1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2016 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This is an INTERNAL header for Wasm baseline compiler: definitions of
// registers and the register allocator.
#ifndef wasm_wasm_baseline_regdefs_h
#define wasm_wasm_baseline_regdefs_h
#include "wasm/WasmBCDefs.h"
namespace js {
namespace wasm {
struct BaseCompiler;
using namespace js::jit;
//////////////////////////////////////////////////////////////////////////////
//
// Scratch register configuration.
#if defined(JS_CODEGEN_NONE) || defined(JS_CODEGEN_WASM32)
# define RABALDR_SCRATCH_I32
# define RABALDR_SCRATCH_F32
# define RABALDR_SCRATCH_F64
static constexpr Register RabaldrScratchI32 = Register::Invalid();
static constexpr FloatRegister RabaldrScratchF32 = InvalidFloatReg;
static constexpr FloatRegister RabaldrScratchF64 = InvalidFloatReg;
#endif
#ifdef JS_CODEGEN_ARM64
# define RABALDR_SCRATCH_I32
# define RABALDR_SCRATCH_F32
# define RABALDR_SCRATCH_F64
# define RABALDR_SCRATCH_V128
# define RABALDR_SCRATCH_F32_ALIASES_F64
static constexpr Register RabaldrScratchI32{Registers::x15};
// Note, the float scratch regs cannot be registers that are used for parameter
// passing in any ABI we use. Argregs tend to be low-numbered; register 30
// should be safe.
static constexpr FloatRegister RabaldrScratchF32{FloatRegisters::s30,
FloatRegisters::Single};
static constexpr FloatRegister RabaldrScratchF64{FloatRegisters::d30,
FloatRegisters::Double};
# ifdef ENABLE_WASM_SIMD
static constexpr FloatRegister RabaldrScratchV128{FloatRegisters::d30,
FloatRegisters::Simd128};
# endif
static_assert(RabaldrScratchF32 != ScratchFloat32Reg_, "Too busy");
static_assert(RabaldrScratchF64 != ScratchDoubleReg_, "Too busy");
# ifdef ENABLE_WASM_SIMD
static_assert(RabaldrScratchV128 != ScratchSimd128Reg, "Too busy");
# endif
#endif
#ifdef JS_CODEGEN_X86
// The selection of EBX here steps gingerly around: the need for EDX
// to be allocatable for multiply/divide; ECX to be allocatable for
// shift/rotate; EAX (= ReturnReg) to be allocatable as the result
// register; EBX not being one of the WasmTableCall registers; and
// needing a temp register for load/store that has a single-byte
// persona.
//
// The compiler assumes that RabaldrScratchI32 has a single-byte
// persona. Code for 8-byte atomic operations assumes that
// RabaldrScratchI32 is in fact ebx.
# define RABALDR_SCRATCH_I32
static constexpr Register RabaldrScratchI32 = ebx;
#endif
#ifdef JS_CODEGEN_ARM
// We use our own scratch register, because the macro assembler uses
// the regular scratch register(s) pretty liberally. We could
// work around that in several cases but the mess does not seem
// worth it yet. CallTempReg2 seems safe.
# define RABALDR_SCRATCH_I32
static constexpr Register RabaldrScratchI32 = CallTempReg2;
#endif
#ifdef JS_CODEGEN_MIPS64
# define RABALDR_SCRATCH_I32
static constexpr Register RabaldrScratchI32 = CallTempReg2;
#endif
#ifdef JS_CODEGEN_LOONG64
// We use our own scratch register, because the macro assembler uses
// the regular scratch register(s) pretty liberally. We could
// work around that in several cases but the mess does not seem
// worth it yet. CallTempReg2 seems safe.
# define RABALDR_SCRATCH_I32
static constexpr Register RabaldrScratchI32 = CallTempReg2;
#endif
#ifdef RABALDR_SCRATCH_F32_ALIASES_F64
# if !defined(RABALDR_SCRATCH_F32) || !defined(RABALDR_SCRATCH_F64)
# error "Bad configuration"
# endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// ...
template <MIRType t>
struct RegTypeOf {
#ifdef ENABLE_WASM_SIMD
static_assert(t == MIRType::Float32 || t == MIRType::Double ||
t == MIRType::Simd128,
"Float mask type");
#else
static_assert(t == MIRType::Float32 || t == MIRType::Double,
"Float mask type");
#endif
};
template <>
struct RegTypeOf<MIRType::Float32> {
static constexpr RegTypeName value = RegTypeName::Float32;
};
template <>
struct RegTypeOf<MIRType::Double> {
static constexpr RegTypeName value = RegTypeName::Float64;
};
#ifdef ENABLE_WASM_SIMD
template <>
struct RegTypeOf<MIRType::Simd128> {
static constexpr RegTypeName value = RegTypeName::Vector128;
};
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Strongly typed register wrappers.
// The strongly typed register wrappers are especially useful to distinguish
// float registers from double registers, but they also clearly distinguish
// 32-bit registers from 64-bit register pairs on 32-bit systems.
struct RegI32 : public Register {
RegI32() : Register(Register::Invalid()) {}
explicit RegI32(Register reg) : Register(reg) {
MOZ_ASSERT(reg != Invalid());
}
bool isInvalid() const { return *this == Invalid(); }
bool isValid() const { return !isInvalid(); }
static RegI32 Invalid() { return RegI32(); }
};
struct RegI64 : public Register64 {
RegI64() : Register64(Register64::Invalid()) {}
explicit RegI64(Register64 reg) : Register64(reg) {
MOZ_ASSERT(reg != Invalid());
}
bool isInvalid() const { return *this == Invalid(); }
bool isValid() const { return !isInvalid(); }
static RegI64 Invalid() { return RegI64(); }
};
// RegRef is for GC-pointers, for non GC-pointers use RegPtr
struct RegRef : public Register {
RegRef() : Register(Register::Invalid()) {}
explicit RegRef(Register reg) : Register(reg) {
MOZ_ASSERT(reg != Invalid());
}
bool isInvalid() const { return *this == Invalid(); }
bool isValid() const { return !isInvalid(); }
static RegRef Invalid() { return RegRef(); }
};
// RegPtr is for non GC-pointers, for GC-pointers use RegRef
struct RegPtr : public Register {
RegPtr() : Register(Register::Invalid()) {}
explicit RegPtr(Register reg) : Register(reg) {
MOZ_ASSERT(reg != Invalid());
}
bool isInvalid() const { return *this == Invalid(); }
bool isValid() const { return !isInvalid(); }
static RegPtr Invalid() { return RegPtr(); }
};
struct RegF32 : public FloatRegister {
RegF32() : FloatRegister() {}
explicit RegF32(FloatRegister reg) : FloatRegister(reg) {
MOZ_ASSERT(isSingle());
}
bool isValid() const { return !isInvalid(); }
static RegF32 Invalid() { return RegF32(); }
};
struct RegF64 : public FloatRegister {
RegF64() : FloatRegister() {}
explicit RegF64(FloatRegister reg) : FloatRegister(reg) {
MOZ_ASSERT(isDouble());
}
bool isValid() const { return !isInvalid(); }
static RegF64 Invalid() { return RegF64(); }
};
#ifdef ENABLE_WASM_SIMD
struct RegV128 : public FloatRegister {
RegV128() : FloatRegister() {}
explicit RegV128(FloatRegister reg) : FloatRegister(reg) {
MOZ_ASSERT(isSimd128());
}
bool isValid() const { return !isInvalid(); }
static RegV128 Invalid() { return RegV128(); }
};
#endif
struct AnyReg {
union {
RegI32 i32_;
RegI64 i64_;
RegRef ref_;
RegF32 f32_;
RegF64 f64_;
#ifdef ENABLE_WASM_SIMD
RegV128 v128_;
#endif
};
enum {
I32,
I64,
REF,
F32,
F64,
#ifdef ENABLE_WASM_SIMD
V128
#endif
} tag;
explicit AnyReg(RegI32 r) {
tag = I32;
i32_ = r;
}
explicit AnyReg(RegI64 r) {
tag = I64;
i64_ = r;
}
explicit AnyReg(RegF32 r) {
tag = F32;
f32_ = r;
}
explicit AnyReg(RegF64 r) {
tag = F64;
f64_ = r;
}
#ifdef ENABLE_WASM_SIMD
explicit AnyReg(RegV128 r) {
tag = V128;
v128_ = r;
}
#endif
explicit AnyReg(RegRef r) {
tag = REF;
ref_ = r;
}
RegI32 i32() const {
MOZ_ASSERT(tag == I32);
return i32_;
}
RegI64 i64() const {
MOZ_ASSERT(tag == I64);
return i64_;
}
RegF32 f32() const {
MOZ_ASSERT(tag == F32);
return f32_;
}
RegF64 f64() const {
MOZ_ASSERT(tag == F64);
return f64_;
}
#ifdef ENABLE_WASM_SIMD
RegV128 v128() const {
MOZ_ASSERT(tag == V128);
return v128_;
}
#endif
RegRef ref() const {
MOZ_ASSERT(tag == REF);
return ref_;
}
AnyRegister any() const {
switch (tag) {
case F32:
return AnyRegister(f32_);
case F64:
return AnyRegister(f64_);
#ifdef ENABLE_WASM_SIMD
case V128:
return AnyRegister(v128_);
#endif
case I32:
return AnyRegister(i32_);
case I64:
#ifdef JS_PUNBOX64
return AnyRegister(i64_.reg);
#else
// The compiler is written so that this is never needed: any() is
// called on arbitrary registers for asm.js but asm.js does not have
// 64-bit ints. For wasm, any() is called on arbitrary registers
// only on 64-bit platforms.
MOZ_CRASH("AnyReg::any() on 32-bit platform");
#endif
case REF:
MOZ_CRASH("AnyReg::any() not implemented for ref types");
default:
MOZ_CRASH();
}
// Work around GCC 5 analysis/warning bug.
MOZ_CRASH("AnyReg::any(): impossible case");
}
};
//////////////////////////////////////////////////////////////////////////////
//
// Platform-specific registers.
//
// All platforms must define struct SpecificRegs. All 32-bit platforms must
// have an abiReturnRegI64 member in that struct.
#if defined(JS_CODEGEN_X64)
struct SpecificRegs {
RegI32 eax, ecx, edx, edi, esi;
RegI64 rax, rcx, rdx;
SpecificRegs()
: eax(RegI32(js::jit::eax)),
ecx(RegI32(js::jit::ecx)),
edx(RegI32(js::jit::edx)),
edi(RegI32(js::jit::edi)),
esi(RegI32(js::jit::esi)),
rax(RegI64(Register64(js::jit::rax))),
rcx(RegI64(Register64(js::jit::rcx))),
rdx(RegI64(Register64(js::jit::rdx))) {}
};
#elif defined(JS_CODEGEN_X86)
struct SpecificRegs {
RegI32 eax, ecx, edx, edi, esi;
RegI64 ecx_ebx, edx_eax, abiReturnRegI64;
SpecificRegs()
: eax(RegI32(js::jit::eax)),
ecx(RegI32(js::jit::ecx)),
edx(RegI32(js::jit::edx)),
edi(RegI32(js::jit::edi)),
esi(RegI32(js::jit::esi)),
ecx_ebx(RegI64(Register64(js::jit::ecx, js::jit::ebx))),
edx_eax(RegI64(Register64(js::jit::edx, js::jit::eax))),
abiReturnRegI64(edx_eax) {}
};
#elif defined(JS_CODEGEN_ARM)
struct SpecificRegs {
RegI64 abiReturnRegI64;
SpecificRegs() : abiReturnRegI64(ReturnReg64) {}
};
#elif defined(JS_CODEGEN_ARM64) || defined(JS_CODEGEN_MIPS64) || \
defined(JS_CODEGEN_LOONG64)
struct SpecificRegs {
// Required by gcc.
SpecificRegs() {}
};
#else
struct SpecificRegs {
# ifndef JS_64BIT
RegI64 abiReturnRegI64;
# endif
SpecificRegs() { MOZ_CRASH("BaseCompiler porting interface: SpecificRegs"); }
};
#endif
//////////////////////////////////////////////////////////////////////////////
//
// Register allocator.
class BaseRegAlloc {
// Notes on float register allocation.
//
// The general rule in SpiderMonkey is that float registers can alias double
// registers, but there are predicates to handle exceptions to that rule:
// hasUnaliasedDouble() and hasMultiAlias(). The way aliasing actually
// works is platform dependent and exposed through the aliased(n, &r)
// predicate, etc.
//
// - hasUnaliasedDouble(): on ARM VFPv3-D32 there are double registers that
// cannot be treated as float.
// - hasMultiAlias(): on ARM and MIPS a double register aliases two float
// registers.
//
// On some platforms (x86, x64, ARM64) but not all (ARM)
// ScratchFloat32Register is the same as ScratchDoubleRegister.
//
// It's a basic invariant of the AllocatableRegisterSet that it deals
// properly with aliasing of registers: if s0 or s1 are allocated then d0 is
// not allocatable; if s0 and s1 are freed individually then d0 becomes
// allocatable.
BaseCompiler* bc;
AllocatableGeneralRegisterSet availGPR;
AllocatableFloatRegisterSet availFPU;
#ifdef DEBUG
// The registers available after removing ScratchReg, HeapReg, etc.
AllocatableGeneralRegisterSet allGPR;
AllocatableFloatRegisterSet allFPU;
uint32_t scratchTaken;
#endif
#ifdef JS_CODEGEN_X86
AllocatableGeneralRegisterSet singleByteRegs;
#endif
bool hasGPR() { return !availGPR.empty(); }
bool hasGPR64() {
#ifdef JS_PUNBOX64
return !availGPR.empty();
#else
if (availGPR.empty()) {
return false;
}
Register r = allocGPR();
bool available = !availGPR.empty();
freeGPR(r);
return available;
#endif
}
template <MIRType t>
bool hasFPU() {
return availFPU.hasAny<RegTypeOf<t>::value>();
}
bool isAvailableGPR(Register r) { return availGPR.has(r); }
bool isAvailableFPU(FloatRegister r) { return availFPU.has(r); }
void allocGPR(Register r) {
MOZ_ASSERT(isAvailableGPR(r));
availGPR.take(r);
}
Register allocGPR() {
MOZ_ASSERT(hasGPR());
return availGPR.takeAny();
}
void allocInt64(Register64 r) {
#ifdef JS_PUNBOX64
allocGPR(r.reg);
#else
allocGPR(r.low);
allocGPR(r.high);
#endif
}
Register64 allocInt64() {
MOZ_ASSERT(hasGPR64());
#ifdef JS_PUNBOX64
return Register64(availGPR.takeAny());
#else
Register high = availGPR.takeAny();
Register low = availGPR.takeAny();
return Register64(high, low);
#endif
}
#ifdef JS_CODEGEN_ARM
// r12 is normally the ScratchRegister and r13 is always the stack pointer,
// so the highest possible pair has r10 as the even-numbered register.
static constexpr uint32_t PAIR_LIMIT = 10;
bool hasGPRPair() {
for (uint32_t i = 0; i <= PAIR_LIMIT; i += 2) {
if (isAvailableGPR(Register::FromCode(i)) &&
isAvailableGPR(Register::FromCode(i + 1))) {
return true;
}
}
return false;
}
void allocGPRPair(Register* low, Register* high) {
MOZ_ASSERT(hasGPRPair());
for (uint32_t i = 0; i <= PAIR_LIMIT; i += 2) {
if (isAvailableGPR(Register::FromCode(i)) &&
isAvailableGPR(Register::FromCode(i + 1))) {
*low = Register::FromCode(i);
*high = Register::FromCode(i + 1);
allocGPR(*low);
allocGPR(*high);
return;
}
}
MOZ_CRASH("No pair");
}
#endif
void allocFPU(FloatRegister r) {
MOZ_ASSERT(isAvailableFPU(r));
availFPU.take(r);
}
template <MIRType t>
FloatRegister allocFPU() {
return availFPU.takeAny<RegTypeOf<t>::value>();
}
void freeGPR(Register r) { availGPR.add(r); }
void freeInt64(Register64 r) {
#ifdef JS_PUNBOX64
freeGPR(r.reg);
#else
freeGPR(r.low);
freeGPR(r.high);
#endif
}
void freeFPU(FloatRegister r) { availFPU.add(r); }
public:
explicit BaseRegAlloc()
: bc(nullptr),
availGPR(GeneralRegisterSet::All()),
availFPU(FloatRegisterSet::All())
#ifdef DEBUG
,
scratchTaken(0)
#endif
#ifdef JS_CODEGEN_X86
,
singleByteRegs(GeneralRegisterSet(Registers::SingleByteRegs))
#endif
{
RegisterAllocator::takeWasmRegisters(availGPR);
#ifdef RABALDR_PIN_INSTANCE
// If the InstanceReg is pinned then it is never available for
// allocation.
availGPR.take(InstanceReg);
#endif
// Allocate any private scratch registers.
#if defined(RABALDR_SCRATCH_I32)
if (RabaldrScratchI32 != RegI32::Invalid()) {
availGPR.take(RabaldrScratchI32);
}
#endif
#ifdef RABALDR_SCRATCH_F32_ALIASES_F64
static_assert(RabaldrScratchF32 != InvalidFloatReg, "Float reg definition");
static_assert(RabaldrScratchF64 != InvalidFloatReg, "Float reg definition");
#endif
#if defined(RABALDR_SCRATCH_F32) && !defined(RABALDR_SCRATCH_F32_ALIASES_F64)
if (RabaldrScratchF32 != RegF32::Invalid()) {
availFPU.take(RabaldrScratchF32);
}
#endif
#if defined(RABALDR_SCRATCH_F64)
# ifdef RABALDR_SCRATCH_F32_ALIASES_F64
MOZ_ASSERT(availFPU.has(RabaldrScratchF32));
# endif
if (RabaldrScratchF64 != RegF64::Invalid()) {
availFPU.take(RabaldrScratchF64);
}
# ifdef RABALDR_SCRATCH_F32_ALIASES_F64
MOZ_ASSERT(!availFPU.has(RabaldrScratchF32));
# endif
#endif
#ifdef DEBUG
allGPR = availGPR;
allFPU = availFPU;
#endif
}
void init(BaseCompiler* bc) { this->bc = bc; }
enum class ScratchKind { I32 = 1, F32 = 2, F64 = 4, V128 = 8 };
#ifdef DEBUG
bool isScratchRegisterTaken(ScratchKind s) const {
return (scratchTaken & uint32_t(s)) != 0;
}
void setScratchRegisterTaken(ScratchKind s, bool state) {
if (state) {
scratchTaken |= uint32_t(s);
} else {
scratchTaken &= ~uint32_t(s);
}
}
#endif
#ifdef JS_CODEGEN_X86
bool isSingleByteI32(Register r) { return singleByteRegs.has(r); }
#endif
bool isAvailableI32(RegI32 r) { return isAvailableGPR(r); }
bool isAvailableI64(RegI64 r) {
#ifdef JS_PUNBOX64
return isAvailableGPR(r.reg);
#else
return isAvailableGPR(r.low) && isAvailableGPR(r.high);
#endif
}
bool isAvailableRef(RegRef r) { return isAvailableGPR(r); }
bool isAvailablePtr(RegPtr r) { return isAvailableGPR(r); }
bool isAvailableF32(RegF32 r) { return isAvailableFPU(r); }
bool isAvailableF64(RegF64 r) { return isAvailableFPU(r); }
#ifdef ENABLE_WASM_SIMD
bool isAvailableV128(RegV128 r) { return isAvailableFPU(r); }
#endif
[[nodiscard]] inline RegI32 needI32();
inline void needI32(RegI32 specific);
[[nodiscard]] inline RegI64 needI64();
inline void needI64(RegI64 specific);
[[nodiscard]] inline RegRef needRef();
inline void needRef(RegRef specific);
[[nodiscard]] inline RegPtr needPtr();
inline void needPtr(RegPtr specific);
[[nodiscard]] inline RegF32 needF32();
inline void needF32(RegF32 specific);
[[nodiscard]] inline RegF64 needF64();
inline void needF64(RegF64 specific);
#ifdef ENABLE_WASM_SIMD
[[nodiscard]] inline RegV128 needV128();
inline void needV128(RegV128 specific);
#endif
inline void freeI32(RegI32 r);
inline void freeI64(RegI64 r);
inline void freeRef(RegRef r);
inline void freePtr(RegPtr r);
inline void freeF64(RegF64 r);
inline void freeF32(RegF32 r);
#ifdef ENABLE_WASM_SIMD
inline void freeV128(RegV128 r);
#endif
// Use when you need a register for a short time but explicitly want to avoid
// a full sync().
[[nodiscard]] inline RegPtr needTempPtr(RegPtr fallback, bool* saved);
inline void freeTempPtr(RegPtr r, bool saved);
#ifdef JS_CODEGEN_ARM
[[nodiscard]] inline RegI64 needI64Pair();
#endif
#ifdef DEBUG
friend class LeakCheck;
class MOZ_RAII LeakCheck {
private:
const BaseRegAlloc& ra;
AllocatableGeneralRegisterSet knownGPR_;
AllocatableFloatRegisterSet knownFPU_;
public:
explicit LeakCheck(const BaseRegAlloc& ra) : ra(ra) {
knownGPR_ = ra.availGPR;
knownFPU_ = ra.availFPU;
}
~LeakCheck() {
MOZ_ASSERT(knownGPR_.bits() == ra.allGPR.bits());
MOZ_ASSERT(knownFPU_.bits() == ra.allFPU.bits());
}
void addKnownI32(RegI32 r) { knownGPR_.add(r); }
void addKnownI64(RegI64 r) {
# ifdef JS_PUNBOX64
knownGPR_.add(r.reg);
# else
knownGPR_.add(r.high);
knownGPR_.add(r.low);
# endif
}
void addKnownF32(RegF32 r) { knownFPU_.add(r); }
void addKnownF64(RegF64 r) { knownFPU_.add(r); }
# ifdef ENABLE_WASM_SIMD
void addKnownV128(RegV128 r) { knownFPU_.add(r); }
# endif
void addKnownRef(RegRef r) { knownGPR_.add(r); }
};
#endif
};
// Scratch register abstractions.
//
// We define our own scratch registers when the platform doesn't provide what we
// need. A notable use case is that we will need a private scratch register
// when the platform masm uses its scratch register very frequently (eg, ARM).
class BaseScratchRegister {
#ifdef DEBUG
BaseRegAlloc& ra;
BaseRegAlloc::ScratchKind kind_;
public:
explicit BaseScratchRegister(BaseRegAlloc& ra, BaseRegAlloc::ScratchKind kind)
: ra(ra), kind_(kind) {
MOZ_ASSERT(!ra.isScratchRegisterTaken(kind_));
ra.setScratchRegisterTaken(kind_, true);
}
~BaseScratchRegister() {
MOZ_ASSERT(ra.isScratchRegisterTaken(kind_));
ra.setScratchRegisterTaken(kind_, false);
}
#else
public:
explicit BaseScratchRegister(BaseRegAlloc& ra,
BaseRegAlloc::ScratchKind kind) {}
#endif
};
#ifdef ENABLE_WASM_SIMD
# ifdef RABALDR_SCRATCH_V128
class ScratchV128 : public BaseScratchRegister {
public:
explicit ScratchV128(BaseRegAlloc& ra)
: BaseScratchRegister(ra, BaseRegAlloc::ScratchKind::V128) {}
operator RegV128() const { return RegV128(RabaldrScratchV128); }
};
# else
class ScratchV128 : public ScratchSimd128Scope {
public:
explicit ScratchV128(MacroAssembler& m) : ScratchSimd128Scope(m) {}
operator RegV128() const { return RegV128(FloatRegister(*this)); }
};
# endif
#endif
#ifdef RABALDR_SCRATCH_F64
class ScratchF64 : public BaseScratchRegister {
public:
explicit ScratchF64(BaseRegAlloc& ra)
: BaseScratchRegister(ra, BaseRegAlloc::ScratchKind::F64) {}
operator RegF64() const { return RegF64(RabaldrScratchF64); }
};
#else
class ScratchF64 : public ScratchDoubleScope {
public:
explicit ScratchF64(MacroAssembler& m) : ScratchDoubleScope(m) {}
operator RegF64() const { return RegF64(FloatRegister(*this)); }
};
#endif
#ifdef RABALDR_SCRATCH_F32
class ScratchF32 : public BaseScratchRegister {
public:
explicit ScratchF32(BaseRegAlloc& ra)
: BaseScratchRegister(ra, BaseRegAlloc::ScratchKind::F32) {}
operator RegF32() const { return RegF32(RabaldrScratchF32); }
};
#else
class ScratchF32 : public ScratchFloat32Scope {
public:
explicit ScratchF32(MacroAssembler& m) : ScratchFloat32Scope(m) {}
operator RegF32() const { return RegF32(FloatRegister(*this)); }
};
#endif
#ifdef RABALDR_SCRATCH_I32
template <class RegType>
class ScratchGPR : public BaseScratchRegister {
public:
explicit ScratchGPR(BaseRegAlloc& ra)
: BaseScratchRegister(ra, BaseRegAlloc::ScratchKind::I32) {}
operator RegType() const { return RegType(RabaldrScratchI32); }
};
#else
template <class RegType>
class ScratchGPR : public ScratchRegisterScope {
public:
explicit ScratchGPR(MacroAssembler& m) : ScratchRegisterScope(m) {}
operator RegType() const { return RegType(Register(*this)); }
};
#endif
using ScratchI32 = ScratchGPR<RegI32>;
using ScratchPtr = ScratchGPR<RegPtr>;
using ScratchRef = ScratchGPR<RegRef>;
#if defined(JS_CODEGEN_X86)
// ScratchEBX is a mnemonic device: For some atomic ops we really need EBX,
// no other register will do. And we would normally have to allocate that
// register using ScratchI32 since normally the scratch register is EBX.
// But the whole point of ScratchI32 is to hide that relationship. By using
// the ScratchEBX alias, we document that at that point we require the
// scratch register to be EBX.
using ScratchEBX = ScratchI32;
// ScratchI8 is a mnemonic device: For some ops we need a register with a
// byte subregister.
using ScratchI8 = ScratchI32;
#endif
} // namespace wasm
} // namespace js
#endif // wasm_wasm_baseline_regdefs_h
|