summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/tests/swizzle_test.cc
blob: f447f7a8000cb44a8e8c0f2503f92bc8f4ec65c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <stddef.h>
#include <string.h>  // memset

#include "hwy/base.h"

#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/swizzle_test.cc"
#include "hwy/foreach_target.h"  // IWYU pragma: keep
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"

HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {

struct TestGetLane {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const auto v = Iota(d, T(1));
    HWY_ASSERT_EQ(T(1), GetLane(v));
  }
};

HWY_NOINLINE void TestAllGetLane() {
  ForAllTypes(ForPartialVectors<TestGetLane>());
}

struct TestExtractLane {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const auto v = Iota(d, T(1));
    for (size_t i = 0; i < Lanes(d); ++i) {
      const T actual = ExtractLane(v, i);
      HWY_ASSERT_EQ(static_cast<T>(i + 1), actual);
    }
  }
};

HWY_NOINLINE void TestAllExtractLane() {
  ForAllTypes(ForPartialVectors<TestExtractLane>());
}

struct TestInsertLane {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    using V = Vec<D>;
    const V v = Iota(d, T(1));
    const size_t N = Lanes(d);
    auto lanes = AllocateAligned<T>(N);
    Store(v, d, lanes.get());

    for (size_t i = 0; i < Lanes(d); ++i) {
      lanes[i] = T{0};
      const V actual = InsertLane(v, i, static_cast<T>(i + 1));
      HWY_ASSERT_VEC_EQ(d, v, actual);
      Store(v, d, lanes.get());  // restore lane i
    }
  }
};

HWY_NOINLINE void TestAllInsertLane() {
  ForAllTypes(ForPartialVectors<TestInsertLane>());
}

struct TestDupEven {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      expected[i] = static_cast<T>((static_cast<int>(i) & ~1) + 1);
    }
    HWY_ASSERT_VEC_EQ(d, expected.get(), DupEven(Iota(d, 1)));
  }
};

HWY_NOINLINE void TestAllDupEven() {
  ForUIF3264(ForShrinkableVectors<TestDupEven>());
}

struct TestDupOdd {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
#if HWY_TARGET != HWY_SCALAR
    const size_t N = Lanes(d);
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      expected[i] = static_cast<T>((static_cast<int>(i) & ~1) + 2);
    }
    HWY_ASSERT_VEC_EQ(d, expected.get(), DupOdd(Iota(d, 1)));
#else
    (void)d;
#endif
  }
};

HWY_NOINLINE void TestAllDupOdd() {
  ForUIF3264(ForShrinkableVectors<TestDupOdd>());
}

struct TestOddEven {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    const auto even = Iota(d, 1);
    const auto odd = Iota(d, static_cast<T>(1 + N));
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      expected[i] = static_cast<T>(1 + i + ((i & 1) ? N : 0));
    }
    HWY_ASSERT_VEC_EQ(d, expected.get(), OddEven(odd, even));
  }
};

HWY_NOINLINE void TestAllOddEven() {
  ForAllTypes(ForShrinkableVectors<TestOddEven>());
}

struct TestOddEvenBlocks {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    const auto even = Iota(d, 1);
    const auto odd = Iota(d, static_cast<T>(1 + N));
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      const size_t idx_block = i / (16 / sizeof(T));
      expected[i] = static_cast<T>(1 + i + ((idx_block & 1) ? N : 0));
    }
    HWY_ASSERT_VEC_EQ(d, expected.get(), OddEvenBlocks(odd, even));
  }
};

HWY_NOINLINE void TestAllOddEvenBlocks() {
  ForAllTypes(ForGEVectors<128, TestOddEvenBlocks>());
}

struct TestSwapAdjacentBlocks {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const size_t N = Lanes(d);
    constexpr size_t kLanesPerBlock = 16 / sizeof(T);
    if (N < 2 * kLanesPerBlock) return;
    const auto vi = Iota(d, 1);
    auto expected = AllocateAligned<T>(N);
    for (size_t i = 0; i < N; ++i) {
      const size_t idx_block = i / kLanesPerBlock;
      const size_t base = (idx_block ^ 1) * kLanesPerBlock;
      const size_t mod = i % kLanesPerBlock;
      expected[i] = static_cast<T>(1 + base + mod);
    }
    HWY_ASSERT_VEC_EQ(d, expected.get(), SwapAdjacentBlocks(vi));
  }
};

HWY_NOINLINE void TestAllSwapAdjacentBlocks() {
  ForAllTypes(ForGEVectors<128, TestSwapAdjacentBlocks>());
}

struct TestTableLookupLanes {
  template <class T, class D>
  HWY_NOINLINE void operator()(T /*unused*/, D d) {
    const RebindToSigned<D> di;
    using TI = TFromD<decltype(di)>;
#if HWY_TARGET != HWY_SCALAR
    const size_t N = Lanes(d);
    auto idx = AllocateAligned<TI>(N);
    memset(idx.get(), 0, N * sizeof(TI));
    auto expected = AllocateAligned<T>(N);
    const auto v = Iota(d, 1);

    if (N <= 8) {  // Test all permutations
      for (size_t i0 = 0; i0 < N; ++i0) {
        idx[0] = static_cast<TI>(i0);

        for (size_t i1 = 0; i1 < N; ++i1) {
          if (N >= 2) idx[1] = static_cast<TI>(i1);
          for (size_t i2 = 0; i2 < N; ++i2) {
            if (N >= 4) idx[2] = static_cast<TI>(i2);
            for (size_t i3 = 0; i3 < N; ++i3) {
              if (N >= 4) idx[3] = static_cast<TI>(i3);

              for (size_t i = 0; i < N; ++i) {
                expected[i] = static_cast<T>(idx[i] + 1);  // == v[idx[i]]
              }

              const auto opaque1 = IndicesFromVec(d, Load(di, idx.get()));
              const auto actual1 = TableLookupLanes(v, opaque1);
              HWY_ASSERT_VEC_EQ(d, expected.get(), actual1);

              const auto opaque2 = SetTableIndices(d, idx.get());
              const auto actual2 = TableLookupLanes(v, opaque2);
              HWY_ASSERT_VEC_EQ(d, expected.get(), actual2);
            }
          }
        }
      }
    } else {
      // Too many permutations to test exhaustively; choose one with repeated
      // and cross-block indices and ensure indices do not exceed #lanes.
      // For larger vectors, upper lanes will be zero.
      HWY_ALIGN TI idx_source[16] = {1,  3,  2,  2,  8, 1, 7, 6,
                                     15, 14, 14, 15, 4, 9, 8, 5};
      for (size_t i = 0; i < N; ++i) {
        idx[i] = (i < 16) ? idx_source[i] : 0;
        // Avoid undefined results / asan error for scalar by capping indices.
        if (idx[i] >= static_cast<TI>(N)) {
          idx[i] = static_cast<TI>(N - 1);
        }
        expected[i] = static_cast<T>(idx[i] + 1);  // == v[idx[i]]
      }

      const auto opaque1 = IndicesFromVec(d, Load(di, idx.get()));
      const auto actual1 = TableLookupLanes(v, opaque1);
      HWY_ASSERT_VEC_EQ(d, expected.get(), actual1);

      const auto opaque2 = SetTableIndices(d, idx.get());
      const auto actual2 = TableLookupLanes(v, opaque2);
      HWY_ASSERT_VEC_EQ(d, expected.get(), actual2);
    }
#else
    const TI index = 0;
    const auto v = Set(d, 1);
    const auto opaque1 = SetTableIndices(d, &index);
    HWY_ASSERT_VEC_EQ(d, v, TableLookupLanes(v, opaque1));
    const auto opaque2 = IndicesFromVec(d, Zero(di));
    HWY_ASSERT_VEC_EQ(d, v, TableLookupLanes(v, opaque2));
#endif
  }
};

HWY_NOINLINE void TestAllTableLookupLanes() {
  ForUIF3264(ForPartialVectors<TestTableLookupLanes>());
}


// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace hwy
HWY_AFTER_NAMESPACE();

#if HWY_ONCE

namespace hwy {
HWY_BEFORE_TEST(HwySwizzleTest);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllGetLane);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllExtractLane);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllInsertLane);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllDupEven);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllDupOdd);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllOddEven);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllOddEvenBlocks);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllSwapAdjacentBlocks);
HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllTableLookupLanes);
}  // namespace hwy

#endif