summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webaudio/resources/stereopanner-testing.js
blob: 6ea5eb626952065315ff5c15733fb0349767ef86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
let StereoPannerTest = (function() {

  // Constants
  let PI_OVER_TWO = Math.PI * 0.5;

  // Use a power of two to eliminate any round-off when converting frames to
  // time.
  let gSampleRate = 32768;

  // Time step when each panner node starts.  Make sure this is on a frame boundary.
  let gTimeStep = Math.floor(0.001 * gSampleRate) / gSampleRate;

  // How many panner nodes to create for the test
  let gNodesToCreate = 100;

  // Total render length for all of our nodes.
  let gRenderLength = gTimeStep * (gNodesToCreate + 1) + gSampleRate;

  // Calculates channel gains based on equal power panning model.
  // See: http://webaudio.github.io/web-audio-api/#panning-algorithm
  function getChannelGain(pan, numberOfChannels) {
    // The internal panning clips the pan value between -1, 1.
    pan = Math.min(Math.max(pan, -1), 1);
    let gainL, gainR;
    // Consider number of channels and pan value's polarity.
    if (numberOfChannels == 1) {
      let panRadian = (pan * 0.5 + 0.5) * PI_OVER_TWO;
      gainL = Math.cos(panRadian);
      gainR = Math.sin(panRadian);
    } else {
      let panRadian = (pan <= 0 ? pan + 1 : pan) * PI_OVER_TWO;
      if (pan <= 0) {
        gainL = 1 + Math.cos(panRadian);
        gainR = Math.sin(panRadian);
      } else {
        gainL = Math.cos(panRadian);
        gainR = 1 + Math.sin(panRadian);
      }
    }
    return {gainL: gainL, gainR: gainR};
  }


  /**
   * Test implementation class.
   * @param {Object} options Test options
   * @param {Object} options.description Test description
   * @param {Object} options.numberOfInputChannels Number of input channels
   */
  function Test(should, options) {
    // Primary test flag.
    this.success = true;

    this.should = should;
    this.context = null;
    this.prefix = options.prefix;
    this.numberOfInputChannels = (options.numberOfInputChannels || 1);
    switch (this.numberOfInputChannels) {
      case 1:
        this.description = 'Test for mono input';
        break;
      case 2:
        this.description = 'Test for stereo input';
        break;
    }

    // Onset time position of each impulse.
    this.onsets = [];

    // Pan position value of each impulse.
    this.panPositions = [];

    // Locations of where the impulses aren't at the expected locations.
    this.errors = [];

    // The index of the current impulse being verified.
    this.impulseIndex = 0;

    // The max error we allow between the rendered impulse and the
    // expected value.  This value is experimentally determined.  Set
    // to 0 to make the test fail to see what the actual error is.
    this.maxAllowedError = 1.284318e-7;

    // Max (absolute) error and the index of the maxima for the left
    // and right channels.
    this.maxErrorL = 0;
    this.maxErrorR = 0;
    this.maxErrorIndexL = 0;
    this.maxErrorIndexR = 0;

    // The maximum value to use for panner pan value. The value will range from
    // -panLimit to +panLimit.
    this.panLimit = 1.0625;
  }


  Test.prototype.init = function() {
    this.context = new OfflineAudioContext(2, gRenderLength, gSampleRate);
  };

  // Prepare an audio graph for testing. Create multiple impulse generators and
  // panner nodes, then play them sequentially while varying the pan position.
  Test.prototype.prepare = function() {
    let impulse;
    let impulseLength = Math.round(gTimeStep * gSampleRate);
    let sources = [];
    let panners = [];

    // Moves the pan value for each panner by pan step unit from -2 to 2.
    // This is to check if the internal panning value is clipped properly.
    let panStep = (2 * this.panLimit) / (gNodesToCreate - 1);

    if (this.numberOfInputChannels === 1) {
      impulse = createImpulseBuffer(this.context, impulseLength);
    } else {
      impulse = createStereoImpulseBuffer(this.context, impulseLength);
    }

    for (let i = 0; i < gNodesToCreate; i++) {
      sources[i] = this.context.createBufferSource();
      panners[i] = this.context.createStereoPanner();
      sources[i].connect(panners[i]);
      panners[i].connect(this.context.destination);
      sources[i].buffer = impulse;
      panners[i].pan.value = this.panPositions[i] = panStep * i - this.panLimit;

      // Store the onset time position of impulse.
      this.onsets[i] = gTimeStep * i;

      sources[i].start(this.onsets[i]);
    }
  };


  Test.prototype.verify = function() {
    let chanL = this.renderedBufferL;
    let chanR = this.renderedBufferR;
    for (let i = 0; i < chanL.length; i++) {
      // Left and right channels must start at the same instant.
      if (chanL[i] !== 0 || chanR[i] !== 0) {
        // Get amount of error between actual and expected gain.
        let expected = getChannelGain(
            this.panPositions[this.impulseIndex], this.numberOfInputChannels);
        let errorL = Math.abs(chanL[i] - expected.gainL);
        let errorR = Math.abs(chanR[i] - expected.gainR);

        if (errorL > this.maxErrorL) {
          this.maxErrorL = errorL;
          this.maxErrorIndexL = this.impulseIndex;
        }
        if (errorR > this.maxErrorR) {
          this.maxErrorR = errorR;
          this.maxErrorIndexR = this.impulseIndex;
        }

        // Keep track of the impulses that didn't show up where we expected
        // them to be.
        let expectedOffset =
            timeToSampleFrame(this.onsets[this.impulseIndex], gSampleRate);
        if (i != expectedOffset) {
          this.errors.push({actual: i, expected: expectedOffset});
        }

        this.impulseIndex++;
      }
    }
  };


  Test.prototype.showResult = function() {
    this.should(this.impulseIndex, this.prefix + 'Number of impulses found')
        .beEqualTo(gNodesToCreate);

    this.should(
            this.errors.length,
            this.prefix + 'Number of impulse at the wrong offset')
        .beEqualTo(0);

    this.should(this.maxErrorL, this.prefix + 'Left channel error magnitude')
        .beLessThanOrEqualTo(this.maxAllowedError);

    this.should(this.maxErrorR, this.prefix + 'Right channel error magnitude')
        .beLessThanOrEqualTo(this.maxAllowedError);
  };

  Test.prototype.run = function() {

    this.init();
    this.prepare();

    return this.context.startRendering().then(renderedBuffer => {
      this.renderedBufferL = renderedBuffer.getChannelData(0);
      this.renderedBufferR = renderedBuffer.getChannelData(1);
      this.verify();
      this.showResult();
    });
  };

  return {
    create: function(should, options) {
      return new Test(should, options);
    }
  };

})();