1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/enc_adaptive_quantization.h"
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "lib/jxl/enc_adaptive_quantization.cc"
#include <hwy/foreach_target.h>
#include <hwy/highway.h>
#include "lib/jxl/ac_strategy.h"
#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/data_parallel.h"
#include "lib/jxl/base/profiler.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/butteraugli/butteraugli.h"
#include "lib/jxl/coeff_order_fwd.h"
#include "lib/jxl/color_encoding_internal.h"
#include "lib/jxl/color_management.h"
#include "lib/jxl/common.h"
#include "lib/jxl/convolve.h"
#include "lib/jxl/dec_cache.h"
#include "lib/jxl/dec_group.h"
#include "lib/jxl/enc_aux_out.h"
#include "lib/jxl/enc_butteraugli_comparator.h"
#include "lib/jxl/enc_cache.h"
#include "lib/jxl/enc_group.h"
#include "lib/jxl/enc_modular.h"
#include "lib/jxl/enc_params.h"
#include "lib/jxl/enc_transforms-inl.h"
#include "lib/jxl/epf.h"
#include "lib/jxl/fast_math-inl.h"
#include "lib/jxl/gauss_blur.h"
#include "lib/jxl/image.h"
#include "lib/jxl/image_bundle.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/opsin_params.h"
#include "lib/jxl/quant_weights.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
namespace {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::AbsDiff;
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::And;
using hwy::HWY_NAMESPACE::Max;
using hwy::HWY_NAMESPACE::Rebind;
using hwy::HWY_NAMESPACE::Sqrt;
using hwy::HWY_NAMESPACE::ZeroIfNegative;
// The following functions modulate an exponent (out_val) and return the updated
// value. Their descriptor is limited to 8 lanes for 8x8 blocks.
// Hack for mask estimation. Eventually replace this code with butteraugli's
// masking.
float ComputeMaskForAcStrategyUse(const float out_val) {
const float kMul = 1.0f;
const float kOffset = 0.001f;
return kMul / (out_val + kOffset);
}
template <class D, class V>
V ComputeMask(const D d, const V out_val) {
const auto kBase = Set(d, -0.76471879237038032f);
const auto kMul4 = Set(d, 4.4585596705216615f);
const auto kMul2 = Set(d, 17.282053892620215f);
const auto kOffset2 = Set(d, 302.36961315317848f);
const auto kMul3 = Set(d, 7.0561261998705858f);
const auto kOffset3 = Set(d, 2.3179635626140773f);
const auto kOffset4 = Mul(Set(d, 0.25f), kOffset3);
const auto kMul0 = Set(d, 0.80061762862741759f);
const auto k1 = Set(d, 1.0f);
// Avoid division by zero.
const auto v1 = Max(Mul(out_val, kMul0), Set(d, 1e-3f));
const auto v2 = Div(k1, Add(v1, kOffset2));
const auto v3 = Div(k1, MulAdd(v1, v1, kOffset3));
const auto v4 = Div(k1, MulAdd(v1, v1, kOffset4));
// TODO(jyrki):
// A log or two here could make sense. In butteraugli we have effectively
// log(log(x + C)) for this kind of use, as a single log is used in
// saturating visual masking and here the modulation values are exponential,
// another log would counter that.
return Add(kBase, MulAdd(kMul4, v4, MulAdd(kMul2, v2, Mul(kMul3, v3))));
}
// mul and mul2 represent a scaling difference between jxl and butteraugli.
static const float kSGmul = 226.77216153508914f;
static const float kSGmul2 = 1.0f / 73.377132366608819f;
static const float kLog2 = 0.693147181f;
// Includes correction factor for std::log -> log2.
static const float kSGRetMul = kSGmul2 * 18.6580932135f * kLog2;
static const float kSGVOffset = 7.7825991679894591f;
template <bool invert, typename D, typename V>
V RatioOfDerivativesOfCubicRootToSimpleGamma(const D d, V v) {
// The opsin space in jxl is the cubic root of photons, i.e., v * v * v
// is related to the number of photons.
//
// SimpleGamma(v * v * v) is the psychovisual space in butteraugli.
// This ratio allows quantization to move from jxl's opsin space to
// butteraugli's log-gamma space.
float kEpsilon = 1e-2;
v = ZeroIfNegative(v);
const auto kNumMul = Set(d, kSGRetMul * 3 * kSGmul);
const auto kVOffset = Set(d, kSGVOffset * kLog2 + kEpsilon);
const auto kDenMul = Set(d, kLog2 * kSGmul);
const auto v2 = Mul(v, v);
const auto num = MulAdd(kNumMul, v2, Set(d, kEpsilon));
const auto den = MulAdd(Mul(kDenMul, v), v2, kVOffset);
return invert ? Div(num, den) : Div(den, num);
}
template <bool invert = false>
static float RatioOfDerivativesOfCubicRootToSimpleGamma(float v) {
using DScalar = HWY_CAPPED(float, 1);
auto vscalar = Load(DScalar(), &v);
return GetLane(
RatioOfDerivativesOfCubicRootToSimpleGamma<invert>(DScalar(), vscalar));
}
// TODO(veluca): this function computes an approximation of the derivative of
// SimpleGamma with (f(x+eps)-f(x))/eps. Consider two-sided approximation or
// exact derivatives. For reference, SimpleGamma was:
/*
template <typename D, typename V>
V SimpleGamma(const D d, V v) {
// A simple HDR compatible gamma function.
const auto mul = Set(d, kSGmul);
const auto kRetMul = Set(d, kSGRetMul);
const auto kRetAdd = Set(d, kSGmul2 * -20.2789020414f);
const auto kVOffset = Set(d, kSGVOffset);
v *= mul;
// This should happen rarely, but may lead to a NaN, which is rather
// undesirable. Since negative photons don't exist we solve the NaNs by
// clamping here.
// TODO(veluca): with FastLog2f, this no longer leads to NaNs.
v = ZeroIfNegative(v);
return kRetMul * FastLog2f(d, v + kVOffset) + kRetAdd;
}
*/
template <class D, class V>
V GammaModulation(const D d, const size_t x, const size_t y,
const ImageF& xyb_x, const ImageF& xyb_y, const V out_val) {
const float kBias = 0.16f;
JXL_DASSERT(kBias > kOpsinAbsorbanceBias[0]);
JXL_DASSERT(kBias > kOpsinAbsorbanceBias[1]);
JXL_DASSERT(kBias > kOpsinAbsorbanceBias[2]);
auto overall_ratio = Zero(d);
auto bias = Set(d, kBias);
auto half = Set(d, 0.5f);
for (size_t dy = 0; dy < 8; ++dy) {
const float* const JXL_RESTRICT row_in_x = xyb_x.Row(y + dy);
const float* const JXL_RESTRICT row_in_y = xyb_y.Row(y + dy);
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
const auto iny = Add(Load(d, row_in_y + x + dx), bias);
const auto inx = Load(d, row_in_x + x + dx);
const auto r = Sub(iny, inx);
const auto g = Add(iny, inx);
const auto ratio_r =
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/true>(d, r);
const auto ratio_g =
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/true>(d, g);
const auto avg_ratio = Mul(half, Add(ratio_r, ratio_g));
overall_ratio = Add(overall_ratio, avg_ratio);
}
}
overall_ratio = Mul(SumOfLanes(d, overall_ratio), Set(d, 1.0f / 64));
// ideally -1.0, but likely optimal correction adds some entropy, so slightly
// less than that.
// ln(2) constant folded in because we want std::log but have FastLog2f.
const auto kGam = Set(d, -0.15526878023684174f * 0.693147180559945f);
return MulAdd(kGam, FastLog2f(d, overall_ratio), out_val);
}
template <class D, class V>
V ColorModulation(const D d, const size_t x, const size_t y,
const ImageF& xyb_x, const ImageF& xyb_y, const ImageF& xyb_b,
const double butteraugli_target, V out_val) {
static const float kStrengthMul = 4.2456542701250122f;
static const float kRedRampStart = 0.18748564245760829f;
static const float kRedRampLength = 0.16701783842516479f;
static const float kBlueRampLength = 0.16117602661852037f;
static const float kBlueRampStart = 0.47897504338287333f;
const float strength = kStrengthMul * (1.0f - 0.15f * butteraugli_target);
if (strength < 0) {
return out_val;
}
// x values are smaller than y and b values, need to take the difference into
// account.
const float red_strength = strength * 6.0f;
const float blue_strength = strength;
{
// Reduce some bits from areas not blue or red.
const float offset = strength * -0.007; // 9174542291185913f;
out_val = Add(out_val, Set(d, offset));
}
// Calculate how much of the 8x8 block is covered with blue or red.
auto blue_coverage = Zero(d);
auto red_coverage = Zero(d);
auto bias_y = Set(d, 0.2f);
auto bias_y_add = Set(d, 0.1f);
for (size_t dy = 0; dy < 8; ++dy) {
const float* const JXL_RESTRICT row_in_x = xyb_x.Row(y + dy);
const float* const JXL_RESTRICT row_in_y = xyb_y.Row(y + dy);
const float* const JXL_RESTRICT row_in_b = xyb_b.Row(y + dy);
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
const auto pixel_y = Load(d, row_in_y + x + dx);
// Estimate redness-greeness relative to the intensity.
const auto pixel_xpy = Div(Abs(Load(d, row_in_x + x + dx)),
Max(Add(bias_y_add, pixel_y), bias_y));
const auto pixel_x =
Max(Set(d, 0.0f), Sub(pixel_xpy, Set(d, kRedRampStart)));
const auto pixel_b =
Max(Set(d, 0.0f), Sub(Load(d, row_in_b + x + dx),
Add(pixel_y, Set(d, kBlueRampStart))));
const auto blue_slope = Min(pixel_b, Set(d, kBlueRampLength));
const auto red_slope = Min(pixel_x, Set(d, kRedRampLength));
red_coverage = Add(red_coverage, red_slope);
blue_coverage = Add(blue_coverage, blue_slope);
}
}
// Saturate when the high red or high blue coverage is above a level.
// The idea here is that if a certain fraction of the block is red or
// blue we consider as if it was fully red or blue.
static const float ratio = 28.0f; // out of 64 pixels.
auto overall_red_coverage = SumOfLanes(d, red_coverage);
overall_red_coverage =
Min(overall_red_coverage, Set(d, ratio * kRedRampLength));
overall_red_coverage =
Mul(overall_red_coverage, Set(d, red_strength / ratio));
auto overall_blue_coverage = SumOfLanes(d, blue_coverage);
overall_blue_coverage =
Min(overall_blue_coverage, Set(d, ratio * kBlueRampLength));
overall_blue_coverage =
Mul(overall_blue_coverage, Set(d, blue_strength / ratio));
return Add(overall_red_coverage, Add(overall_blue_coverage, out_val));
}
// Change precision in 8x8 blocks that have high frequency content.
template <class D, class V>
V HfModulation(const D d, const size_t x, const size_t y, const ImageF& xyb,
const V out_val) {
// Zero out the invalid differences for the rightmost value per row.
const Rebind<uint32_t, D> du;
HWY_ALIGN constexpr uint32_t kMaskRight[kBlockDim] = {~0u, ~0u, ~0u, ~0u,
~0u, ~0u, ~0u, 0};
auto sum = Zero(d); // sum of absolute differences with right and below
static const float valmin = 0.52489909479039587f;
auto valminv = Set(d, valmin);
for (size_t dy = 0; dy < 8; ++dy) {
const float* JXL_RESTRICT row_in = xyb.Row(y + dy) + x;
const float* JXL_RESTRICT row_in_next =
dy == 7 ? row_in : xyb.Row(y + dy + 1) + x;
// In SCALAR, there is no guarantee of having extra row padding.
// Hence, we need to ensure we don't access pixels outside the row itself.
// In SIMD modes, however, rows are padded, so it's safe to access one
// garbage value after the row. The vector then gets masked with kMaskRight
// to remove the influence of that value.
#if HWY_TARGET != HWY_SCALAR
for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
#else
for (size_t dx = 0; dx < 7; dx += Lanes(d)) {
#endif
const auto p = Load(d, row_in + dx);
const auto pr = LoadU(d, row_in + dx + 1);
const auto mask = BitCast(d, Load(du, kMaskRight + dx));
sum = Add(sum, And(mask, Min(valminv, AbsDiff(p, pr))));
const auto pd = Load(d, row_in_next + dx);
sum = Add(sum, Min(valminv, AbsDiff(p, pd)));
}
#if HWY_TARGET == HWY_SCALAR
const auto p = Load(d, row_in + 7);
const auto pd = Load(d, row_in_next + 7);
sum = Add(sum, Min(valminv, AbsDiff(p, pd)));
#endif
}
// more negative value gives more bpp
static const float kOffset = -2.6545897672771526;
static const float kMul = -0.049868161744916512;
sum = SumOfLanes(d, sum);
float scalar_sum = GetLane(sum);
static const float maxsum = 7.9076877647025947f;
static const float minsum = 0.53640540945659809f;
scalar_sum = std::min(maxsum, scalar_sum);
scalar_sum = std::max(minsum, scalar_sum);
scalar_sum += kOffset;
scalar_sum *= kMul;
return Add(Set(d, scalar_sum), out_val);
}
void PerBlockModulations(const float butteraugli_target, const ImageF& xyb_x,
const ImageF& xyb_y, const ImageF& xyb_b,
const float scale, const Rect& rect, ImageF* out) {
JXL_ASSERT(SameSize(xyb_x, xyb_y));
JXL_ASSERT(DivCeil(xyb_x.xsize(), kBlockDim) == out->xsize());
JXL_ASSERT(DivCeil(xyb_x.ysize(), kBlockDim) == out->ysize());
float base_level = 0.48f * scale;
float kDampenRampStart = 2.0f;
float kDampenRampEnd = 14.0f;
float dampen = 1.0f;
if (butteraugli_target >= kDampenRampStart) {
dampen = 1.0f - ((butteraugli_target - kDampenRampStart) /
(kDampenRampEnd - kDampenRampStart));
if (dampen < 0) {
dampen = 0;
}
}
const float mul = scale * dampen;
const float add = (1.0f - dampen) * base_level;
for (size_t iy = rect.y0(); iy < rect.y0() + rect.ysize(); iy++) {
const size_t y = iy * 8;
float* const JXL_RESTRICT row_out = out->Row(iy);
const HWY_CAPPED(float, kBlockDim) df;
for (size_t ix = rect.x0(); ix < rect.x0() + rect.xsize(); ix++) {
size_t x = ix * 8;
auto out_val = Set(df, row_out[ix]);
out_val = ComputeMask(df, out_val);
out_val = HfModulation(df, x, y, xyb_y, out_val);
out_val = ColorModulation(df, x, y, xyb_x, xyb_y, xyb_b,
butteraugli_target, out_val);
out_val = GammaModulation(df, x, y, xyb_x, xyb_y, out_val);
// We want multiplicative quantization field, so everything
// until this point has been modulating the exponent.
row_out[ix] = FastPow2f(GetLane(out_val) * 1.442695041f) * mul + add;
}
}
}
template <typename D, typename V>
V MaskingSqrt(const D d, V v) {
static const float kLogOffset = 27.97044946785558f;
static const float kMul = 211.53333281566171f;
const auto mul_v = Set(d, kMul * 1e8);
const auto offset_v = Set(d, kLogOffset);
return Mul(Set(d, 0.25f), Sqrt(MulAdd(v, Sqrt(mul_v), offset_v)));
}
float MaskingSqrt(const float v) {
using DScalar = HWY_CAPPED(float, 1);
auto vscalar = Load(DScalar(), &v);
return GetLane(MaskingSqrt(DScalar(), vscalar));
}
void StoreMin4(const float v, float& min0, float& min1, float& min2,
float& min3) {
if (v < min3) {
if (v < min0) {
min3 = min2;
min2 = min1;
min1 = min0;
min0 = v;
} else if (v < min1) {
min3 = min2;
min2 = min1;
min1 = v;
} else if (v < min2) {
min3 = min2;
min2 = v;
} else {
min3 = v;
}
}
}
// Look for smooth areas near the area of degradation.
// If the areas are generally smooth, don't do masking.
// Output is downsampled 2x.
void FuzzyErosion(const Rect& from_rect, const ImageF& from,
const Rect& to_rect, ImageF* to) {
const size_t xsize = from.xsize();
const size_t ysize = from.ysize();
constexpr int kStep = 1;
static_assert(kStep == 1, "Step must be 1");
JXL_ASSERT(to_rect.xsize() * 2 == from_rect.xsize());
JXL_ASSERT(to_rect.ysize() * 2 == from_rect.ysize());
for (size_t fy = 0; fy < from_rect.ysize(); ++fy) {
size_t y = fy + from_rect.y0();
size_t ym1 = y >= kStep ? y - kStep : y;
size_t yp1 = y + kStep < ysize ? y + kStep : y;
const float* rowt = from.Row(ym1);
const float* row = from.Row(y);
const float* rowb = from.Row(yp1);
float* row_out = to_rect.Row(to, fy / 2);
for (size_t fx = 0; fx < from_rect.xsize(); ++fx) {
size_t x = fx + from_rect.x0();
size_t xm1 = x >= kStep ? x - kStep : x;
size_t xp1 = x + kStep < xsize ? x + kStep : x;
float min0 = row[x];
float min1 = row[xm1];
float min2 = row[xp1];
float min3 = rowt[xm1];
// Sort the first four values.
if (min0 > min1) std::swap(min0, min1);
if (min0 > min2) std::swap(min0, min2);
if (min0 > min3) std::swap(min0, min3);
if (min1 > min2) std::swap(min1, min2);
if (min1 > min3) std::swap(min1, min3);
if (min2 > min3) std::swap(min2, min3);
// The remaining five values of a 3x3 neighbourhood.
StoreMin4(rowt[x], min0, min1, min2, min3);
StoreMin4(rowt[xp1], min0, min1, min2, min3);
StoreMin4(rowb[xm1], min0, min1, min2, min3);
StoreMin4(rowb[x], min0, min1, min2, min3);
StoreMin4(rowb[xp1], min0, min1, min2, min3);
static const float kMul0 = 0.125f;
static const float kMul1 = 0.075f;
static const float kMul2 = 0.06f;
static const float kMul3 = 0.05f;
float v = kMul0 * min0 + kMul1 * min1 + kMul2 * min2 + kMul3 * min3;
if (fx % 2 == 0 && fy % 2 == 0) {
row_out[fx / 2] = v;
} else {
row_out[fx / 2] += v;
}
}
}
}
struct AdaptiveQuantizationImpl {
void Init(const Image3F& xyb) {
JXL_DASSERT(xyb.xsize() % kBlockDim == 0);
JXL_DASSERT(xyb.ysize() % kBlockDim == 0);
const size_t xsize = xyb.xsize();
const size_t ysize = xyb.ysize();
aq_map = ImageF(xsize / kBlockDim, ysize / kBlockDim);
}
void PrepareBuffers(size_t num_threads) {
diff_buffer = ImageF(kEncTileDim + 8, num_threads);
for (size_t i = pre_erosion.size(); i < num_threads; i++) {
pre_erosion.emplace_back(kEncTileDimInBlocks * 2 + 2,
kEncTileDimInBlocks * 2 + 2);
}
}
void ComputeTile(float butteraugli_target, float scale, const Image3F& xyb,
const Rect& rect, const int thread, ImageF* mask) {
PROFILER_ZONE("aq DiffPrecompute");
const size_t xsize = xyb.xsize();
const size_t ysize = xyb.ysize();
// The XYB gamma is 3.0 to be able to decode faster with two muls.
// Butteraugli's gamma is matching the gamma of human eye, around 2.6.
// We approximate the gamma difference by adding one cubic root into
// the adaptive quantization. This gives us a total gamma of 2.6666
// for quantization uses.
const float match_gamma_offset = 0.019;
const HWY_FULL(float) df;
size_t y_start = rect.y0() * 8;
size_t y_end = y_start + rect.ysize() * 8;
size_t x0 = rect.x0() * 8;
size_t x1 = x0 + rect.xsize() * 8;
if (x0 != 0) x0 -= 4;
if (x1 != xyb.xsize()) x1 += 4;
if (y_start != 0) y_start -= 4;
if (y_end != xyb.ysize()) y_end += 4;
pre_erosion[thread].ShrinkTo((x1 - x0) / 4, (y_end - y_start) / 4);
static const float limit = 0.2f;
// Computes image (padded to multiple of 8x8) of local pixel differences.
// Subsample both directions by 4.
for (size_t y = y_start; y < y_end; ++y) {
size_t y2 = y + 1 < ysize ? y + 1 : y;
size_t y1 = y > 0 ? y - 1 : y;
const float* row_in = xyb.PlaneRow(1, y);
const float* row_in1 = xyb.PlaneRow(1, y1);
const float* row_in2 = xyb.PlaneRow(1, y2);
float* JXL_RESTRICT row_out = diff_buffer.Row(thread);
auto scalar_pixel = [&](size_t x) {
const size_t x2 = x + 1 < xsize ? x + 1 : x;
const size_t x1 = x > 0 ? x - 1 : x;
const float base =
0.25f * (row_in2[x] + row_in1[x] + row_in[x1] + row_in[x2]);
const float gammac = RatioOfDerivativesOfCubicRootToSimpleGamma(
row_in[x] + match_gamma_offset);
float diff = gammac * (row_in[x] - base);
diff *= diff;
if (diff >= limit) {
diff = limit;
}
diff = MaskingSqrt(diff);
if ((y % 4) != 0) {
row_out[x - x0] += diff;
} else {
row_out[x - x0] = diff;
}
};
size_t x = x0;
// First pixel of the row.
if (x0 == 0) {
scalar_pixel(x0);
++x;
}
// SIMD
const auto match_gamma_offset_v = Set(df, match_gamma_offset);
const auto quarter = Set(df, 0.25f);
for (; x + 1 + Lanes(df) < x1; x += Lanes(df)) {
const auto in = LoadU(df, row_in + x);
const auto in_r = LoadU(df, row_in + x + 1);
const auto in_l = LoadU(df, row_in + x - 1);
const auto in_t = LoadU(df, row_in2 + x);
const auto in_b = LoadU(df, row_in1 + x);
auto base = Mul(quarter, Add(Add(in_r, in_l), Add(in_t, in_b)));
auto gammacv =
RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/false>(
df, Add(in, match_gamma_offset_v));
auto diff = Mul(gammacv, Sub(in, base));
diff = Mul(diff, diff);
diff = Min(diff, Set(df, limit));
diff = MaskingSqrt(df, diff);
if ((y & 3) != 0) {
diff = Add(diff, LoadU(df, row_out + x - x0));
}
StoreU(diff, df, row_out + x - x0);
}
// Scalar
for (; x < x1; ++x) {
scalar_pixel(x);
}
if (y % 4 == 3) {
float* row_dout = pre_erosion[thread].Row((y - y_start) / 4);
for (size_t x = 0; x < (x1 - x0) / 4; x++) {
row_dout[x] = (row_out[x * 4] + row_out[x * 4 + 1] +
row_out[x * 4 + 2] + row_out[x * 4 + 3]) *
0.25f;
}
}
}
Rect from_rect(x0 % 8 == 0 ? 0 : 1, y_start % 8 == 0 ? 0 : 1,
rect.xsize() * 2, rect.ysize() * 2);
FuzzyErosion(from_rect, pre_erosion[thread], rect, &aq_map);
for (size_t y = 0; y < rect.ysize(); ++y) {
const float* aq_map_row = rect.ConstRow(aq_map, y);
float* mask_row = rect.Row(mask, y);
for (size_t x = 0; x < rect.xsize(); ++x) {
mask_row[x] = ComputeMaskForAcStrategyUse(aq_map_row[x]);
}
}
PerBlockModulations(butteraugli_target, xyb.Plane(0), xyb.Plane(1),
xyb.Plane(2), scale, rect, &aq_map);
}
std::vector<ImageF> pre_erosion;
ImageF aq_map;
ImageF diff_buffer;
};
ImageF AdaptiveQuantizationMap(const float butteraugli_target,
const Image3F& xyb,
const FrameDimensions& frame_dim, float scale,
ThreadPool* pool, ImageF* mask) {
PROFILER_ZONE("aq AdaptiveQuantMap");
AdaptiveQuantizationImpl impl;
impl.Init(xyb);
*mask = ImageF(frame_dim.xsize_blocks, frame_dim.ysize_blocks);
JXL_CHECK(RunOnPool(
pool, 0,
DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks) *
DivCeil(frame_dim.ysize_blocks, kEncTileDimInBlocks),
[&](const size_t num_threads) {
impl.PrepareBuffers(num_threads);
return true;
},
[&](const uint32_t tid, const size_t thread) {
size_t n_enc_tiles =
DivCeil(frame_dim.xsize_blocks, kEncTileDimInBlocks);
size_t tx = tid % n_enc_tiles;
size_t ty = tid / n_enc_tiles;
size_t by0 = ty * kEncTileDimInBlocks;
size_t by1 =
std::min((ty + 1) * kEncTileDimInBlocks, frame_dim.ysize_blocks);
size_t bx0 = tx * kEncTileDimInBlocks;
size_t bx1 =
std::min((tx + 1) * kEncTileDimInBlocks, frame_dim.xsize_blocks);
Rect r(bx0, by0, bx1 - bx0, by1 - by0);
impl.ComputeTile(butteraugli_target, scale, xyb, r, thread, mask);
},
"AQ DiffPrecompute"));
return std::move(impl).aq_map;
}
} // namespace
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace jxl {
HWY_EXPORT(AdaptiveQuantizationMap);
namespace {
// If true, prints the quantization maps at each iteration.
bool FLAGS_dump_quant_state = false;
void DumpHeatmap(const AuxOut* aux_out, const std::string& label,
const ImageF& image, float good_threshold,
float bad_threshold) {
Image3F heatmap = CreateHeatMapImage(image, good_threshold, bad_threshold);
char filename[200];
snprintf(filename, sizeof(filename), "%s%05d", label.c_str(),
aux_out->num_butteraugli_iters);
aux_out->DumpImage(filename, heatmap);
}
void DumpHeatmaps(const AuxOut* aux_out, float ba_target,
const ImageF& quant_field, const ImageF& tile_heatmap,
const ImageF& bt_diffmap) {
if (!WantDebugOutput(aux_out)) return;
ImageF inv_qmap(quant_field.xsize(), quant_field.ysize());
for (size_t y = 0; y < quant_field.ysize(); ++y) {
const float* JXL_RESTRICT row_q = quant_field.ConstRow(y);
float* JXL_RESTRICT row_inv_q = inv_qmap.Row(y);
for (size_t x = 0; x < quant_field.xsize(); ++x) {
row_inv_q[x] = 1.0f / row_q[x]; // never zero
}
}
DumpHeatmap(aux_out, "quant_heatmap", inv_qmap, 4.0f * ba_target,
6.0f * ba_target);
DumpHeatmap(aux_out, "tile_heatmap", tile_heatmap, ba_target,
1.5f * ba_target);
// matches heat maps produced by the command line tool.
DumpHeatmap(aux_out, "bt_diffmap", bt_diffmap, ButteraugliFuzzyInverse(1.5),
ButteraugliFuzzyInverse(0.5));
}
ImageF TileDistMap(const ImageF& distmap, int tile_size, int margin,
const AcStrategyImage& ac_strategy) {
PROFILER_FUNC;
const int tile_xsize = (distmap.xsize() + tile_size - 1) / tile_size;
const int tile_ysize = (distmap.ysize() + tile_size - 1) / tile_size;
ImageF tile_distmap(tile_xsize, tile_ysize);
size_t distmap_stride = tile_distmap.PixelsPerRow();
for (int tile_y = 0; tile_y < tile_ysize; ++tile_y) {
AcStrategyRow ac_strategy_row = ac_strategy.ConstRow(tile_y);
float* JXL_RESTRICT dist_row = tile_distmap.Row(tile_y);
for (int tile_x = 0; tile_x < tile_xsize; ++tile_x) {
AcStrategy acs = ac_strategy_row[tile_x];
if (!acs.IsFirstBlock()) continue;
int this_tile_xsize = acs.covered_blocks_x() * tile_size;
int this_tile_ysize = acs.covered_blocks_y() * tile_size;
int y_begin = std::max<int>(0, tile_size * tile_y - margin);
int y_end = std::min<int>(distmap.ysize(),
tile_size * tile_y + this_tile_ysize + margin);
int x_begin = std::max<int>(0, tile_size * tile_x - margin);
int x_end = std::min<int>(distmap.xsize(),
tile_size * tile_x + this_tile_xsize + margin);
float dist_norm = 0.0;
double pixels = 0;
for (int y = y_begin; y < y_end; ++y) {
float ymul = 1.0;
constexpr float kBorderMul = 0.98f;
constexpr float kCornerMul = 0.7f;
if (margin != 0 && (y == y_begin || y == y_end - 1)) {
ymul = kBorderMul;
}
const float* const JXL_RESTRICT row = distmap.Row(y);
for (int x = x_begin; x < x_end; ++x) {
float xmul = ymul;
if (margin != 0 && (x == x_begin || x == x_end - 1)) {
if (xmul == 1.0) {
xmul = kBorderMul;
} else {
xmul = kCornerMul;
}
}
float v = row[x];
v *= v;
v *= v;
v *= v;
v *= v;
dist_norm += xmul * v;
pixels += xmul;
}
}
if (pixels == 0) pixels = 1;
// 16th norm is less than the max norm, we reduce the difference
// with this normalization factor.
constexpr float kTileNorm = 1.2f;
const float tile_dist =
kTileNorm * std::pow(dist_norm / pixels, 1.0f / 16.0f);
dist_row[tile_x] = tile_dist;
for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) {
for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) {
dist_row[tile_x + distmap_stride * iy + ix] = tile_dist;
}
}
}
}
return tile_distmap;
}
static const float kDcQuantPow = 0.83;
static const float kDcQuant = 1.095924047623553f;
static const float kAcQuant = 0.80751132443618624f;
void FindBestQuantization(const ImageBundle& linear, const Image3F& opsin,
PassesEncoderState* enc_state,
const JxlCmsInterface& cms, ThreadPool* pool,
AuxOut* aux_out) {
const CompressParams& cparams = enc_state->cparams;
if (cparams.resampling > 1 &&
cparams.original_butteraugli_distance <= 4.0 * cparams.resampling) {
// For downsampled opsin image, the butteraugli based adaptive quantization
// loop would only make the size bigger without improving the distance much,
// so in this case we enable it only for very high butteraugli targets.
return;
}
Quantizer& quantizer = enc_state->shared.quantizer;
ImageI& raw_quant_field = enc_state->shared.raw_quant_field;
ImageF& quant_field = enc_state->initial_quant_field;
// TODO(veluca): this should really be rather handled on the
// ButteraugliComparator side.
struct TemporaryShrink {
TemporaryShrink(ImageBundle& bundle, size_t xsize, size_t ysize)
: bundle(bundle),
orig_xsize(bundle.xsize()),
orig_ysize(bundle.ysize()) {
bundle.ShrinkTo(xsize, ysize);
}
TemporaryShrink(const TemporaryShrink&) = delete;
TemporaryShrink(TemporaryShrink&&) = delete;
~TemporaryShrink() { bundle.ShrinkTo(orig_xsize, orig_ysize); }
ImageBundle& bundle;
size_t orig_xsize;
size_t orig_ysize;
} t(const_cast<ImageBundle&>(linear),
enc_state->shared.frame_header.nonserialized_metadata->xsize(),
enc_state->shared.frame_header.nonserialized_metadata->ysize());
const float butteraugli_target = cparams.butteraugli_distance;
const float original_butteraugli = cparams.original_butteraugli_distance;
ButteraugliParams params = cparams.ba_params;
params.intensity_target = linear.metadata()->IntensityTarget();
// Hack the default intensity target value to be 80.0, the intensity
// target of sRGB images and a more reasonable viewing default than
// JPEG XL file format's default.
if (fabs(params.intensity_target - 255.0f) < 1e-3) {
params.intensity_target = 80.0f;
}
JxlButteraugliComparator comparator(params, cms);
JXL_CHECK(comparator.SetReferenceImage(linear));
bool lower_is_better =
(comparator.GoodQualityScore() < comparator.BadQualityScore());
const float initial_quant_dc = InitialQuantDC(butteraugli_target);
AdjustQuantField(enc_state->shared.ac_strategy, Rect(quant_field),
&quant_field);
ImageF tile_distmap;
ImageF initial_quant_field = CopyImage(quant_field);
float initial_qf_min, initial_qf_max;
ImageMinMax(initial_quant_field, &initial_qf_min, &initial_qf_max);
float initial_qf_ratio = initial_qf_max / initial_qf_min;
float qf_max_deviation_low = std::sqrt(250 / initial_qf_ratio);
float asymmetry = 2;
if (qf_max_deviation_low < asymmetry) asymmetry = qf_max_deviation_low;
float qf_lower = initial_qf_min / (asymmetry * qf_max_deviation_low);
float qf_higher = initial_qf_max * (qf_max_deviation_low / asymmetry);
JXL_ASSERT(qf_higher / qf_lower < 253);
constexpr int kOriginalComparisonRound = 1;
int iters = cparams.max_butteraugli_iters;
if (iters > 7) {
iters = 7;
}
if (cparams.speed_tier != SpeedTier::kTortoise) {
iters = 2;
}
for (int i = 0; i < iters + 1; ++i) {
if (FLAGS_dump_quant_state) {
printf("\nQuantization field:\n");
for (size_t y = 0; y < quant_field.ysize(); ++y) {
for (size_t x = 0; x < quant_field.xsize(); ++x) {
printf(" %.5f", quant_field.Row(y)[x]);
}
printf("\n");
}
}
quantizer.SetQuantField(initial_quant_dc, quant_field, &raw_quant_field);
ImageBundle dec_linear = RoundtripImage(opsin, enc_state, cms, pool);
PROFILER_ZONE("enc Butteraugli");
float score;
ImageF diffmap;
JXL_CHECK(comparator.CompareWith(dec_linear, &diffmap, &score));
if (!lower_is_better) {
score = -score;
diffmap = ScaleImage(-1.0f, diffmap);
}
tile_distmap = TileDistMap(diffmap, 8 * cparams.resampling, 0,
enc_state->shared.ac_strategy);
if (WantDebugOutput(aux_out)) {
aux_out->DumpImage(("dec" + ToString(i)).c_str(), *dec_linear.color());
DumpHeatmaps(aux_out, butteraugli_target, quant_field, tile_distmap,
diffmap);
}
if (aux_out != nullptr) ++aux_out->num_butteraugli_iters;
if (cparams.log_search_state) {
float minval, maxval;
ImageMinMax(quant_field, &minval, &maxval);
printf("\nButteraugli iter: %d/%d\n", i, cparams.max_butteraugli_iters);
printf("Butteraugli distance: %f (target = %f)\n", score,
original_butteraugli);
printf("quant range: %f ... %f DC quant: %f\n", minval, maxval,
initial_quant_dc);
if (FLAGS_dump_quant_state) {
quantizer.DumpQuantizationMap(raw_quant_field);
}
}
if (i == iters) break;
double kPow[8] = {
0.2, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
};
double kPowMod[8] = {
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
};
if (i == kOriginalComparisonRound) {
// Don't allow optimization to make the quant field a lot worse than
// what the initial guess was. This allows the AC field to have enough
// precision to reduce the oscillations due to the dc reconstruction.
double kInitMul = 0.6;
const double kOneMinusInitMul = 1.0 - kInitMul;
for (size_t y = 0; y < quant_field.ysize(); ++y) {
float* const JXL_RESTRICT row_q = quant_field.Row(y);
const float* const JXL_RESTRICT row_init = initial_quant_field.Row(y);
for (size_t x = 0; x < quant_field.xsize(); ++x) {
double clamp = kOneMinusInitMul * row_q[x] + kInitMul * row_init[x];
if (row_q[x] < clamp) {
row_q[x] = clamp;
if (row_q[x] > qf_higher) row_q[x] = qf_higher;
if (row_q[x] < qf_lower) row_q[x] = qf_lower;
}
}
}
}
double cur_pow = 0.0;
if (i < 7) {
cur_pow = kPow[i] + (original_butteraugli - 1.0) * kPowMod[i];
if (cur_pow < 0) {
cur_pow = 0;
}
}
if (cur_pow == 0.0) {
for (size_t y = 0; y < quant_field.ysize(); ++y) {
const float* const JXL_RESTRICT row_dist = tile_distmap.Row(y);
float* const JXL_RESTRICT row_q = quant_field.Row(y);
for (size_t x = 0; x < quant_field.xsize(); ++x) {
const float diff = row_dist[x] / original_butteraugli;
if (diff > 1.0f) {
float old = row_q[x];
row_q[x] *= diff;
int qf_old = old * quantizer.InvGlobalScale() + 0.5;
int qf_new = row_q[x] * quantizer.InvGlobalScale() + 0.5;
if (qf_old == qf_new) {
row_q[x] = old + quantizer.Scale();
}
}
if (row_q[x] > qf_higher) row_q[x] = qf_higher;
if (row_q[x] < qf_lower) row_q[x] = qf_lower;
}
}
} else {
for (size_t y = 0; y < quant_field.ysize(); ++y) {
const float* const JXL_RESTRICT row_dist = tile_distmap.Row(y);
float* const JXL_RESTRICT row_q = quant_field.Row(y);
for (size_t x = 0; x < quant_field.xsize(); ++x) {
const float diff = row_dist[x] / original_butteraugli;
if (diff <= 1.0f) {
row_q[x] *= std::pow(diff, cur_pow);
} else {
float old = row_q[x];
row_q[x] *= diff;
int qf_old = old * quantizer.InvGlobalScale() + 0.5;
int qf_new = row_q[x] * quantizer.InvGlobalScale() + 0.5;
if (qf_old == qf_new) {
row_q[x] = old + quantizer.Scale();
}
}
if (row_q[x] > qf_higher) row_q[x] = qf_higher;
if (row_q[x] < qf_lower) row_q[x] = qf_lower;
}
}
}
}
quantizer.SetQuantField(initial_quant_dc, quant_field, &raw_quant_field);
}
void FindBestQuantizationMaxError(const Image3F& opsin,
PassesEncoderState* enc_state,
const JxlCmsInterface& cms, ThreadPool* pool,
AuxOut* aux_out) {
// TODO(szabadka): Make this work for non-opsin color spaces.
const CompressParams& cparams = enc_state->cparams;
Quantizer& quantizer = enc_state->shared.quantizer;
ImageI& raw_quant_field = enc_state->shared.raw_quant_field;
ImageF& quant_field = enc_state->initial_quant_field;
// TODO(veluca): better choice of this value.
const float initial_quant_dc =
16 * std::sqrt(0.1f / cparams.butteraugli_distance);
AdjustQuantField(enc_state->shared.ac_strategy, Rect(quant_field),
&quant_field);
const float inv_max_err[3] = {1.0f / enc_state->cparams.max_error[0],
1.0f / enc_state->cparams.max_error[1],
1.0f / enc_state->cparams.max_error[2]};
for (int i = 0; i < cparams.max_butteraugli_iters + 1; ++i) {
quantizer.SetQuantField(initial_quant_dc, quant_field, &raw_quant_field);
if (aux_out) {
aux_out->DumpXybImage(("ops" + ToString(i)).c_str(), opsin);
}
ImageBundle decoded = RoundtripImage(opsin, enc_state, cms, pool);
if (aux_out) {
aux_out->DumpXybImage(("dec" + ToString(i)).c_str(), *decoded.color());
}
for (size_t by = 0; by < enc_state->shared.frame_dim.ysize_blocks; by++) {
AcStrategyRow ac_strategy_row =
enc_state->shared.ac_strategy.ConstRow(by);
for (size_t bx = 0; bx < enc_state->shared.frame_dim.xsize_blocks; bx++) {
AcStrategy acs = ac_strategy_row[bx];
if (!acs.IsFirstBlock()) continue;
float max_error = 0;
for (size_t c = 0; c < 3; c++) {
for (size_t y = by * kBlockDim;
y < (by + acs.covered_blocks_y()) * kBlockDim; y++) {
if (y >= decoded.ysize()) continue;
const float* JXL_RESTRICT in_row = opsin.ConstPlaneRow(c, y);
const float* JXL_RESTRICT dec_row =
decoded.color()->ConstPlaneRow(c, y);
for (size_t x = bx * kBlockDim;
x < (bx + acs.covered_blocks_x()) * kBlockDim; x++) {
if (x >= decoded.xsize()) continue;
max_error = std::max(
std::abs(in_row[x] - dec_row[x]) * inv_max_err[c], max_error);
}
}
}
// Target an error between max_error/2 and max_error.
// If the error in the varblock is above the target, increase the qf to
// compensate. If the error is below the target, decrease the qf.
// However, to avoid an excessive increase of the qf, only do so if the
// error is less than half the maximum allowed error.
const float qf_mul = (max_error < 0.5f) ? max_error * 2.0f
: (max_error > 1.0f) ? max_error
: 1.0f;
for (size_t qy = by; qy < by + acs.covered_blocks_y(); qy++) {
float* JXL_RESTRICT quant_field_row = quant_field.Row(qy);
for (size_t qx = bx; qx < bx + acs.covered_blocks_x(); qx++) {
quant_field_row[qx] *= qf_mul;
}
}
}
}
}
quantizer.SetQuantField(initial_quant_dc, quant_field, &raw_quant_field);
}
} // namespace
void AdjustQuantField(const AcStrategyImage& ac_strategy, const Rect& rect,
ImageF* quant_field) {
// Replace the whole quant_field in non-8x8 blocks with the maximum of each
// 8x8 block.
size_t stride = quant_field->PixelsPerRow();
for (size_t y = 0; y < rect.ysize(); ++y) {
AcStrategyRow ac_strategy_row = ac_strategy.ConstRow(rect, y);
float* JXL_RESTRICT quant_row = rect.Row(quant_field, y);
for (size_t x = 0; x < rect.xsize(); ++x) {
AcStrategy acs = ac_strategy_row[x];
if (!acs.IsFirstBlock()) continue;
JXL_ASSERT(x + acs.covered_blocks_x() <= quant_field->xsize());
JXL_ASSERT(y + acs.covered_blocks_y() <= quant_field->ysize());
float max = quant_row[x];
for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) {
for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) {
max = std::max(quant_row[x + ix + iy * stride], max);
}
}
for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) {
for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) {
quant_row[x + ix + iy * stride] = max;
}
}
}
}
}
float InitialQuantDC(float butteraugli_target) {
const float kDcMul = 0.3; // Butteraugli target where non-linearity kicks in.
const float butteraugli_target_dc = std::max<float>(
0.5f * butteraugli_target,
std::min<float>(butteraugli_target,
kDcMul * std::pow((1.0f / kDcMul) * butteraugli_target,
kDcQuantPow)));
// We want the maximum DC value to be at most 2**15 * kInvDCQuant / quant_dc.
// The maximum DC value might not be in the kXybRange because of inverse
// gaborish, so we add some slack to the maximum theoretical quant obtained
// this way (64).
return std::min(kDcQuant / butteraugli_target_dc, 50.f);
}
ImageF InitialQuantField(const float butteraugli_target, const Image3F& opsin,
const FrameDimensions& frame_dim, ThreadPool* pool,
float rescale, ImageF* mask) {
PROFILER_FUNC;
const float quant_ac = kAcQuant / butteraugli_target;
return HWY_DYNAMIC_DISPATCH(AdaptiveQuantizationMap)(
butteraugli_target, opsin, frame_dim, quant_ac * rescale, pool, mask);
}
void FindBestQuantizer(const ImageBundle* linear, const Image3F& opsin,
PassesEncoderState* enc_state,
const JxlCmsInterface& cms, ThreadPool* pool,
AuxOut* aux_out, double rescale) {
const CompressParams& cparams = enc_state->cparams;
if (cparams.max_error_mode) {
PROFILER_ZONE("enc find best maxerr");
FindBestQuantizationMaxError(opsin, enc_state, cms, pool, aux_out);
} else if (cparams.speed_tier <= SpeedTier::kKitten) {
// Normal encoding to a butteraugli score.
PROFILER_ZONE("enc find best2");
FindBestQuantization(*linear, opsin, enc_state, cms, pool, aux_out);
}
}
ImageBundle RoundtripImage(const Image3F& opsin, PassesEncoderState* enc_state,
const JxlCmsInterface& cms, ThreadPool* pool) {
PROFILER_ZONE("enc roundtrip");
std::unique_ptr<PassesDecoderState> dec_state =
jxl::make_unique<PassesDecoderState>();
JXL_CHECK(dec_state->output_encoding_info.SetFromMetadata(
*enc_state->shared.metadata));
dec_state->shared = &enc_state->shared;
JXL_ASSERT(opsin.ysize() % kBlockDim == 0);
const size_t xsize_groups = DivCeil(opsin.xsize(), kGroupDim);
const size_t ysize_groups = DivCeil(opsin.ysize(), kGroupDim);
const size_t num_groups = xsize_groups * ysize_groups;
size_t num_special_frames = enc_state->special_frames.size();
std::unique_ptr<ModularFrameEncoder> modular_frame_encoder =
jxl::make_unique<ModularFrameEncoder>(enc_state->shared.frame_header,
enc_state->cparams);
JXL_CHECK(InitializePassesEncoder(opsin, cms, pool, enc_state,
modular_frame_encoder.get(), nullptr));
JXL_CHECK(dec_state->Init());
JXL_CHECK(dec_state->InitForAC(pool));
ImageBundle decoded(&enc_state->shared.metadata->m);
decoded.origin = enc_state->shared.frame_header.frame_origin;
decoded.SetFromImage(Image3F(opsin.xsize(), opsin.ysize()),
dec_state->output_encoding_info.color_encoding);
PassesDecoderState::PipelineOptions options;
options.use_slow_render_pipeline = false;
options.coalescing = true;
options.render_spotcolors = false;
// Same as dec_state->shared->frame_header.nonserialized_metadata->m
const ImageMetadata& metadata = *decoded.metadata();
JXL_CHECK(dec_state->PreparePipeline(&decoded, options));
hwy::AlignedUniquePtr<GroupDecCache[]> group_dec_caches;
const auto allocate_storage = [&](const size_t num_threads) -> Status {
JXL_RETURN_IF_ERROR(
dec_state->render_pipeline->PrepareForThreads(num_threads,
/*use_group_ids=*/false));
group_dec_caches = hwy::MakeUniqueAlignedArray<GroupDecCache>(num_threads);
return true;
};
const auto process_group = [&](const uint32_t group_index,
const size_t thread) {
if (dec_state->shared->frame_header.loop_filter.epf_iters > 0) {
ComputeSigma(dec_state->shared->BlockGroupRect(group_index),
dec_state.get());
}
RenderPipelineInput input =
dec_state->render_pipeline->GetInputBuffers(group_index, thread);
JXL_CHECK(DecodeGroupForRoundtrip(
enc_state->coeffs, group_index, dec_state.get(),
&group_dec_caches[thread], thread, input, &decoded, nullptr));
for (size_t c = 0; c < metadata.num_extra_channels; c++) {
std::pair<ImageF*, Rect> ri = input.GetBuffer(3 + c);
FillPlane(0.0f, ri.first, ri.second);
}
input.Done();
};
JXL_CHECK(RunOnPool(pool, 0, num_groups, allocate_storage, process_group,
"AQ loop"));
// Ensure we don't create any new special frames.
enc_state->special_frames.resize(num_special_frames);
return decoded;
}
} // namespace jxl
#endif // HWY_ONCE
|