summaryrefslogtreecommitdiffstats
path: root/testing/mozbase/mozsystemmonitor/mozsystemmonitor/resourcemonitor.py
blob: 847d3e8d3da524d72405d17186022ec182cc054c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this file,
# You can obtain one at http://mozilla.org/MPL/2.0/.

import multiprocessing
import sys
import time
import warnings
from collections import OrderedDict, namedtuple
from contextlib import contextmanager


class PsutilStub(object):
    def __init__(self):
        self.sswap = namedtuple(
            "sswap", ["total", "used", "free", "percent", "sin", "sout"]
        )
        self.sdiskio = namedtuple(
            "sdiskio",
            [
                "read_count",
                "write_count",
                "read_bytes",
                "write_bytes",
                "read_time",
                "write_time",
            ],
        )
        self.pcputimes = namedtuple("pcputimes", ["user", "system"])
        self.svmem = namedtuple(
            "svmem",
            [
                "total",
                "available",
                "percent",
                "used",
                "free",
                "active",
                "inactive",
                "buffers",
                "cached",
            ],
        )

    def cpu_percent(self, a, b):
        return [0]

    def cpu_times(self, percpu):
        if percpu:
            return [self.pcputimes(0, 0)]
        else:
            return self.pcputimes(0, 0)

    def disk_io_counters(self):
        return self.sdiskio(0, 0, 0, 0, 0, 0)

    def swap_memory(self):
        return self.sswap(0, 0, 0, 0, 0, 0)

    def virtual_memory(self):
        return self.svmem(0, 0, 0, 0, 0, 0, 0, 0, 0)


# psutil will raise NotImplementedError if the platform is not supported.
try:
    import psutil

    have_psutil = True
except Exception:
    try:
        # The PsutilStub should get us time intervals, at least
        psutil = PsutilStub()
    except Exception:
        psutil = None

    have_psutil = False


def get_disk_io_counters():
    try:
        io_counters = psutil.disk_io_counters()

        if io_counters is None:
            return PsutilStub().disk_io_counters()
    except RuntimeError:
        io_counters = PsutilStub().disk_io_counters()

    return io_counters


def _poll(pipe, poll_interval=0.1):
    """Wrap multiprocessing.Pipe.poll to hide POLLERR and POLLIN
    exceptions.

    multiprocessing.Pipe is not actually a pipe on at least Linux.
    That has an effect on the expected outcome of reading from it when
    the other end of the pipe dies, leading to possibly hanging on revc()
    below.
    """
    try:
        return pipe.poll(poll_interval)
    except Exception:
        # Poll might throw an exception even though there's still
        # data to read. That happens when the underlying system call
        # returns both POLLERR and POLLIN, but python doesn't tell us
        # about it. So assume there is something to read, and we'll
        # get an exception when trying to read the data.
        return True


def _collect(pipe, poll_interval):
    """Collects system metrics.

    This is the main function for the background process. It collects
    data then forwards it on a pipe until told to stop.
    """

    data = []

    try:

        # Establish initial values.

        # We should ideally use a monotonic clock. However, Python 2.7 doesn't
        # make a monotonic clock available on all platforms. Python 3.3 does!
        last_time = time.time()
        io_last = get_disk_io_counters()
        cpu_last = psutil.cpu_times(True)
        swap_last = psutil.swap_memory()
        psutil.cpu_percent(None, True)

        sin_index = swap_last._fields.index("sin")
        sout_index = swap_last._fields.index("sout")

        sleep_interval = poll_interval

        while not _poll(pipe, poll_interval=sleep_interval):
            io = get_disk_io_counters()
            cpu_times = psutil.cpu_times(True)
            cpu_percent = psutil.cpu_percent(None, True)
            virt_mem = psutil.virtual_memory()
            swap_mem = psutil.swap_memory()
            measured_end_time = time.time()

            # TODO Does this wrap? At 32 bits? At 64 bits?
            # TODO Consider patching "delta" API to upstream.
            io_diff = [v - io_last[i] for i, v in enumerate(io)]
            io_last = io

            cpu_diff = []
            for core, values in enumerate(cpu_times):
                cpu_diff.append([v - cpu_last[core][i] for i, v in enumerate(values)])

            cpu_last = cpu_times

            swap_entry = list(swap_mem)
            swap_entry[sin_index] = swap_mem.sin - swap_last.sin
            swap_entry[sout_index] = swap_mem.sout - swap_last.sout
            swap_last = swap_mem

            data.append(
                (
                    last_time,
                    measured_end_time,
                    io_diff,
                    cpu_diff,
                    cpu_percent,
                    list(virt_mem),
                    swap_entry,
                )
            )

            collection_overhead = time.time() - last_time - poll_interval
            last_time = measured_end_time
            sleep_interval = max(0, poll_interval - collection_overhead)

    except Exception as e:
        warnings.warn("_collect failed: %s" % e)

    finally:

        for entry in data:
            pipe.send(entry)

        pipe.send(("done", None, None, None, None, None, None))
        pipe.close()

    sys.exit(0)


SystemResourceUsage = namedtuple(
    "SystemResourceUsage",
    ["start", "end", "cpu_times", "cpu_percent", "io", "virt", "swap"],
)


class SystemResourceMonitor(object):
    """Measures system resources.

    Each instance measures system resources from the time it is started
    until it is finished. It does this on a separate process so it doesn't
    impact execution of the main Python process.

    Each instance is a one-shot instance. It cannot be used to record multiple
    durations.

    Aside from basic data gathering, the class supports basic analysis
    capabilities. You can query for data between ranges. You can also tell it
    when certain events occur and later grab data relevant to those events or
    plot those events on a timeline.

    The resource monitor works by periodically polling the state of the
    system. By default, it polls every second. This can be adjusted depending
    on the required granularity of the data and considerations for probe
    overhead. It tries to probe at the interval specified. However, variations
    should be expected. Fast and well-behaving systems should experience
    variations in the 1ms range. Larger variations may exist if the system is
    under heavy load or depending on how accurate socket polling is on your
    system.

    In its current implementation, data is not available until collection has
    stopped. This may change in future iterations.

    Usage
    =====

    monitor = SystemResourceMonitor()
    monitor.start()

    # Record that a single event in time just occurred.
    foo.do_stuff()
    monitor.record_event('foo_did_stuff')

    # Record that we're about to perform a possibly long-running event.
    with monitor.phase('long_job'):
        foo.do_long_running_job()

    # Stop recording. Currently we need to stop before data is available.
    monitor.stop()

    # Obtain the raw data for the entire probed range.
    print('CPU Usage:')
    for core in monitor.aggregate_cpu():
        print(core)

    # We can also request data corresponding to a specific phase.
    for data in monitor.phase_usage('long_job'):
        print(data.cpu_percent)
    """

    # The interprocess communication is complicated enough to warrant
    # explanation. To work around the Python GIL, we launch a separate
    # background process whose only job is to collect metrics. If we performed
    # collection in the main process, the polling interval would be
    # inconsistent if a long-running function were on the stack. Since the
    # child process is independent of the instantiating process, data
    # collection should be evenly spaced.
    #
    # As the child process collects data, it buffers it locally. When
    # collection stops, it flushes all that data to a pipe to be read by
    # the parent process.

    def __init__(self, poll_interval=1.0):
        """Instantiate a system resource monitor instance.

        The instance is configured with a poll interval. This is the interval
        between samples, in float seconds.
        """
        self.start_time = None
        self.end_time = None

        self.events = []
        self.phases = OrderedDict()

        self._active_phases = {}

        self._running = False
        self._stopped = False
        self._process = None

        if psutil is None:
            return

        # This try..except should not be needed! However, some tools (like
        # |mach build|) attempt to load psutil before properly creating a
        # virtualenv by building psutil. As a result, python/psutil may be in
        # sys.path and its .py files may pick up the psutil C extension from
        # the system install. If the versions don't match, we typically see
        # failures invoking one of these functions.
        try:
            cpu_percent = psutil.cpu_percent(0.0, True)
            cpu_times = psutil.cpu_times(False)
            io = get_disk_io_counters()
            virt = psutil.virtual_memory()
            swap = psutil.swap_memory()
        except Exception as e:
            warnings.warn("psutil failed to run: %s" % e)
            return

        self._cpu_cores = len(cpu_percent)
        self._cpu_times_type = type(cpu_times)
        self._cpu_times_len = len(cpu_times)
        self._io_type = type(io)
        self._io_len = len(io)
        self._virt_type = type(virt)
        self._virt_len = len(virt)
        self._swap_type = type(swap)
        self._swap_len = len(swap)

        self._pipe, child_pipe = multiprocessing.Pipe(True)

        self._process = multiprocessing.Process(
            target=_collect, args=(child_pipe, poll_interval)
        )

    def __del__(self):
        if self._running:
            self._pipe.send(("terminate",))
            self._process.join()

    # Methods to control monitoring.

    def start(self):
        """Start measuring system-wide CPU resource utilization.

        You should only call this once per instance.
        """
        if not self._process:
            return

        self._process.start()
        self._running = True

    def stop(self):
        """Stop measuring system-wide CPU resource utilization.

        You should call this if and only if you have called start(). You should
        always pair a stop() with a start().

        Currently, data is not available until you call stop().
        """
        if not self._process:
            self._stopped = True
            return

        assert not self._stopped

        try:
            self._pipe.send(("terminate",))
        except Exception:
            pass
        self._stopped = True

        self.measurements = []

        # The child process will send each data sample over the pipe
        # as a separate data structure. When it has finished sending
        # samples, it sends a special "done" message to indicate it
        # is finished.

        while _poll(self._pipe, poll_interval=0.1):
            try:
                (
                    start_time,
                    end_time,
                    io_diff,
                    cpu_diff,
                    cpu_percent,
                    virt_mem,
                    swap_mem,
                ) = self._pipe.recv()
            except Exception:
                # Let's assume we're done here
                break

            # There should be nothing after the "done" message so
            # terminate.
            if start_time == "done":
                break

            io = self._io_type(*io_diff)
            virt = self._virt_type(*virt_mem)
            swap = self._swap_type(*swap_mem)
            cpu_times = [self._cpu_times_type(*v) for v in cpu_diff]

            self.measurements.append(
                SystemResourceUsage(
                    start_time, end_time, cpu_times, cpu_percent, io, virt, swap
                )
            )

        # We establish a timeout so we don't hang forever if the child
        # process has crashed.
        if self._running:
            self._process.join(10)
            if self._process.is_alive():
                self._process.terminate()
                self._process.join(10)

        self._running = False

        if len(self.measurements):
            self.start_time = self.measurements[0].start
            self.end_time = self.measurements[-1].end

    # Methods to record events alongside the monitored data.

    def record_event(self, name):
        """Record an event as occuring now.

        Events are actions that occur at a specific point in time. If you are
        looking for an action that has a duration, see the phase API below.
        """
        self.events.append((time.time(), name))

    @contextmanager
    def phase(self, name):
        """Context manager for recording an active phase."""
        self.begin_phase(name)
        yield
        self.finish_phase(name)

    def begin_phase(self, name):
        """Record the start of a phase.

        Phases are actions that have a duration. Multiple phases can be active
        simultaneously. Phases can be closed in any order.

        Keep in mind that if phases occur in parallel, it will become difficult
        to isolate resource utilization specific to individual phases.
        """
        assert name not in self._active_phases

        self._active_phases[name] = time.time()

    def finish_phase(self, name):
        """Record the end of a phase."""

        assert name in self._active_phases

        phase = (self._active_phases[name], time.time())
        self.phases[name] = phase
        del self._active_phases[name]

        return phase[1] - phase[0]

    # Methods to query data.

    def range_usage(self, start=None, end=None):
        """Obtain the usage data falling within the given time range.

        This is a generator of SystemResourceUsage.

        If no time range bounds are given, all data is returned.
        """
        if not self._stopped or self.start_time is None:
            return

        if start is None:
            start = self.start_time

        if end is None:
            end = self.end_time

        for entry in self.measurements:
            if entry.start < start:
                continue

            if entry.end > end:
                break

            yield entry

    def phase_usage(self, phase):
        """Obtain usage data for a specific phase.

        This is a generator of SystemResourceUsage.
        """
        time_start, time_end = self.phases[phase]

        return self.range_usage(time_start, time_end)

    def between_events_usage(self, start_event, end_event):
        """Obtain usage data between two point events.

        This is a generator of SystemResourceUsage.
        """
        start_time = None
        end_time = None

        for t, name in self.events:
            if name == start_event:
                start_time = t
            elif name == end_event:
                end_time = t

        if start_time is None:
            raise Exception("Could not find start event: %s" % start_event)

        if end_time is None:
            raise Exception("Could not find end event: %s" % end_event)

        return self.range_usage(start_time, end_time)

    def aggregate_cpu_percent(self, start=None, end=None, phase=None, per_cpu=True):
        """Obtain the aggregate CPU percent usage for a range.

        Returns a list of floats representing average CPU usage percentage per
        core if per_cpu is True (the default). If per_cpu is False, return a
        single percentage value.

        By default this will return data for the entire instrumented interval.
        If phase is defined, data for a named phase will be returned. If start
        and end are defined, these times will be fed into range_usage().
        """
        cpu = [[] for i in range(0, self._cpu_cores)]

        if phase:
            data = self.phase_usage(phase)
        else:
            data = self.range_usage(start, end)

        for usage in data:
            for i, v in enumerate(usage.cpu_percent):
                cpu[i].append(v)

        samples = len(cpu[0])

        if not samples:
            return 0

        if per_cpu:
            # pylint --py3k W1619
            return [sum(x) / samples for x in cpu]

        cores = [sum(x) for x in cpu]

        # pylint --py3k W1619
        return sum(cores) / len(cpu) / samples

    def aggregate_cpu_times(self, start=None, end=None, phase=None, per_cpu=True):
        """Obtain the aggregate CPU times for a range.

        If per_cpu is True (the default), this returns a list of named tuples.
        Each tuple is as if it were returned by psutil.cpu_times(). If per_cpu
        is False, this returns a single named tuple of the aforementioned type.
        """
        empty = [0 for i in range(0, self._cpu_times_len)]
        cpu = [list(empty) for i in range(0, self._cpu_cores)]

        if phase:
            data = self.phase_usage(phase)
        else:
            data = self.range_usage(start, end)

        for usage in data:
            for i, core_values in enumerate(usage.cpu_times):
                for j, v in enumerate(core_values):
                    cpu[i][j] += v

        if per_cpu:
            return [self._cpu_times_type(*v) for v in cpu]

        sums = list(empty)
        for core in cpu:
            for i, v in enumerate(core):
                sums[i] += v

        return self._cpu_times_type(*sums)

    def aggregate_io(self, start=None, end=None, phase=None):
        """Obtain aggregate I/O counters for a range.

        Returns an iostat named tuple from psutil.
        """

        io = [0 for i in range(self._io_len)]

        if phase:
            data = self.phase_usage(phase)
        else:
            data = self.range_usage(start, end)

        for usage in data:
            for i, v in enumerate(usage.io):
                io[i] += v

        return self._io_type(*io)

    def min_memory_available(self, start=None, end=None, phase=None):
        """Return the minimum observed available memory number from a range.

        Returns long bytes of memory available.

        See psutil for notes on how this is calculated.
        """
        if phase:
            data = self.phase_usage(phase)
        else:
            data = self.range_usage(start, end)

        values = []

        for usage in data:
            values.append(usage.virt.available)

        return min(values)

    def max_memory_percent(self, start=None, end=None, phase=None):
        """Returns the maximum percentage of system memory used.

        Returns a float percentage. 1.00 would mean all system memory was in
        use at one point.
        """
        if phase:
            data = self.phase_usage(phase)
        else:
            data = self.range_usage(start, end)

        values = []

        for usage in data:
            values.append(usage.virt.percent)

        return max(values)

    def as_dict(self):
        """Convert the recorded data to a dict, suitable for serialization.

        The returned dict has the following keys:

          version - Integer version number being rendered. Currently 2.
          cpu_times_fields - A list of the names of the CPU times fields.
          io_fields - A list of the names of the I/O fields.
          virt_fields - A list of the names of the virtual memory fields.
          swap_fields - A list of the names of the swap memory fields.
          samples - A list of dicts containing low-level measurements.
          events - A list of lists representing point events. The inner list
            has 2 elements, the float wall time of the event and the string
            event name.
          phases - A list of dicts describing phases. Each phase looks a lot
            like an entry from samples (see below). Some phases may not have
            data recorded against them, so some keys may be None.
          overall - A dict representing overall resource usage. This resembles
            a sample entry.
          system - Contains additional information about the system including
            number of processors and amount of memory.

        Each entry in the sample list is a dict with the following keys:

          start - Float wall time this measurement began on.
          end - Float wall time this measurement ended on.
          io - List of numerics for I/O values.
          virt - List of numerics for virtual memory values.
          swap - List of numerics for swap memory values.
          cpu_percent - List of floats representing CPU percent on each core.
          cpu_times - List of lists. Main list is each core. Inner lists are
            lists of floats representing CPU times on that core.
          cpu_percent_mean - Float of mean CPU percent across all cores.
          cpu_times_sum - List of floats representing the sum of CPU times
            across all cores.
          cpu_times_total - Float representing the sum of all CPU times across
            all cores. This is useful for calculating the percent in each CPU
            time.
        """

        o = dict(
            version=2,
            cpu_times_fields=list(self._cpu_times_type._fields),
            io_fields=list(self._io_type._fields),
            virt_fields=list(self._virt_type._fields),
            swap_fields=list(self._swap_type._fields),
            samples=[],
            phases=[],
            system={},
        )

        def populate_derived(e):
            if e["cpu_percent_cores"]:
                # pylint --py3k W1619
                e["cpu_percent_mean"] = sum(e["cpu_percent_cores"]) / len(
                    e["cpu_percent_cores"]
                )
            else:
                e["cpu_percent_mean"] = None

            if e["cpu_times"]:
                e["cpu_times_sum"] = [0.0] * self._cpu_times_len
                for i in range(0, self._cpu_times_len):
                    e["cpu_times_sum"][i] = sum(core[i] for core in e["cpu_times"])

                e["cpu_times_total"] = sum(e["cpu_times_sum"])

        def phase_entry(name, start, end):
            e = dict(
                name=name,
                start=start,
                end=end,
                duration=end - start,
                cpu_percent_cores=self.aggregate_cpu_percent(phase=name),
                cpu_times=[list(c) for c in self.aggregate_cpu_times(phase=name)],
                io=list(self.aggregate_io(phase=name)),
            )
            populate_derived(e)
            return e

        for m in self.measurements:
            e = dict(
                start=m.start,
                end=m.end,
                io=list(m.io),
                virt=list(m.virt),
                swap=list(m.swap),
                cpu_percent_cores=list(m.cpu_percent),
                cpu_times=list(list(cpu) for cpu in m.cpu_times),
            )

            populate_derived(e)
            o["samples"].append(e)

        if o["samples"]:
            o["start"] = o["samples"][0]["start"]
            o["end"] = o["samples"][-1]["end"]
            o["duration"] = o["end"] - o["start"]
            o["overall"] = phase_entry(None, o["start"], o["end"])
        else:
            o["start"] = None
            o["end"] = None
            o["duration"] = None
            o["overall"] = None

        o["events"] = [list(ev) for ev in self.events]

        for phase, v in self.phases.items():
            o["phases"].append(phase_entry(phase, v[0], v[1]))

        if have_psutil:
            o["system"].update(
                dict(
                    cpu_logical_count=psutil.cpu_count(logical=True),
                    cpu_physical_count=psutil.cpu_count(logical=False),
                    swap_total=psutil.swap_memory()[0],
                    vmem_total=psutil.virtual_memory()[0],
                )
            )

        return o