summaryrefslogtreecommitdiffstats
path: root/security/sandbox/chromium/base/stl_util.h
blob: 83d86ad90d24d136bebd46dc02617eea5ec7e438 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Derived from google3/util/gtl/stl_util.h

#ifndef BASE_STL_UTIL_H_
#define BASE_STL_UTIL_H_

#include <algorithm>
#include <deque>
#include <forward_list>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "base/logging.h"
#include "base/optional.h"
#include "base/template_util.h"

namespace base {

namespace internal {

// Calls erase on iterators of matching elements.
template <typename Container, typename Predicate>
void IterateAndEraseIf(Container& container, Predicate pred) {
  for (auto it = container.begin(); it != container.end();) {
    if (pred(*it))
      it = container.erase(it);
    else
      ++it;
  }
}

template <typename Iter>
constexpr bool IsRandomAccessIter =
    std::is_same<typename std::iterator_traits<Iter>::iterator_category,
                 std::random_access_iterator_tag>::value;

// Utility type traits used for specializing base::Contains() below.
template <typename Container, typename Element, typename = void>
struct HasFindWithNpos : std::false_type {};

template <typename Container, typename Element>
struct HasFindWithNpos<
    Container,
    Element,
    void_t<decltype(std::declval<const Container&>().find(
                        std::declval<const Element&>()) != Container::npos)>>
    : std::true_type {};

template <typename Container, typename Element, typename = void>
struct HasFindWithEnd : std::false_type {};

template <typename Container, typename Element>
struct HasFindWithEnd<Container,
                      Element,
                      void_t<decltype(std::declval<const Container&>().find(
                                          std::declval<const Element&>()) !=
                                      std::declval<const Container&>().end())>>
    : std::true_type {};

template <typename Container, typename Element, typename = void>
struct HasContains : std::false_type {};

template <typename Container, typename Element>
struct HasContains<Container,
                   Element,
                   void_t<decltype(std::declval<const Container&>().contains(
                       std::declval<const Element&>()))>> : std::true_type {};

}  // namespace internal

// C++14 implementation of C++17's std::size():
// http://en.cppreference.com/w/cpp/iterator/size
template <typename Container>
constexpr auto size(const Container& c) -> decltype(c.size()) {
  return c.size();
}

template <typename T, size_t N>
constexpr size_t size(const T (&array)[N]) noexcept {
  return N;
}

// C++14 implementation of C++17's std::empty():
// http://en.cppreference.com/w/cpp/iterator/empty
template <typename Container>
constexpr auto empty(const Container& c) -> decltype(c.empty()) {
  return c.empty();
}

template <typename T, size_t N>
constexpr bool empty(const T (&array)[N]) noexcept {
  return false;
}

template <typename T>
constexpr bool empty(std::initializer_list<T> il) noexcept {
  return il.size() == 0;
}

// C++14 implementation of C++17's std::data():
// http://en.cppreference.com/w/cpp/iterator/data
template <typename Container>
constexpr auto data(Container& c) -> decltype(c.data()) {
  return c.data();
}

// std::basic_string::data() had no mutable overload prior to C++17 [1].
// Hence this overload is provided.
// Note: str[0] is safe even for empty strings, as they are guaranteed to be
// null-terminated [2].
//
// [1] http://en.cppreference.com/w/cpp/string/basic_string/data
// [2] http://en.cppreference.com/w/cpp/string/basic_string/operator_at
template <typename CharT, typename Traits, typename Allocator>
CharT* data(std::basic_string<CharT, Traits, Allocator>& str) {
  return std::addressof(str[0]);
}

template <typename Container>
constexpr auto data(const Container& c) -> decltype(c.data()) {
  return c.data();
}

template <typename T, size_t N>
constexpr T* data(T (&array)[N]) noexcept {
  return array;
}

template <typename T>
constexpr const T* data(std::initializer_list<T> il) noexcept {
  return il.begin();
}

// std::array::data() was not constexpr prior to C++17 [1].
// Hence these overloads are provided.
//
// [1] https://en.cppreference.com/w/cpp/container/array/data
template <typename T, size_t N>
constexpr T* data(std::array<T, N>& array) noexcept {
  return !array.empty() ? &array[0] : nullptr;
}

template <typename T, size_t N>
constexpr const T* data(const std::array<T, N>& array) noexcept {
  return !array.empty() ? &array[0] : nullptr;
}

// C++14 implementation of C++17's std::as_const():
// https://en.cppreference.com/w/cpp/utility/as_const
template <typename T>
constexpr std::add_const_t<T>& as_const(T& t) noexcept {
  return t;
}

template <typename T>
void as_const(const T&& t) = delete;

// Returns a const reference to the underlying container of a container adapter.
// Works for std::priority_queue, std::queue, and std::stack.
template <class A>
const typename A::container_type& GetUnderlyingContainer(const A& adapter) {
  struct ExposedAdapter : A {
    using A::c;
  };
  return adapter.*&ExposedAdapter::c;
}

// Clears internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template<class T>
void STLClearObject(T* obj) {
  T tmp;
  tmp.swap(*obj);
  // Sometimes "T tmp" allocates objects with memory (arena implementation?).
  // Hence using additional reserve(0) even if it doesn't always work.
  obj->reserve(0);
}

// Counts the number of instances of val in a container.
template <typename Container, typename T>
typename std::iterator_traits<
    typename Container::const_iterator>::difference_type
STLCount(const Container& container, const T& val) {
  return std::count(container.begin(), container.end(), val);
}

// General purpose implementation to check if |container| contains |value|.
template <typename Container,
          typename Value,
          std::enable_if_t<
              !internal::HasFindWithNpos<Container, Value>::value &&
              !internal::HasFindWithEnd<Container, Value>::value &&
              !internal::HasContains<Container, Value>::value>* = nullptr>
bool Contains(const Container& container, const Value& value) {
  using std::begin;
  using std::end;
  return std::find(begin(container), end(container), value) != end(container);
}

// Specialized Contains() implementation for when |container| has a find()
// member function and a static npos member, but no contains() member function.
template <typename Container,
          typename Value,
          std::enable_if_t<internal::HasFindWithNpos<Container, Value>::value &&
                           !internal::HasContains<Container, Value>::value>* =
              nullptr>
bool Contains(const Container& container, const Value& value) {
  return container.find(value) != Container::npos;
}

// Specialized Contains() implementation for when |container| has a find()
// and end() member function, but no contains() member function.
template <typename Container,
          typename Value,
          std::enable_if_t<internal::HasFindWithEnd<Container, Value>::value &&
                           !internal::HasContains<Container, Value>::value>* =
              nullptr>
bool Contains(const Container& container, const Value& value) {
  return container.find(value) != container.end();
}

// Specialized Contains() implementation for when |container| has a contains()
// member function.
template <
    typename Container,
    typename Value,
    std::enable_if_t<internal::HasContains<Container, Value>::value>* = nullptr>
bool Contains(const Container& container, const Value& value) {
  return container.contains(value);
}

// O(1) implementation of const casting an iterator for any sequence,
// associative or unordered associative container in the STL.
//
// Reference: https://stackoverflow.com/a/10669041
template <typename Container,
          typename ConstIter,
          std::enable_if_t<!internal::IsRandomAccessIter<ConstIter>>* = nullptr>
constexpr auto ConstCastIterator(Container& c, ConstIter it) {
  return c.erase(it, it);
}

// Explicit overload for std::forward_list where erase() is named erase_after().
template <typename T, typename Allocator>
constexpr auto ConstCastIterator(
    std::forward_list<T, Allocator>& c,
    typename std::forward_list<T, Allocator>::const_iterator it) {
// The erase_after(it, it) trick used below does not work for libstdc++ [1],
// thus we need a different way.
// TODO(crbug.com/972541): Remove this workaround once libstdc++ is fixed on all
// platforms.
//
// [1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90857
#if defined(__GLIBCXX__)
  return c.insert_after(it, {});
#else
  return c.erase_after(it, it);
#endif
}

// Specialized O(1) const casting for random access iterators. This is
// necessary, because erase() is either not available (e.g. array-like
// containers), or has O(n) complexity (e.g. std::deque or std::vector).
template <typename Container,
          typename ConstIter,
          std::enable_if_t<internal::IsRandomAccessIter<ConstIter>>* = nullptr>
constexpr auto ConstCastIterator(Container& c, ConstIter it) {
  using std::begin;
  using std::cbegin;
  return begin(c) + (it - cbegin(c));
}

namespace internal {

template <typename Map, typename Key, typename Value>
std::pair<typename Map::iterator, bool> InsertOrAssignImpl(Map& map,
                                                           Key&& key,
                                                           Value&& value) {
  auto lower = map.lower_bound(key);
  if (lower != map.end() && !map.key_comp()(key, lower->first)) {
    // key already exists, perform assignment.
    lower->second = std::forward<Value>(value);
    return {lower, false};
  }

  // key did not yet exist, insert it.
  return {map.emplace_hint(lower, std::forward<Key>(key),
                           std::forward<Value>(value)),
          true};
}

template <typename Map, typename Key, typename Value>
typename Map::iterator InsertOrAssignImpl(Map& map,
                                          typename Map::const_iterator hint,
                                          Key&& key,
                                          Value&& value) {
  auto&& key_comp = map.key_comp();
  if ((hint == map.begin() || key_comp(std::prev(hint)->first, key))) {
    if (hint == map.end() || key_comp(key, hint->first)) {
      // *(hint - 1) < key < *hint => key did not exist and hint is correct.
      return map.emplace_hint(hint, std::forward<Key>(key),
                              std::forward<Value>(value));
    }

    if (!key_comp(hint->first, key)) {
      // key == *hint => key already exists and hint is correct.
      auto mutable_hint = ConstCastIterator(map, hint);
      mutable_hint->second = std::forward<Value>(value);
      return mutable_hint;
    }
  }

  // hint was not helpful, dispatch to hintless version.
  return InsertOrAssignImpl(map, std::forward<Key>(key),
                            std::forward<Value>(value))
      .first;
}

template <typename Map, typename Key, typename... Args>
std::pair<typename Map::iterator, bool> TryEmplaceImpl(Map& map,
                                                       Key&& key,
                                                       Args&&... args) {
  auto lower = map.lower_bound(key);
  if (lower != map.end() && !map.key_comp()(key, lower->first)) {
    // key already exists, do nothing.
    return {lower, false};
  }

  // key did not yet exist, insert it.
  return {map.emplace_hint(lower, std::piecewise_construct,
                           std::forward_as_tuple(std::forward<Key>(key)),
                           std::forward_as_tuple(std::forward<Args>(args)...)),
          true};
}

template <typename Map, typename Key, typename... Args>
typename Map::iterator TryEmplaceImpl(Map& map,
                                      typename Map::const_iterator hint,
                                      Key&& key,
                                      Args&&... args) {
  auto&& key_comp = map.key_comp();
  if ((hint == map.begin() || key_comp(std::prev(hint)->first, key))) {
    if (hint == map.end() || key_comp(key, hint->first)) {
      // *(hint - 1) < key < *hint => key did not exist and hint is correct.
      return map.emplace_hint(
          hint, std::piecewise_construct,
          std::forward_as_tuple(std::forward<Key>(key)),
          std::forward_as_tuple(std::forward<Args>(args)...));
    }

    if (!key_comp(hint->first, key)) {
      // key == *hint => no-op, return correct hint.
      return ConstCastIterator(map, hint);
    }
  }

  // hint was not helpful, dispatch to hintless version.
  return TryEmplaceImpl(map, std::forward<Key>(key),
                        std::forward<Args>(args)...)
      .first;
}

}  // namespace internal

// Implementation of C++17's std::map::insert_or_assign as a free function.
template <typename Map, typename Value>
std::pair<typename Map::iterator, bool>
InsertOrAssign(Map& map, const typename Map::key_type& key, Value&& value) {
  return internal::InsertOrAssignImpl(map, key, std::forward<Value>(value));
}

template <typename Map, typename Value>
std::pair<typename Map::iterator, bool>
InsertOrAssign(Map& map, typename Map::key_type&& key, Value&& value) {
  return internal::InsertOrAssignImpl(map, std::move(key),
                                      std::forward<Value>(value));
}

// Implementation of C++17's std::map::insert_or_assign with hint as a free
// function.
template <typename Map, typename Value>
typename Map::iterator InsertOrAssign(Map& map,
                                      typename Map::const_iterator hint,
                                      const typename Map::key_type& key,
                                      Value&& value) {
  return internal::InsertOrAssignImpl(map, hint, key,
                                      std::forward<Value>(value));
}

template <typename Map, typename Value>
typename Map::iterator InsertOrAssign(Map& map,
                                      typename Map::const_iterator hint,
                                      typename Map::key_type&& key,
                                      Value&& value) {
  return internal::InsertOrAssignImpl(map, hint, std::move(key),
                                      std::forward<Value>(value));
}

// Implementation of C++17's std::map::try_emplace as a free function.
template <typename Map, typename... Args>
std::pair<typename Map::iterator, bool>
TryEmplace(Map& map, const typename Map::key_type& key, Args&&... args) {
  return internal::TryEmplaceImpl(map, key, std::forward<Args>(args)...);
}

template <typename Map, typename... Args>
std::pair<typename Map::iterator, bool> TryEmplace(Map& map,
                                                   typename Map::key_type&& key,
                                                   Args&&... args) {
  return internal::TryEmplaceImpl(map, std::move(key),
                                  std::forward<Args>(args)...);
}

// Implementation of C++17's std::map::try_emplace with hint as a free
// function.
template <typename Map, typename... Args>
typename Map::iterator TryEmplace(Map& map,
                                  typename Map::const_iterator hint,
                                  const typename Map::key_type& key,
                                  Args&&... args) {
  return internal::TryEmplaceImpl(map, hint, key, std::forward<Args>(args)...);
}

template <typename Map, typename... Args>
typename Map::iterator TryEmplace(Map& map,
                                  typename Map::const_iterator hint,
                                  typename Map::key_type&& key,
                                  Args&&... args) {
  return internal::TryEmplaceImpl(map, hint, std::move(key),
                                  std::forward<Args>(args)...);
}

// Returns true if the container is sorted.
template <typename Container>
bool STLIsSorted(const Container& cont) {
  return std::is_sorted(std::begin(cont), std::end(cont));
}

// Returns a new ResultType containing the difference of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType difference;
  std::set_difference(a1.begin(), a1.end(),
                      a2.begin(), a2.end(),
                      std::inserter(difference, difference.end()));
  return difference;
}

// Returns a new ResultType containing the union of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType result;
  std::set_union(a1.begin(), a1.end(),
                 a2.begin(), a2.end(),
                 std::inserter(result, result.end()));
  return result;
}

// Returns a new ResultType containing the intersection of two sorted
// containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  ResultType result;
  std::set_intersection(a1.begin(), a1.end(),
                        a2.begin(), a2.end(),
                        std::inserter(result, result.end()));
  return result;
}

// Returns true if the sorted container |a1| contains all elements of the sorted
// container |a2|.
template <typename Arg1, typename Arg2>
bool STLIncludes(const Arg1& a1, const Arg2& a2) {
  DCHECK(STLIsSorted(a1));
  DCHECK(STLIsSorted(a2));
  return std::includes(a1.begin(), a1.end(),
                       a2.begin(), a2.end());
}

// Erase/EraseIf are based on library fundamentals ts v2 erase/erase_if
// http://en.cppreference.com/w/cpp/experimental/lib_extensions_2
// They provide a generic way to erase elements from a container.
// The functions here implement these for the standard containers until those
// functions are available in the C++ standard.
// For Chromium containers overloads should be defined in their own headers
// (like standard containers).
// Note: there is no std::erase for standard associative containers so we don't
// have it either.

template <typename CharT, typename Traits, typename Allocator, typename Value>
void Erase(std::basic_string<CharT, Traits, Allocator>& container,
           const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <typename CharT, typename Traits, typename Allocator, class Predicate>
void EraseIf(std::basic_string<CharT, Traits, Allocator>& container,
             Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::deque<T, Allocator>& container, const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::deque<T, Allocator>& container, Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::vector<T, Allocator>& container, const Value& value) {
  container.erase(std::remove(container.begin(), container.end(), value),
                  container.end());
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::vector<T, Allocator>& container, Predicate pred) {
  container.erase(std::remove_if(container.begin(), container.end(), pred),
                  container.end());
}

template <class T, class Allocator, class Value>
void Erase(std::forward_list<T, Allocator>& container, const Value& value) {
  // Unlike std::forward_list::remove, this function template accepts
  // heterogeneous types and does not force a conversion to the container's
  // value type before invoking the == operator.
  container.remove_if([&](const T& cur) { return cur == value; });
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::forward_list<T, Allocator>& container, Predicate pred) {
  container.remove_if(pred);
}

template <class T, class Allocator, class Value>
void Erase(std::list<T, Allocator>& container, const Value& value) {
  // Unlike std::list::remove, this function template accepts heterogeneous
  // types and does not force a conversion to the container's value type before
  // invoking the == operator.
  container.remove_if([&](const T& cur) { return cur == value; });
}

template <class T, class Allocator, class Predicate>
void EraseIf(std::list<T, Allocator>& container, Predicate pred) {
  container.remove_if(pred);
}

template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::map<Key, T, Compare, Allocator>& container, Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::multimap<Key, T, Compare, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::set<Key, Compare, Allocator>& container, Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::multiset<Key, Compare, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_map<Key, T, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class T,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(
    std::unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& container,
    Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_set<Key, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

template <class Key,
          class Hash,
          class KeyEqual,
          class Allocator,
          class Predicate>
void EraseIf(std::unordered_multiset<Key, Hash, KeyEqual, Allocator>& container,
             Predicate pred) {
  internal::IterateAndEraseIf(container, pred);
}

// A helper class to be used as the predicate with |EraseIf| to implement
// in-place set intersection. Helps implement the algorithm of going through
// each container an element at a time, erasing elements from the first
// container if they aren't in the second container. Requires each container be
// sorted. Note that the logic below appears inverted since it is returning
// whether an element should be erased.
template <class Collection>
class IsNotIn {
 public:
  explicit IsNotIn(const Collection& collection)
      : i_(collection.begin()), end_(collection.end()) {}

  bool operator()(const typename Collection::value_type& x) {
    while (i_ != end_ && *i_ < x)
      ++i_;
    if (i_ == end_)
      return true;
    if (*i_ == x) {
      ++i_;
      return false;
    }
    return true;
  }

 private:
  typename Collection::const_iterator i_;
  const typename Collection::const_iterator end_;
};

// Helper for returning the optional value's address, or nullptr.
template <class T>
T* OptionalOrNullptr(base::Optional<T>& optional) {
  return optional.has_value() ? &optional.value() : nullptr;
}

template <class T>
const T* OptionalOrNullptr(const base::Optional<T>& optional) {
  return optional.has_value() ? &optional.value() : nullptr;
}

}  // namespace base

#endif  // BASE_STL_UTIL_H_