O2RegImmShift(Register rn, ShiftType type, uint32_t shift)
      : Op2Reg(rn, type, datastore::RIS(shift)) {}
};

class O2RegRegShift : public Op2Reg {
 public:
  explicit O2RegRegShift(Register rn, ShiftType type, Register rs)
      : Op2Reg(rn, type, datastore::RRS(rs.code())) {}
};

O2RegImmShift O2Reg(Register r);
O2RegImmShift lsl(Register r, int amt);
O2RegImmShift lsr(Register r, int amt);
O2RegImmShift asr(Register r, int amt);
O2RegImmShift rol(Register r, int amt);
O2RegImmShift ror(Register r, int amt);

O2RegRegShift lsl(Register r, Register amt);
O2RegRegShift lsr(Register r, Register amt);
O2RegRegShift asr(Register r, Register amt);
O2RegRegShift ror(Register r, Register amt);

// An offset from a register to be used for ldr/str. This should include the
// sign bit, since ARM has "signed-magnitude" offsets. That is it encodes an
// unsigned offset, then the instruction specifies if the offset is positive or
// negative. The +/- bit is necessary if the instruction set wants to be able to
// have a negative register offset e.g. ldr pc, [r1,-r2];
class DtrOff {
  uint32_t data_;

 protected:
  explicit DtrOff(datastore::Imm12Data immdata, IsUp_ iu)
      : data_(immdata.encode() | uint32_t(IsImmDTR) | uint32_t(iu)) {}

  explicit DtrOff(datastore::Reg reg, IsUp_ iu = IsUp)
      : data_(reg.encode() | uint32_t(IsNotImmDTR) | iu) {}

 public:
  uint32_t encode() const { return data_; }
};

class DtrOffImm : public DtrOff {
 public:
  explicit DtrOffImm(int32_t imm)
      : DtrOff(datastore::Imm12Data(mozilla::Abs(imm)),
               imm >= 0 ? IsUp : IsDown) {
    MOZ_ASSERT(mozilla::Abs(imm) < 4096);
  }
};

class DtrOffReg : public DtrOff {
  // These are designed to be called by a constructor of a subclass.
  // Constructing the necessary RIS/RRS structures is annoying.

 protected:
  explicit DtrOffReg(Register rn, ShiftType type, datastore::RIS shiftImm,
                     IsUp_ iu = IsUp)
      : DtrOff(datastore::Reg(rn.code(), type, 0, shiftImm.encode()), iu) {}

  explicit DtrOffReg(Register rn, ShiftType type, datastore::RRS shiftReg,
                     IsUp_ iu = IsUp)
      : DtrOff(datastore::Reg(rn.code(), type, 1, shiftReg.encode()), iu) {}
};

class DtrRegImmShift : public DtrOffReg {
 public:
  explicit DtrRegImmShift(Register rn, ShiftType type, uint32_t shift,
                          IsUp_ iu = IsUp)
      : DtrOffReg(rn, type, datastore::RIS(shift), iu) {}
};

class DtrRegRegShift : public DtrOffReg {
 public:
  explicit DtrRegRegShift(Register rn, ShiftType type, Register rs,
                          IsUp_ iu = IsUp)
      : DtrOffReg(rn, type, datastore::RRS(rs.code()), iu) {}
};

// We will frequently want to bundle a register with its offset so that we have
// an "operand" to a load instruction.
class DTRAddr {
  friend class Operand;

  uint32_t data_;

 public:
  explicit DTRAddr(Register reg, DtrOff dtr)
      : data_(dtr.encode() | (reg.code() << 16)) {}

  uint32_t encode() const { return data_; }

  Register getBase() const { return Register::FromCode((data_ >> 16) & 0xf); }
};

// Offsets for the extended data transfer instructions:
// ldrsh, ldrd, ldrsb, etc.
class EDtrOff {
  uint32_t data_;

 protected:
  explicit EDtrOff(datastore::Imm8Data imm8, IsUp_ iu = IsUp)
      : data_(imm8.encode() | IsImmEDTR | uint32_t(iu)) {}

  explicit EDtrOff(Register rm, IsUp_ iu = IsUp)
      : data_(rm.code() | IsNotImmEDTR | iu) {}

 public:
  uint32_t encode() const { return data_; }
};

class EDtrOffImm : public EDtrOff {
 public:
  explicit EDtrOffImm(int32_t imm)
      : EDtrOff(datastore::Imm8Data(mozilla::Abs(imm)),
                (imm >= 0) ? IsUp : IsDown) {
    MOZ_ASSERT(mozilla::Abs(imm) < 256);
  }
};

// This is the most-derived class, since the extended data transfer instructions
// don't support any sort of modifying the "index" operand.
class EDtrOffReg : public EDtrOff {
 public:
  explicit EDtrOffReg(Register rm) : EDtrOff(rm) {}
};

class EDtrAddr {
  uint32_t data_;

 public:
  explicit EDtrAddr(Register r, EDtrOff off) : data_(RN(r) | off.encode()) {}

  uint32_t encode() const { return data_; }
#ifdef DEBUG
  Register maybeOffsetRegister() const {
    if (data_ & IsImmEDTR) {
      return InvalidReg;
    }
    return Register::FromCode(data_ & 0xf);
  }
#endif
};

class VFPOff {
  uint32_t data_;

 protected:
  explicit VFPOff(datastore::Imm8VFPOffData imm, IsUp_ isup)
      : data_(imm.encode() | uint32_t(isup)) {}

 public:
  uint32_t encode() const { return data_; }
};

class VFPOffImm : public VFPOff {
 public:
  explicit VFPOffImm(int32_t imm)
      : VFPOff(datastore::Imm8VFPOffData(mozilla::Abs(imm) / 4),
               imm < 0 ? IsDown : IsUp) {
    MOZ_ASSERT(mozilla::Abs(imm) <= 255 * 4);
  }
};

class VFPAddr {
  friend class Operand;

  uint32_t data_;

 public:
  explicit VFPAddr(Register base, VFPOff off)
      : data_(RN(base) | off.encode()) {}

  uint32_t encode() const { return data_; }
};

class VFPImm {
  uint32_t data_;

 public:
  explicit VFPImm(uint32_t topWordOfDouble);

  static const VFPImm One;

  uint32_t encode() const { return data_; }
  bool isValid() const { return data_ != (~0U); }
};

// A BOffImm is an immediate that is used for branches. Namely, it is the offset
// that will be encoded in the branch instruction. This is the only sane way of
// constructing a branch.
class BOffImm {
  friend class InstBranchImm;

  uint32_t data_;

 public:
  explicit BOffImm(int offset) : data_((offset - 8) >> 2 & 0x00ffffff) {
    MOZ_ASSERT((offset & 0x3) == 0);
    if (!IsInRange(offset)) {
      MOZ_CRASH("BOffImm offset out of range");
    }
  }

  explicit BOffImm() : data_(INVALID) {}

 private:
  explicit BOffImm(const Instruction& inst);

 public:
  static const uint32_t INVALID = 0x00800000;

  uint32_t encode() const { return data_; }
  int32_t decode() const { return ((int32_t(data_) << 8) >> 6) + 8; }

  static bool IsInRange(int offset) {
    if ((offset - 8) < -33554432) {
      return false;
    }
    if ((offset - 8) > 33554428) {
      return false;
    }
    return true;
  }

  bool isInvalid() const { return data_ == INVALID; }
  Instruction* getDest(Instruction* src) const;
};

class Imm16 {
  uint32_t lower_ : 12;

 protected:
  // Mark as a protected field to avoid unused private field warnings.
  uint32_t pad_ : 4;

 private:
  uint32_t upper_ : 4;
  uint32_t invalid_ : 12;

 public:
  explicit Imm16();
  explicit Imm16(uint32_t imm);
  explicit Imm16(Instruction& inst);

  uint32_t encode() const { return lower_ | (upper_ << 16); }
  uint32_t decode() const { return lower_ | (upper_ << 12); }

  bool isInvalid() const { return invalid_; }
};

// I would preffer that these do not exist, since there are essentially no
// instructions that would ever take more than one of these, however, the MIR
// wants to only have one type of arguments to functions, so bugger.
class Operand {
  // The encoding of registers is the same for OP2, DTR and EDTR yet the type
  // system doesn't let us express this, so choices must be made.
 public:
  enum class Tag : uint8_t { OP2, MEM, FOP };

 private:
  uint32_t tag_ : 8;
  uint32_t reg_ : 5;
  int32_t offset_;

 protected:
  Operand(Tag tag, uint32_t regCode, int32_t offset)
      : tag_(static_cast<uint32_t>(tag)), reg_(regCode), offset_(offset) {}

 public:
  explicit Operand(Register reg) : Operand(Tag::OP2, reg.code(), 0) {}

  explicit Operand(FloatRegister freg) : Operand(Tag::FOP, freg.code(), 0) {}

  explicit Operand(Register base, Imm32 off)
      : Operand(Tag::MEM, base.code(), off.value) {}

  explicit Operand(Register base, int32_t off)
      : Operand(Tag::MEM, base.code(), off) {}

  explicit Operand(const Address& addr)
      : Operand(Tag::MEM, addr.base.code(), addr.offset) {}

 public:
  Tag tag() const { return static_cast<Tag>(tag_); }

  Operand2 toOp2() const {
    MOZ_ASSERT(tag() == Tag::OP2);
    return O2Reg(Register::FromCode(reg_));
  }

  Register toReg() const {
    MOZ_ASSERT(tag() == Tag::OP2);
    return Register::FromCode(reg_);
  }

  Address toAddress() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return Address(Register::FromCode(reg_), offset_);
  }
  int32_t disp() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return offset_;
  }

  int32_t base() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return reg_;
  }
  Register baseReg() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return Register::FromCode(reg_);
  }
  DTRAddr toDTRAddr() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return DTRAddr(baseReg(), DtrOffImm(offset_));
  }
  VFPAddr toVFPAddr() const {
    MOZ_ASSERT(tag() == Tag::MEM);
    return VFPAddr(baseReg(), VFPOffImm(offset_));
  }
};

inline Imm32 Imm64::firstHalf() const { return low(); }

inline Imm32 Imm64::secondHalf() const { return hi(); }

class InstructionIterator {
 private:
  Instruction* inst_;

 public:
  explicit InstructionIterator(Instruction* inst) : inst_(inst) {
    maybeSkipAutomaticInstructions();
  }

  // Advances to the next intentionally-inserted instruction.
  Instruction* next();

  // Advances past any automatically-inserted instructions.
  Instruction* maybeSkipAutomaticInstructions();

  Instruction* cur() const { return inst_; }

 protected:
  // Advances past the given number of instruction-length bytes.
  inline void advanceRaw(ptrdiff_t instructions = 1);
};

class Assembler;
typedef js::jit::AssemblerBufferWithConstantPools<1024, 4, Instruction,
                                                  Assembler>
    ARMBuffer;

class Assembler : public AssemblerShared {
 public:
  // ARM conditional constants:
  enum ARMCondition : uint32_t {
    EQ = 0x00000000,  // Zero
    NE = 0x10000000,  // Non-zero
    CS = 0x20000000,
    CC = 0x30000000,
    MI = 0x40000000,
    PL = 0x50000000,
    VS = 0x60000000,
    VC = 0x70000000,
    HI = 0x80000000,
    LS = 0x90000000,
    GE = 0xa0000000,
    LT = 0xb0000000,
    GT = 0xc0000000,
    LE = 0xd0000000,
    AL = 0xe0000000
  };

  enum Condition : uint32_t {
    Equal = EQ,
    NotEqual = NE,
    Above = HI,
    AboveOrEqual = CS,
    Below = CC,
    BelowOrEqual = LS,
    GreaterThan = GT,
    GreaterThanOrEqual = GE,
    LessThan = LT,
    LessThanOrEqual = LE,
    Overflow = VS,
    CarrySet = CS,
    CarryClear = CC,
    Signed = MI,
    NotSigned = PL,
    Zero = EQ,
    NonZero = NE,
    Always = AL,

    VFP_NotEqualOrUnordered = NE,
    VFP_Equal = EQ,
    VFP_Unordered = VS,
    VFP_NotUnordered = VC,
    VFP_GreaterThanOrEqualOrUnordered = CS,
    VFP_GreaterThanOrEqual = GE,
    VFP_GreaterThanOrUnordered = HI,
    VFP_GreaterThan = GT,
    VFP_LessThanOrEqualOrUnordered = LE,
    VFP_LessThanOrEqual = LS,
    VFP_LessThanOrUnordered = LT,
    VFP_LessThan = CC  // MI is valid too.
  };

  // Bit set when a DoubleCondition does not map to a single ARM condition.
  // The macro assembler has to special-case these conditions, or else
  // ConditionFromDoubleCondition will complain.
  static const int DoubleConditionBitSpecial = 0x1;

  enum DoubleCondition : uint32_t {
    // These conditions will only evaluate to true if the comparison is
    // ordered - i.e. neither operand is NaN.
    DoubleOrdered = VFP_NotUnordered,
    DoubleEqual = VFP_Equal,
    DoubleNotEqual = VFP_NotEqualOrUnordered | DoubleConditionBitSpecial,
    DoubleGreaterThan = VFP_GreaterThan,
    DoubleGreaterThanOrEqual = VFP_GreaterThanOrEqual,
    DoubleLessThan = VFP_LessThan,
    DoubleLessThanOrEqual = VFP_LessThanOrEqual,
    // If either operand is NaN, these conditions always evaluate to true.
    DoubleUnordered = VFP_Unordered,
    DoubleEqualOrUnordered = VFP_Equal | DoubleConditionBitSpecial,
    DoubleNotEqualOrUnordered = VFP_NotEqualOrUnordered,
    DoubleGreaterThanOrUnordered = VFP_GreaterThanOrUnordered,
    DoubleGreaterThanOrEqualOrUnordered = VFP_GreaterThanOrEqualOrUnordered,
    DoubleLessThanOrUnordered = VFP_LessThanOrUnordered,
    DoubleLessThanOrEqualOrUnordered = VFP_LessThanOrEqualOrUnordered
  };

  Condition getCondition(uint32_t inst) {
    return (Condition)(0xf0000000 & inst);
  }
  static inline Condition ConditionFromDoubleCondition(DoubleCondition cond) {
    MOZ_ASSERT(!(cond & DoubleConditionBitSpecial));
    return static_cast<Condition>(cond);
  }

  enum BarrierOption {
    BarrierSY = 15,  // Full system barrier
    BarrierST = 14   // StoreStore barrier
  };

  // This should be protected, but since CodeGenerator wants to use it, it
  // needs to go out here :(

  BufferOffset nextOffset() { return m_buffer.nextOffset(); }

 protected:
  // Shim around AssemblerBufferWithConstantPools::allocEntry.
  BufferOffset allocLiteralLoadEntry(size_t numInst, unsigned numPoolEntries,
                                     PoolHintPun& php, uint8_t* data,
                                     const LiteralDoc& doc = LiteralDoc(),
                                     ARMBuffer::PoolEntry* pe = nullptr,
                                     bool loadToPC = false);

  Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }

#ifdef JS_DISASM_ARM
  typedef disasm::EmbeddedVector<char, disasm::ReasonableBufferSize>
      DisasmBuffer;

  static void disassembleInstruction(const Instruction* i,
                                     DisasmBuffer& buffer);

  void initDisassembler();
  void finishDisassembler();
  void spew(Instruction* i);
  void spewBranch(Instruction* i, const LabelDoc& target);
  void spewLiteralLoad(PoolHintPun& php, bool loadToPC, const Instruction* offs,
                       const LiteralDoc& doc);
#endif

 public:
  void resetCounter();
  static uint32_t NopFill;
  static uint32_t GetNopFill();
  static uint32_t AsmPoolMaxOffset;
  static uint32_t GetPoolMaxOffset();

 protected:
  // Structure for fixing up pc-relative loads/jumps when a the machine code
  // gets moved (executable copy, gc, etc.).
  class RelativePatch {
    void* target_;
    RelocationKind kind_;

   public:
    RelativePatch(void* target, RelocationKind kind)
        : target_(target), kind_(kind) {}
    void* target() const { return target_; }
    RelocationKind kind() const { return kind_; }
  };

  // TODO: this should actually be a pool-like object. It is currently a big
  // hack, and probably shouldn't exist.
  js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;

  CompactBufferWriter jumpRelocations_;
  CompactBufferWriter dataRelocations_;

  ARMBuffer m_buffer;

#ifdef JS_DISASM_ARM
  DisassemblerSpew spew_;
#endif

 public:
  // For the alignment fill use NOP: 0x0320f000 or (Always | InstNOP::NopInst).
  // For the nopFill use a branch to the next instruction: 0xeaffffff.
  Assembler()
      : m_buffer(1, 1, 8, GetPoolMaxOffset(), 8, 0xe320f000, 0xeaffffff,
                 GetNopFill()),
        isFinished(false),
        dtmActive(false),
        dtmCond(Always) {
#ifdef JS_DISASM_ARM
    initDisassembler();
#endif
  }

  ~Assembler() {
#ifdef JS_DISASM_ARM
    finishDisassembler();
#endif
  }

  void setUnlimitedBuffer() { m_buffer.setUnlimited(); }

  static Condition InvertCondition(Condition cond);
  static Condition UnsignedCondition(Condition cond);
  static Condition ConditionWithoutEqual(Condition cond);

  static DoubleCondition InvertCondition(DoubleCondition cond);

  void writeDataRelocation(BufferOffset offset, ImmGCPtr ptr) {
    // Raw GC pointer relocations and Value relocations both end up in
    // Assembler::TraceDataRelocations.
    if (ptr.value) {
      if (gc::IsInsideNursery(ptr.value)) {
        embedsNurseryPointers_ = true;
      }
      dataRelocations_.writeUnsigned(offset.getOffset());
    }
  }

  enum RelocBranchStyle { B_MOVWT, B_LDR_BX, B_LDR, B_MOVW_ADD };

  enum RelocStyle { L_MOVWT, L_LDR };

 public:
  // Given the start of a Control Flow sequence, grab the value that is
  // finally branched to given the start of a function that loads an address
  // into a register get the address that ends up in the register.
  template <class Iter>
  static const uint32_t* GetCF32Target(Iter* iter);

  static uintptr_t GetPointer(uint8_t*);
  static const uint32_t* GetPtr32Target(InstructionIterator iter,
                                        Register* dest = nullptr,
                                        RelocStyle* rs = nullptr);

  bool oom() const;

  void setPrinter(Sprinter* sp) {
#ifdef JS_DISASM_ARM
    spew_.setPrinter(sp);
#endif
  }

  Register getStackPointer() const { return StackPointer; }

 private:
  bool isFinished;

 protected:
  LabelDoc refLabel(const Label* label) {
#ifdef JS_DISASM_ARM
    return spew_.refLabel(label);
#else
    return LabelDoc();
#endif
  }

 public:
  void finish();
  bool appendRawCode(const uint8_t* code, size_t numBytes);
  bool reserve(size_t size);
  bool swapBuffer(wasm::Bytes& bytes);
  void copyJumpRelocationTable(uint8_t* dest);
  void copyDataRelocationTable(uint8_t* dest);

  // Size of the instruction stream, in bytes, after pools are flushed.
  size_t size() const;
  // Size of the jump relocation table, in bytes.
  size_t jumpRelocationTableBytes() const;
  size_t dataRelocationTableBytes() const;

  // Size of the data table, in bytes.
  size_t bytesNeeded() const;

  // Write a single instruction into the instruction stream.  Very hot,
  // inlined for performance
  MOZ_ALWAYS_INLINE BufferOffset writeInst(uint32_t x) {
    MOZ_ASSERT(hasCreator());
    BufferOffset offs = m_buffer.putInt(x);
#ifdef JS_DISASM_ARM
    spew(m_buffer.getInstOrNull(offs));
#endif
    return offs;
  }

  // As above, but also mark the instruction as a branch.  Very hot, inlined
  // for performance
  MOZ_ALWAYS_INLINE BufferOffset
  writeBranchInst(uint32_t x, const LabelDoc& documentation) {
    BufferOffset offs = m_buffer.putInt(x);
#ifdef JS_DISASM_ARM
    spewBranch(m_buffer.getInstOrNull(offs), documentation);
#endif
    return offs;
  }

  // Write a placeholder NOP for a branch into the instruction stream
  // (in order to adjust assembler addresses and mark it as a branch), it will
  // be overwritten subsequently.
  BufferOffset allocBranchInst();

  // A static variant for the cases where we don't want to have an assembler
  // object.
  static void WriteInstStatic(uint32_t x, uint32_t* dest);

 public:
  void writeCodePointer(CodeLabel* label);

  void haltingAlign(int alignment);
  void nopAlign(int alignment);
  BufferOffset as_nop();
  BufferOffset as_alu(Register dest, Register src1, Operand2 op2, ALUOp op,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_mov(Register dest, Operand2 op2, SBit s = LeaveCC,
                      Condition c = Always);
  BufferOffset as_mvn(Register dest, Operand2 op2, SBit s = LeaveCC,
                      Condition c = Always);

  static void as_alu_patch(Register dest, Register src1, Operand2 op2, ALUOp op,
                           SBit s, Condition c, uint32_t* pos);
  static void as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c,
                           uint32_t* pos);

  // Logical operations:
  BufferOffset as_and(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_bic(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_eor(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_orr(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  // Reverse byte operations:
  BufferOffset as_rev(Register dest, Register src, Condition c = Always);
  BufferOffset as_rev16(Register dest, Register src, Condition c = Always);
  BufferOffset as_revsh(Register dest, Register src, Condition c = Always);
  // Mathematical operations:
  BufferOffset as_adc(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_add(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_sbc(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_sub(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_rsb(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_rsc(Register dest, Register src1, Operand2 op2,
                      SBit s = LeaveCC, Condition c = Always);
  // Test operations:
  BufferOffset as_cmn(Register src1, Operand2 op2, Condition c = Always);
  BufferOffset as_cmp(Register src1, Operand2 op2, Condition c = Always);
  BufferOffset as_teq(Register src1, Operand2 op2, Condition c = Always);
  BufferOffset as_tst(Register src1, Operand2 op2, Condition c = Always);

  // Sign extension operations:
  BufferOffset as_sxtb(Register dest, Register src, int rotate,
                       Condition c = Always);
  BufferOffset as_sxth(Register dest, Register src, int rotate,
                       Condition c = Always);
  BufferOffset as_uxtb(Register dest, Register src, int rotate,
                       Condition c = Always);
  BufferOffset as_uxth(Register dest, Register src, int rotate,
                       Condition c = Always);

  // Not quite ALU worthy, but useful none the less: These also have the issue
  // of these being formatted completly differently from the standard ALU
  // operations.
  BufferOffset as_movw(Register dest, Imm16 imm, Condition c = Always);
  BufferOffset as_movt(Register dest, Imm16 imm, Condition c = Always);

  static void as_movw_patch(Register dest, Imm16 imm, Condition c,
                            Instruction* pos);
  static void as_movt_patch(Register dest, Imm16 imm, Condition c,
                            Instruction* pos);

  BufferOffset as_genmul(Register d1, Register d2, Register rm, Register rn,
                         MULOp op, SBit s, Condition c = Always);
  BufferOffset as_mul(Register dest, Register src1, Register src2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_mla(Register dest, Register acc, Register src1, Register src2,
                      SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_umaal(Register dest1, Register dest2, Register src1,
                        Register src2, Condition c = Always);
  BufferOffset as_mls(Register dest, Register acc, Register src1, Register src2,
                      Condition c = Always);
  BufferOffset as_umull(Register dest1, Register dest2, Register src1,
                        Register src2, SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_umlal(Register dest1, Register dest2, Register src1,
                        Register src2, SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_smull(Register dest1, Register dest2, Register src1,
                        Register src2, SBit s = LeaveCC, Condition c = Always);
  BufferOffset as_smlal(Register dest1, Register dest2, Register src1,
                        Register src2, SBit s = LeaveCC, Condition c = Always);

  BufferOffset as_sdiv(Register dest, Register num, Register div,
                       Condition c = Always);
  BufferOffset as_udiv(Register dest, Register num, Register div,
                       Condition c = Always);
  BufferOffset as_clz(Register dest, Register src, Condition c = Always);

  // Data transfer instructions: ldr, str, ldrb, strb.
  // Using an int to differentiate between 8 bits and 32 bits is overkill.
  BufferOffset as_dtr(LoadStore ls, int size, Index mode, Register rt,
                      DTRAddr addr, Condition c = Always);

  static void as_dtr_patch(LoadStore ls, int size, Index mode, Register rt,
                           DTRAddr addr, Condition c, uint32_t* dest);

  // Handles all of the other integral data transferring functions:
  // ldrsb, ldrsh, ldrd, etc. The size is given in bits.
  BufferOffset as_extdtr(LoadStore ls, int size, bool IsSigned, Index mode,
                         Register rt, EDtrAddr addr, Condition c = Always);

  BufferOffset as_dtm(LoadStore ls, Register rn, uint32_t mask, DTMMode mode,
                      DTMWriteBack wb, Condition c = Always);

  // Overwrite a pool entry with new data.
  static void WritePoolEntry(Instruction* addr, Condition c, uint32_t data);

  // Load a 32 bit immediate from a pool into a register.
  BufferOffset as_Imm32Pool(Register dest, uint32_t value,
                            Condition c = Always);

  // Load a 64 bit floating point immediate from a pool into a register.
  BufferOffset as_FImm64Pool(VFPRegister dest, double value,
                             Condition c = Always);
  // Load a 32 bit floating point immediate from a pool into a register.
  BufferOffset as_FImm32Pool(VFPRegister dest, float value,
                             Condition c = Always);

  // Atomic instructions: ldrexd, ldrex, ldrexh, ldrexb, strexd, strex, strexh,
  // strexb.
  //
  // The doubleword, halfword, and byte versions are available from ARMv6K
  // forward.
  //
  // The word versions are available from ARMv6 forward and can be used to
  // implement the halfword and byte versions on older systems.

  // LDREXD rt, rt2, [rn].  Constraint: rt even register, rt2=rt+1.
  BufferOffset as_ldrexd(Register rt, Register rt2, Register rn,
                         Condition c = Always);

  // LDREX rt, [rn]
  BufferOffset as_ldrex(Register rt, Register rn, Condition c = Always);
  BufferOffset as_ldrexh(Register rt, Register rn, Condition c = Always);
  BufferOffset as_ldrexb(Register rt, Register rn, Condition c = Always);

  // STREXD rd, rt, rt2, [rn].  Constraint: rt even register, rt2=rt+1.
  BufferOffset as_strexd(Register rd, Register rt, Register rt2, Register rn,
                         Condition c = Always);

  // STREX rd, rt, [rn].  Constraint: rd != rn, rd != rt.
  BufferOffset as_strex(Register rd, Register rt, Register rn,
                        Condition c = Always);
  BufferOffset as_strexh(Register rd, Register rt, Register rn,
                         Condition c = Always);
  BufferOffset as_strexb(Register rd, Register rt, Register rn,
                         Condition c = Always);

  // CLREX
  BufferOffset as_clrex();

  // Memory synchronization.
  // These are available from ARMv7 forward.
  BufferOffset as_dmb(BarrierOption option = BarrierSY);
  BufferOffset as_dsb(BarrierOption option = BarrierSY);
  BufferOffset as_isb();

  // Memory synchronization for architectures before ARMv7.
  BufferOffset as_dsb_trap();
  BufferOffset as_dmb_trap();
  BufferOffset as_isb_trap();

  // Speculation barrier
  BufferOffset as_csdb();

  // Control flow stuff:

  // bx can *only* branch to a register never to an immediate.
  BufferOffset as_bx(Register r, Condition c = Always);

  // Branch can branch to an immediate *or* to a register. Branches to
  // immediates are pc relative, branches to registers are absolute.
  BufferOffset as_b(BOffImm off, Condition c, Label* documentation = nullptr);

  BufferOffset as_b(Label* l, Condition c = Always);
  BufferOffset as_b(BOffImm off, Condition c, BufferOffset inst);

  // blx can go to either an immediate or a register. When blx'ing to a
  // register, we change processor mode depending on the low bit of the
  // register when blx'ing to an immediate, we *always* change processor
  // state.
  BufferOffset as_blx(Label* l);

  BufferOffset as_blx(Register r, Condition c = Always);
  BufferOffset as_bl(BOffImm off, Condition c, Label* documentation = nullptr);
  // bl can only branch+link to an immediate, never to a register it never
  // changes processor state.
  BufferOffset as_bl();
  // bl #imm can have a condition code, blx #imm cannot.
  // blx reg can be conditional.
  BufferOffset as_bl(Label* l, Condition c);
  BufferOffset as_bl(BOffImm off, Condition c, BufferOffset inst);

  BufferOffset as_mrs(Register r, Condition c = Always);
  BufferOffset as_msr(Register r, Condition c = Always);

  // VFP instructions!
 private:
  enum vfp_size { IsDouble = 1 << 8, IsSingle = 0 << 8 };

  BufferOffset writeVFPInst(vfp_size sz, uint32_t blob);

  static void WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest);

  // Unityped variants: all registers hold the same (ieee754 single/double)
  // notably not included are vcvt; vmov vd, #imm; vmov rt, vn.
  BufferOffset as_vfp_float(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                            VFPOp op, Condition c = Always);

 public:
  BufferOffset as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                       Condition c = Always);
  BufferOffset as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                       Condition c = Always);
  BufferOffset as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                       Condition c = Always);
  BufferOffset as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                        Condition c = Always);
  BufferOffset as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                        Condition c = Always);
  BufferOffset as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                        Condition c = Always);
  BufferOffset as_vneg(VFPRegister vd, VFPRegister vm, Condition c = Always);
  BufferOffset as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c = Always);
  BufferOffset as_vabs(VFPRegister vd, VFPRegister vm, Condition c = Always);
  BufferOffset as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm,
                       Condition c = Always);
  BufferOffset as_vcmp(VFPRegister vd, VFPRegister vm, Condition c = Always);
  BufferOffset as_vcmpz(VFPRegister vd, Condition c = Always);

  // Specifically, a move between two same sized-registers.
  BufferOffset as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c = Always);

  // Transfer between Core and VFP.
  enum FloatToCore_ { FloatToCore = 1 << 20, CoreToFloat = 0 << 20 };

 private:
  enum VFPXferSize { WordTransfer = 0x02000010, DoubleTransfer = 0x00400010 };

 public:
  // Unlike the next function, moving between the core registers and vfp
  // registers can't be *that* properly typed. Namely, since I don't want to
  // munge the type VFPRegister to also include core registers. Thus, the core
  // and vfp registers are passed in based on their type, and src/dest is
  // determined by the float2core.

  BufferOffset as_vxfer(Register vt1, Register vt2, VFPRegister vm,
                        FloatToCore_ f2c, Condition c = Always, int idx = 0);

  // Our encoding actually allows just the src and the dest (and their types)
  // to uniquely specify the encoding that we are going to use.
  BufferOffset as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR = false,
                       Condition c = Always);

  // Hard coded to a 32 bit fixed width result for now.
  BufferOffset as_vcvtFixed(VFPRegister vd, bool isSigned, uint32_t fixedPoint,
                            bool toFixed, Condition c = Always);

  // Transfer between VFP and memory.
  BufferOffset as_vdtr(LoadStore ls, VFPRegister vd, VFPAddr addr,
                       Condition c = Always /* vfp doesn't have a wb option*/);

  static void as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr,
                            Condition c /* vfp doesn't have a wb option */,
                            uint32_t* dest);

  // VFP's ldm/stm work differently from the standard arm ones. You can only
  // transfer a range.

  BufferOffset as_vdtm(LoadStore st, Register rn, VFPRegister vd, int length,
                       /* also has update conditions */ Condition c = Always);

  // vldr/vstr variants that handle unaligned accesses.  These encode as NEON
  // single-element instructions and can only be used if NEON is available.
  // Here, vd must be tagged as a float or double register.
  BufferOffset as_vldr_unaligned(VFPRegister vd, Register rn);
  BufferOffset as_vstr_unaligned(VFPRegister vd, Register rn);

  BufferOffset as_vimm(VFPRegister vd, VFPImm imm, Condition c = Always);

  BufferOffset as_vmrs(Register r, Condition c = Always);
  BufferOffset as_vmsr(Register r, Condition c = Always);

  // Label operations.
  bool nextLink(BufferOffset b, BufferOffset* next);
  void bind(Label* label, BufferOffset boff = BufferOffset());
  uint32_t currentOffset() { return nextOffset().getOffset(); }
  void retarget(Label* label, Label* target);
  // I'm going to pretend this doesn't exist for now.
  void retarget(Label* label, void* target, RelocationKind reloc);

  static void Bind(uint8_t* rawCode, const CodeLabel& label);

  void as_bkpt();
  BufferOffset as_illegal_trap();

 public:
  static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
                                   CompactBufferReader& reader);
  static void TraceDataRelocations(JSTracer* trc, JitCode* code,
                                   CompactBufferReader& reader);

  void assertNoGCThings() const {
#ifdef DEBUG
    MOZ_ASSERT(dataRelocations_.length() == 0);
    for (auto& j : jumps_) {
      MOZ_ASSERT(j.kind() == RelocationKind::HARDCODED);
    }
#endif
  }

  static bool SupportsFloatingPoint() { return HasVFP(); }
  static bool SupportsUnalignedAccesses() { return HasARMv7(); }
  // Note, returning false here is technically wrong, but one has to go via the
  // as_vldr_unaligned and as_vstr_unaligned instructions to get proper behavior
  // and those are NEON-specific and have to be asked for specifically.
  static bool SupportsFastUnalignedFPAccesses() { return false; }

  static bool HasRoundInstruction(RoundingMode mode) { return false; }

 protected:
  void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
    enoughMemory_ &= jumps_.append(RelativePatch(target.value, kind));
    if (kind == RelocationKind::JITCODE) {
      jumpRelocations_.writeUnsigned(src.getOffset());
    }
  }

 public:
  // The buffer is about to be linked, make sure any constant pools or excess
  // bookkeeping has been flushed to the instruction stream.
  void flush() {
    MOZ_ASSERT(!isFinished);
    m_buffer.flushPool();
    return;
  }

  void comment(const char* msg) {
#ifdef JS_DISASM_ARM
    spew_.spew("; %s", msg);
#endif
  }

  // Copy the assembly code to the given buffer, and perform any pending
  // relocations relying on the target address.
  void executableCopy(uint8_t* buffer);

  // Actual assembly emitting functions.

  // Since I can't think of a reasonable default for the mode, I'm going to
  // leave it as a required argument.
  void startDataTransferM(LoadStore ls, Register rm, DTMMode mode,
                          DTMWriteBack update = NoWriteBack,
                          Condition c = Always) {
    MOZ_ASSERT(!dtmActive);
    dtmUpdate = update;
    dtmBase = rm;
    dtmLoadStore = ls;
    dtmLastReg = -1;
    dtmRegBitField = 0;
    dtmActive = 1;
    dtmCond = c;
    dtmMode = mode;
  }

  void transferReg(Register rn) {
    MOZ_ASSERT(dtmActive);
    MOZ_ASSERT(rn.code() > dtmLastReg);
    dtmRegBitField |= 1 << rn.code();
    if (dtmLoadStore == IsLoad && rn.code() == 13 && dtmBase.code() == 13) {
      MOZ_CRASH("ARM Spec says this is invalid");
    }
  }
  void finishDataTransfer() {
    dtmActive = false;
    as_dtm(dtmLoadStore, dtmBase, dtmRegBitField, dtmMode, dtmUpdate, dtmCond);
  }

  void startFloatTransferM(LoadStore ls, Register rm, DTMMode mode,
                           DTMWriteBack update = NoWriteBack,
                           Condition c = Always) {
    MOZ_ASSERT(!dtmActive);
    dtmActive = true;
    dtmUpdate = update;
    dtmLoadStore = ls;
    dtmBase = rm;
    dtmCond = c;
    dtmLastReg = -1;
    dtmMode = mode;
    dtmDelta = 0;
  }
  void transferFloatReg(VFPRegister rn) {
    if (dtmLastReg == -1) {
      vdtmFirstReg = rn.code();
    } else {
      if (dtmDelta == 0) {
        dtmDelta = rn.code() - dtmLastReg;
        MOZ_ASSERT(dtmDelta == 1 || dtmDelta == -1);
      }
      MOZ_ASSERT(dtmLastReg >= 0);
      MOZ_ASSERT(rn.code() == unsigned(dtmLastReg) + dtmDelta);
    }

    dtmLastReg = rn.code();
  }
  void finishFloatTransfer() {
    MOZ_ASSERT(dtmActive);
    dtmActive = false;
    MOZ_ASSERT(dtmLastReg != -1);
    dtmDelta = dtmDelta ? dtmDelta : 1;
    // The operand for the vstr/vldr instruction is the lowest register in the
    // range.
    int low = std::min(dtmLastReg, vdtmFirstReg);
    int high = std::max(dtmLastReg, vdtmFirstReg);
    // Fencepost problem.
    int len = high - low + 1;
    // vdtm can only transfer 16 registers at once.  If we need to transfer
    // more, then either hoops are necessary, or we need to be updating the
    // register.
    MOZ_ASSERT_IF(len > 16, dtmUpdate == WriteBack);

    int adjustLow = dtmLoadStore == IsStore ? 0 : 1;
    int adjustHigh = dtmLoadStore == IsStore ? -1 : 0;
    while (len > 0) {
      // Limit the instruction to 16 registers.
      int curLen = std::min(len, 16);
      // If it is a store, we want to start at the high end and move down
      // (e.g. vpush d16-d31; vpush d0-d15).
      int curStart = (dtmLoadStore == IsStore) ? high - curLen + 1 : low;
      as_vdtm(dtmLoadStore, dtmBase,
              VFPRegister(FloatRegister::FromCode(curStart)), curLen, dtmCond);
      // Update the bounds.
      low += adjustLow * curLen;
      high += adjustHigh * curLen;
      // Update the length parameter.
      len -= curLen;
    }
  }

 private:
  int dtmRegBitField;
  int vdtmFirstReg;
  int dtmLastReg;
  int dtmDelta;
  Register dtmBase;
  DTMWriteBack dtmUpdate;
  DTMMode dtmMode;
  LoadStore dtmLoadStore;
  bool dtmActive;
  Condition dtmCond;

 public:
  enum {
    PadForAlign8 = (int)0x00,
    PadForAlign16 = (int)0x0000,
    PadForAlign32 = (int)0xe12fff7f  // 'bkpt 0xffff'
  };

  // API for speaking with the IonAssemblerBufferWithConstantPools generate an
  // initial placeholder instruction that we want to later fix up.
  static void InsertIndexIntoTag(uint8_t* load, uint32_t index);

  // Take the stub value that was written in before, and write in an actual
  // load using the index we'd computed previously as well as the address of
  // the pool start.
  static void PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr);

  // We're not tracking short-range branches for ARM for now.
  static void PatchShortRangeBranchToVeneer(ARMBuffer*, unsigned rangeIdx,
                                            BufferOffset deadline,
                                            BufferOffset veneer) {
    MOZ_CRASH();
  }
  // END API

  // Move our entire pool into the instruction stream. This is to force an
  // opportunistic dump of the pool, prefferably when it is more convenient to
  // do a dump.
  void flushBuffer();
  void enterNoPool(size_t maxInst);
  void leaveNoPool();
  void enterNoNops();
  void leaveNoNops();

  static void WritePoolHeader(uint8_t* start, Pool* p, bool isNatural);
  static void WritePoolGuard(BufferOffset branch, Instruction* inst,
                             BufferOffset dest);

  static uint32_t PatchWrite_NearCallSize();
  static uint32_t NopSize() { return 4; }
  static void PatchWrite_NearCall(CodeLocationLabel start,
                                  CodeLocationLabel toCall);
  static void PatchDataWithValueCheck(CodeLocationLabel label,
                                      PatchedImmPtr newValue,
                                      PatchedImmPtr expectedValue);
  static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
                                      ImmPtr expectedValue);
  static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);

  static uint32_t AlignDoubleArg(uint32_t offset) { return (offset + 1) & ~1; }
  static uint8_t* NextInstruction(uint8_t* instruction,
                                  uint32_t* count = nullptr);

  // Toggle a jmp or cmp emitted by toggledJump().
  static void ToggleToJmp(CodeLocationLabel inst_);
  static void ToggleToCmp(CodeLocationLabel inst_);

  static size_t ToggledCallSize(uint8_t* code);
  static void ToggleCall(CodeLocationLabel inst_, bool enabled);

  void processCodeLabels(uint8_t* rawCode);

  void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
                                   const Disassembler::HeapAccess& heapAccess) {
    // Implement this if we implement a disassembler.
  }
};  // Assembler

// An Instruction is a structure for both encoding and decoding any and all ARM
// instructions. Many classes have not been implemented thus far.
class Instruction {
  uint32_t data;

 protected:
  // This is not for defaulting to always, this is for instructions that
  // cannot be made conditional, and have the usually invalid 4b1111 cond
  // field.
  explicit Instruction(uint32_t data_, bool fake = false)
      : data(data_ | 0xf0000000) {
    MOZ_ASSERT(fake || ((data_ & 0xf0000000) == 0));
  }
  // Standard constructor.
  Instruction(uint32_t data_, Assembler::Condition c)
      : data(data_ | (uint32_t)c) {
    MOZ_ASSERT((data_ & 0xf0000000) == 0);
  }
  // You should never create an instruction directly. You should create a more
  // specific instruction which will eventually call one of these constructors
  // for you.
 public:
  uint32_t encode() const { return data; }
  // Check if this instruction is really a particular case.
  template <class C>
  bool is() const {
    return C::IsTHIS(*this);
  }

  // Safely get a more specific variant of this pointer.
  template <class C>
  C* as() const {
    return C::AsTHIS(*this);
  }

  const Instruction& operator=(Instruction src) {
    data = src.data;
    return *this;
  }
  // Since almost all instructions have condition codes, the condition code
  // extractor resides in the base class.
  Assembler::Condition extractCond() const {
    MOZ_ASSERT(data >> 28 != 0xf,
               "The instruction does not have condition code");
    return (Assembler::Condition)(data & 0xf0000000);
  }

  // Sometimes, an api wants a uint32_t (or a pointer to it) rather than an
  // instruction. raw() just coerces this into a pointer to a uint32_t.
  const uint32_t* raw() const { return &data; }
  uint32_t size() const { return 4; }
};  // Instruction

// Make sure that it is the right size.
static_assert(sizeof(Instruction) == 4);

inline void InstructionIterator::advanceRaw(ptrdiff_t instructions) {
  inst_ = inst_ + instructions;
}

// Data Transfer Instructions.
class InstDTR : public Instruction {
 public:
  enum IsByte_ { IsByte = 0x00400000, IsWord = 0x00000000 };
  static const int IsDTR = 0x04000000;
  static const int IsDTRMask = 0x0c000000;

  // TODO: Replace the initialization with something that is safer.
  InstDTR(LoadStore ls, IsByte_ ib, Index mode, Register rt, DTRAddr addr,
          Assembler::Condition c)
      : Instruction(std::underlying_type_t<LoadStore>(ls) |
                        std::underlying_type_t<IsByte_>(ib) |
                        std::underlying_type_t<Index>(mode) | RT(rt) |
                        addr.encode() | IsDTR,
                    c) {}

  static bool IsTHIS(const Instruction& i);
  static InstDTR* AsTHIS(const Instruction& i);
};
static_assert(sizeof(InstDTR) == sizeof(Instruction));

class InstLDR : public InstDTR {
 public:
  InstLDR(Index mode, Register rt, DTRAddr addr, Assembler::Condition c)
      : InstDTR(IsLoad, IsWord, mode, rt, addr, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstLDR* AsTHIS(const Instruction& i);

  int32_t signedOffset() const {
    int32_t offset = encode() & 0xfff;
    if (IsUp_(encode() & IsUp) != IsUp) {
      return -offset;
    }
    return offset;
  }
  uint32_t* dest() const {
    int32_t offset = signedOffset();
    // When patching the load in PatchConstantPoolLoad, we ensure that the
    // offset is a multiple of 4, offset by 8 bytes from the actual
    // location.  Indeed, when the base register is PC, ARM's 3 stages
    // pipeline design makes it that PC is off by 8 bytes (= 2 *
    // sizeof(uint32*)) when we actually executed it.
    MOZ_ASSERT(offset % 4 == 0);
    offset >>= 2;
    return (uint32_t*)raw() + offset + 2;
  }
};
static_assert(sizeof(InstDTR) == sizeof(InstLDR));

class InstNOP : public Instruction {
 public:
  static const uint32_t NopInst = 0x0320f000;

  InstNOP() : Instruction(NopInst, Assembler::Always) {}

  static bool IsTHIS(const Instruction& i);
  static InstNOP* AsTHIS(Instruction& i);
};

// Branching to a register, or calling a register
class InstBranchReg : public Instruction {
 protected:
  // Don't use BranchTag yourself, use a derived instruction.
  enum BranchTag { IsBX = 0x012fff10, IsBLX = 0x012fff30 };

  static const uint32_t IsBRegMask = 0x0ffffff0;

  InstBranchReg(BranchTag tag, Register rm, Assembler::Condition c)
      : Instruction(tag | rm.code(), c) {}

 public:
  static bool IsTHIS(const Instruction& i);
  static InstBranchReg* AsTHIS(const Instruction& i);

  // Get the register that is being branched to
  void extractDest(Register* dest);
  // Make sure we are branching to a pre-known register
  bool checkDest(Register dest);
};
static_assert(sizeof(InstBranchReg) == sizeof(Instruction));

// Branching to an immediate offset, or calling an immediate offset
class InstBranchImm : public Instruction {
 protected:
  enum BranchTag { IsB = 0x0a000000, IsBL = 0x0b000000 };

  static const uint32_t IsBImmMask = 0x0f000000;

  InstBranchImm(BranchTag tag, BOffImm off, Assembler::Condition c)
      : Instruction(tag | off.encode(), c) {}

 public:
  static bool IsTHIS(const Instruction& i);
  static InstBranchImm* AsTHIS(const Instruction& i);

  void extractImm(BOffImm* dest);
};
static_assert(sizeof(InstBranchImm) == sizeof(Instruction));

// Very specific branching instructions.
class InstBXReg : public InstBranchReg {
 public:
  static bool IsTHIS(const Instruction& i);
  static InstBXReg* AsTHIS(const Instruction& i);
};

class InstBLXReg : public InstBranchReg {
 public:
  InstBLXReg(Register reg, Assembler::Condition c)
      : InstBranchReg(IsBLX, reg, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstBLXReg* AsTHIS(const Instruction& i);
};

class InstBImm : public InstBranchImm {
 public:
  InstBImm(BOffImm off, Assembler::Condition c) : InstBranchImm(IsB, off, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstBImm* AsTHIS(const Instruction& i);
};

class InstBLImm : public InstBranchImm {
 public:
  InstBLImm(BOffImm off, Assembler::Condition c)
      : InstBranchImm(IsBL, off, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstBLImm* AsTHIS(const Instruction& i);
};

// Both movw and movt. The layout of both the immediate and the destination
// register is the same so the code is being shared.
class InstMovWT : public Instruction {
 protected:
  enum WT { IsW = 0x03000000, IsT = 0x03400000 };
  static const uint32_t IsWTMask = 0x0ff00000;

  InstMovWT(Register rd, Imm16 imm, WT wt, Assembler::Condition c)
      : Instruction(RD(rd) | imm.encode() | wt, c) {}

 public:
  void extractImm(Imm16* dest);
  void extractDest(Register* dest);
  bool checkImm(Imm16 dest);
  bool checkDest(Register dest);

  static bool IsTHIS(Instruction& i);
  static InstMovWT* AsTHIS(Instruction& i);
};
static_assert(sizeof(InstMovWT) == sizeof(Instruction));

class InstMovW : public InstMovWT {
 public:
  InstMovW(Register rd, Imm16 imm, Assembler::Condition c)
      : InstMovWT(rd, imm, IsW, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstMovW* AsTHIS(const Instruction& i);
};

class InstMovT : public InstMovWT {
 public:
  InstMovT(Register rd, Imm16 imm, Assembler::Condition c)
      : InstMovWT(rd, imm, IsT, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstMovT* AsTHIS(const Instruction& i);
};

class InstALU : public Instruction {
  static const int32_t ALUMask = 0xc << 24;

 public:
  InstALU(Register rd, Register rn, Operand2 op2, ALUOp op, SBit s,
          Assembler::Condition c)
      : Instruction(maybeRD(rd) | maybeRN(rn) | op2.encode() | op | s, c) {}

  static bool IsTHIS(const Instruction& i);
  static InstALU* AsTHIS(const Instruction& i);

  void extractOp(ALUOp* ret);
  bool checkOp(ALUOp op);
  void extractDest(Register* ret);
  bool checkDest(Register rd);
  void extractOp1(Register* ret);
  bool checkOp1(Register rn);
  Operand2 extractOp2();
};

class InstCMP : public InstALU {
 public:
  static bool IsTHIS(const Instruction& i);
  static InstCMP* AsTHIS(const Instruction& i);
};

class InstMOV : public InstALU {
 public:
  static bool IsTHIS(const Instruction& i);
  static InstMOV* AsTHIS(const Instruction& i);
};

// Compile-time iterator over instructions, with a safe interface that
// references not-necessarily-linear Instructions by linear BufferOffset.
class BufferInstructionIterator
    : public ARMBuffer::AssemblerBufferInstIterator {
 public:
  BufferInstructionIterator(BufferOffset bo, ARMBuffer* buffer)
      : ARMBuffer::AssemblerBufferInstIterator(bo, buffer) {}

  // Advances the buffer to the next intentionally-inserted instruction.
  Instruction* next() {
    advance(cur()->size());
    maybeSkipAutomaticInstructions();
    return cur();
  }

  // Advances the BufferOffset past any automatically-inserted instructions.
  Instruction* maybeSkipAutomaticInstructions();
};

static const uint32_t NumIntArgRegs = 4;

// There are 16 *float* registers available for arguments
// If doubles are used, only half the number of registers are available.
static const uint32_t NumFloatArgRegs = 16;

static inline bool GetIntArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs,
                                Register* out) {
  if (usedIntArgs >= NumIntArgRegs) {
    return false;
  }

  *out = Register::FromCode(usedIntArgs);
  return true;
}

// Get a register in which we plan to put a quantity that will be used as an
// integer argument. This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
                                       uint32_t usedFloatArgs, Register* out) {
  if (GetIntArgReg(usedIntArgs, usedFloatArgs, out)) {
    return true;
  }

  // Unfortunately, we have to assume things about the point at which
  // GetIntArgReg returns false, because we need to know how many registers it
  // can allocate.
  usedIntArgs -= NumIntArgRegs;
  if (usedIntArgs >= NumCallTempNonArgRegs) {
    return false;
  }

  *out = CallTempNonArgRegs[usedIntArgs];
  return true;
}

#if defined(JS_CODEGEN_ARM_HARDFP) || defined(JS_SIMULATOR_ARM)

static inline bool GetFloat32ArgReg(uint32_t usedIntArgs,
                                    uint32_t usedFloatArgs,
                                    FloatRegister* out) {
  MOZ_ASSERT(UseHardFpABI());
  if (usedFloatArgs >= NumFloatArgRegs) {
    return false;
  }
  *out = VFPRegister(usedFloatArgs, VFPRegister::Single);
  return true;
}
static inline bool GetDoubleArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs,
                                   FloatRegister* out) {
  MOZ_ASSERT(UseHardFpABI());
  MOZ_ASSERT((usedFloatArgs % 2) == 0);
  if (usedFloatArgs >= NumFloatArgRegs) {
    return false;
  }
  *out = VFPRegister(usedFloatArgs >> 1, VFPRegister::Double);
  return true;
}

#endif

class DoubleEncoder {
  struct DoubleEntry {
    uint32_t dblTop;
    datastore::Imm8VFPImmData data;
  };

  static const DoubleEntry table[256];

 public:
  bool lookup(uint32_t top, datastore::Imm8VFPImmData* ret) const {
    for (int i = 0; i < 256; i++) {
      if (table[i].dblTop == top) {
        *ret = table[i].data;
        return true;
      }
    }
    return false;
  }
};

// Forbids nop filling for testing purposes. Not nestable.
class AutoForbidNops {
 protected:
  Assembler* masm_;

 public:
  explicit AutoForbidNops(Assembler* masm) : masm_(masm) {
    masm_->enterNoNops();
  }
  ~AutoForbidNops() { masm_->leaveNoNops(); }
};

class AutoForbidPoolsAndNops : public AutoForbidNops {
 public:
  // The maxInst argument is the maximum number of word sized instructions
  // that will be allocated within this context. It is used to determine if
  // the pool needs to be dumped before entering this content. The debug code
  // checks that no more than maxInst instructions are actually allocated.
  //
  // Allocation of pool entries is not supported within this content so the
  // code can not use large integers or float constants etc.
  AutoForbidPoolsAndNops(Assembler* masm, size_t maxInst)
      : AutoForbidNops(masm) {
    masm_->enterNoPool(maxInst);
  }

  ~AutoForbidPoolsAndNops() { masm_->leaveNoPool(); }
};

}  // namespace jit
}  // namespace js

#endif /* jit_arm_Assembler_arm_h */