summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/cpu.cc
blob: 8cc2028a5f810bc3224f98ef04ab424ae1ecfee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/cpu.h"

#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include <algorithm>
#include <utility>

#include "base/stl_util.h"

#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
#include "base/files/file_util.h"
#endif

#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#include <immintrin.h>  // For _xgetbv()
#endif
#endif

namespace base {

#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {

std::tuple<int, int, int, int> ComputeX86FamilyAndModel(
    const std::string& vendor,
    int signature) {
  int family = (signature >> 8) & 0xf;
  int model = (signature >> 4) & 0xf;
  int ext_family = 0;
  int ext_model = 0;

  // The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
  // specifies the Extended Model is defined only when the Base Family is
  // 06h or 0Fh.
  // The "AMD CPUID Specification" specifies that the Extended Model is
  // defined only when Base Family is 0Fh.
  // Both manuals define the display model as
  // {ExtendedModel[3:0],BaseModel[3:0]} in that case.
  if (family == 0xf || (family == 0x6 && vendor == "GenuineIntel")) {
    ext_model = (signature >> 16) & 0xf;
    model += ext_model << 4;
  }
  // Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
  // and the "AMD CPUID Specification" specify that the Extended Family is
  // defined only when the Base Family is 0Fh.
  // Both manuals define the display family as {0000b,BaseFamily[3:0]} +
  // ExtendedFamily[7:0] in that case.
  if (family == 0xf) {
    ext_family = (signature >> 20) & 0xff;
    family += ext_family;
  }

  return {family, model, ext_family, ext_model};
}

}  // namespace internal
#endif  // defined(ARCH_CPU_X86_FAMILY)

CPU::CPU()
  : signature_(0),
    type_(0),
    family_(0),
    model_(0),
    stepping_(0),
    ext_model_(0),
    ext_family_(0),
    has_mmx_(false),
    has_sse_(false),
    has_sse2_(false),
    has_sse3_(false),
    has_ssse3_(false),
    has_sse41_(false),
    has_sse42_(false),
    has_popcnt_(false),
    has_avx_(false),
    has_avx2_(false),
    has_aesni_(false),
    has_non_stop_time_stamp_counter_(false),
    is_running_in_vm_(false),
    cpu_vendor_("unknown") {
  Initialize();
}

namespace {

#if defined(ARCH_CPU_X86_FAMILY)
#if !defined(COMPILER_MSVC)

#if defined(__pic__) && defined(__i386__)

void __cpuid(int cpu_info[4], int info_type) {
  __asm__ volatile(
      "mov %%ebx, %%edi\n"
      "cpuid\n"
      "xchg %%edi, %%ebx\n"
      : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
        "=d"(cpu_info[3])
      : "a"(info_type), "c"(0));
}

#else

void __cpuid(int cpu_info[4], int info_type) {
  __asm__ volatile("cpuid\n"
                   : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
                     "=d"(cpu_info[3])
                   : "a"(info_type), "c"(0));
}

#endif
#endif  // !defined(COMPILER_MSVC)

// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64_t xgetbv(uint32_t xcr) {
#if defined(COMPILER_MSVC)
  return _xgetbv(xcr);
#else
  uint32_t eax, edx;

  __asm__ volatile (
    "xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
  return (static_cast<uint64_t>(edx) << 32) | eax;
#endif  // defined(COMPILER_MSVC)
}

#endif  // ARCH_CPU_X86_FAMILY

#if defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
std::string* CpuInfoBrand() {
  static std::string* brand = []() {
    // This function finds the value from /proc/cpuinfo under the key "model
    // name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
    // and later for arm64) and is shown once per CPU. "Processor" is used in
    // earler versions and is shown only once at the top of /proc/cpuinfo
    // regardless of the number CPUs.
    const char kModelNamePrefix[] = "model name\t: ";
    const char kProcessorPrefix[] = "Processor\t: ";

    std::string contents;
    ReadFileToString(FilePath("/proc/cpuinfo"), &contents);
    DCHECK(!contents.empty());

    std::istringstream iss(contents);
    std::string line;
    while (std::getline(iss, line)) {
      if (line.compare(0, strlen(kModelNamePrefix), kModelNamePrefix) == 0)
        return new std::string(line.substr(strlen(kModelNamePrefix)));
      if (line.compare(0, strlen(kProcessorPrefix), kProcessorPrefix) == 0)
        return new std::string(line.substr(strlen(kProcessorPrefix)));
    }

    return new std::string();
  }();

  return brand;
}
#endif  // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
        // defined(OS_LINUX))

}  // namespace

void CPU::Initialize() {
#if defined(ARCH_CPU_X86_FAMILY)
  int cpu_info[4] = {-1};
  // This array is used to temporarily hold the vendor name and then the brand
  // name. Thus it has to be big enough for both use cases. There are
  // static_asserts below for each of the use cases to make sure this array is
  // big enough.
  char cpu_string[sizeof(cpu_info) * 3 + 1];

  // __cpuid with an InfoType argument of 0 returns the number of
  // valid Ids in CPUInfo[0] and the CPU identification string in
  // the other three array elements. The CPU identification string is
  // not in linear order. The code below arranges the information
  // in a human readable form. The human readable order is CPUInfo[1] |
  // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
  // before using memcpy() to copy these three array elements to |cpu_string|.
  __cpuid(cpu_info, 0);
  int num_ids = cpu_info[0];
  std::swap(cpu_info[2], cpu_info[3]);
  static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]);
  static_assert(kVendorNameSize < base::size(cpu_string),
                "cpu_string too small");
  memcpy(cpu_string, &cpu_info[1], kVendorNameSize);
  cpu_string[kVendorNameSize] = '\0';
  cpu_vendor_ = cpu_string;

  // Interpret CPU feature information.
  if (num_ids > 0) {
    int cpu_info7[4] = {0};
    __cpuid(cpu_info, 1);
    if (num_ids >= 7) {
      __cpuid(cpu_info7, 7);
    }
    signature_ = cpu_info[0];
    stepping_ = cpu_info[0] & 0xf;
    type_ = (cpu_info[0] >> 12) & 0x3;
    std::tie(family_, model_, ext_family_, ext_model_) =
        internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
    has_mmx_ =   (cpu_info[3] & 0x00800000) != 0;
    has_sse_ =   (cpu_info[3] & 0x02000000) != 0;
    has_sse2_ =  (cpu_info[3] & 0x04000000) != 0;
    has_sse3_ =  (cpu_info[2] & 0x00000001) != 0;
    has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;

    // "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
    // See https://lwn.net/Articles/301888/
    // This is checking for any hypervisor. Hypervisors may choose not to
    // announce themselves. Hypervisors trap CPUID and sometimes return
    // different results to underlying hardware.
    is_running_in_vm_ = (cpu_info[2] & 0x80000000) != 0;

    // AVX instructions will generate an illegal instruction exception unless
    //   a) they are supported by the CPU,
    //   b) XSAVE is supported by the CPU and
    //   c) XSAVE is enabled by the kernel.
    // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
    //
    // In addition, we have observed some crashes with the xgetbv instruction
    // even after following Intel's example code. (See crbug.com/375968.)
    // Because of that, we also test the XSAVE bit because its description in
    // the CPUID documentation suggests that it signals xgetbv support.
    has_avx_ =
        (cpu_info[2] & 0x10000000) != 0 &&
        (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
        (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
        (xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
    has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
    has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
  }

  // Get the brand string of the cpu.
  __cpuid(cpu_info, 0x80000000);
  const int max_parameter = cpu_info[0];

  static constexpr int kParameterStart = 0x80000002;
  static constexpr int kParameterEnd = 0x80000004;
  static constexpr int kParameterSize = kParameterEnd - kParameterStart + 1;
  static_assert(kParameterSize * sizeof(cpu_info) + 1 == base::size(cpu_string),
                "cpu_string has wrong size");

  if (max_parameter >= kParameterEnd) {
    size_t i = 0;
    for (int parameter = kParameterStart; parameter <= kParameterEnd;
         ++parameter) {
      __cpuid(cpu_info, parameter);
      memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info));
      i += sizeof(cpu_info);
    }
    cpu_string[i] = '\0';
    cpu_brand_ = cpu_string;
  }

  static constexpr int kParameterContainingNonStopTimeStampCounter = 0x80000007;
  if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
    __cpuid(cpu_info, kParameterContainingNonStopTimeStampCounter);
    has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
  }

  if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
    int cpu_info_hv[4] = {};
    __cpuid(cpu_info_hv, 0x40000000);
    if (cpu_info_hv[1] == 0x7263694D &&  // Micr
        cpu_info_hv[2] == 0x666F736F &&  // osof
        cpu_info_hv[3] == 0x76482074) {  // t Hv
      // If CPUID says we have a variant TSC and a hypervisor has identified
      // itself and the hypervisor says it is Microsoft Hyper-V, then treat
      // TSC as invariant.
      //
      // Microsoft Hyper-V hypervisor reports variant TSC as there are some
      // scenarios (eg. VM live migration) where the TSC is variant, but for
      // our purposes we can treat it as invariant.
      has_non_stop_time_stamp_counter_ = true;
    }
  }
#elif defined(ARCH_CPU_ARM_FAMILY)
#if (defined(OS_ANDROID) || defined(OS_LINUX))
  cpu_brand_ = *CpuInfoBrand();
#elif defined(OS_WIN)
  // Windows makes high-resolution thread timing information available in
  // user-space.
  has_non_stop_time_stamp_counter_ = true;
#endif
#endif
}

CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
  if (has_avx2()) return AVX2;
  if (has_avx()) return AVX;
  if (has_sse42()) return SSE42;
  if (has_sse41()) return SSE41;
  if (has_ssse3()) return SSSE3;
  if (has_sse3()) return SSE3;
  if (has_sse2()) return SSE2;
  if (has_sse()) return SSE;
  return PENTIUM;
}

}  // namespace base