summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/fast_math-inl.h
blob: 5c48034290d6cd91959c374c45efd6f9f29ca928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Fast SIMD math ops (log2, encoder only, cos, erf for splines)

#if defined(LIB_JXL_FAST_MATH_INL_H_) == defined(HWY_TARGET_TOGGLE)
#ifdef LIB_JXL_FAST_MATH_INL_H_
#undef LIB_JXL_FAST_MATH_INL_H_
#else
#define LIB_JXL_FAST_MATH_INL_H_
#endif

#include <hwy/highway.h>

#include "lib/jxl/common.h"
#include "lib/jxl/rational_polynomial-inl.h"
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Abs;
using hwy::HWY_NAMESPACE::Add;
using hwy::HWY_NAMESPACE::Eq;
using hwy::HWY_NAMESPACE::Floor;
using hwy::HWY_NAMESPACE::Ge;
using hwy::HWY_NAMESPACE::GetLane;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::IfThenZeroElse;
using hwy::HWY_NAMESPACE::Le;
using hwy::HWY_NAMESPACE::Min;
using hwy::HWY_NAMESPACE::Mul;
using hwy::HWY_NAMESPACE::MulAdd;
using hwy::HWY_NAMESPACE::NegMulAdd;
using hwy::HWY_NAMESPACE::Rebind;
using hwy::HWY_NAMESPACE::ShiftLeft;
using hwy::HWY_NAMESPACE::ShiftRight;
using hwy::HWY_NAMESPACE::Sub;
using hwy::HWY_NAMESPACE::Xor;

// Computes base-2 logarithm like std::log2. Undefined if negative / NaN.
// L1 error ~3.9E-6
template <class DF, class V>
V FastLog2f(const DF df, V x) {
  // 2,2 rational polynomial approximation of std::log1p(x) / std::log(2).
  HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f),
                                          HWY_REP4(1.4287160470083755E+00f),
                                          HWY_REP4(7.4245873327820566E-01f)};
  HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f),
                                          HWY_REP4(1.0096718572241148E+00f),
                                          HWY_REP4(1.7409343003366853E-01f)};

  const Rebind<int32_t, DF> di;
  const auto x_bits = BitCast(di, x);

  // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops
  const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab));  // = 2/3
  // Shifted exponent = log2; also used to clear mantissa.
  const auto exp_shifted = ShiftRight<23>(exp_bits);
  const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted)));
  const auto exp_val = ConvertTo(df, exp_shifted);
  return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q),
             exp_val);
}

// max relative error ~3e-7
template <class DF, class V>
V FastPow2f(const DF df, V x) {
  const Rebind<int32_t, DF> di;
  auto floorx = Floor(x);
  auto exp =
      BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127))));
  auto frac = Sub(x, floorx);
  auto num = Add(frac, Set(df, 1.01749063e+01));
  num = MulAdd(num, frac, Set(df, 4.88687798e+01));
  num = MulAdd(num, frac, Set(df, 9.85506591e+01));
  num = Mul(num, exp);
  auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02));
  den = MulAdd(den, frac, Set(df, -1.94414990e+01));
  den = MulAdd(den, frac, Set(df, 9.85506633e+01));
  return Div(num, den);
}

// max relative error ~3e-5
template <class DF, class V>
V FastPowf(const DF df, V base, V exponent) {
  return FastPow2f(df, Mul(FastLog2f(df, base), exponent));
}

// Computes cosine like std::cos.
// L1 error 7e-5.
template <class DF, class V>
V FastCosf(const DF df, V x) {
  // Step 1: range reduction to [0, 2pi)
  const auto pi2 = Set(df, kPi * 2.0f);
  const auto pi2_inv = Set(df, 0.5f / kPi);
  const auto npi2 = Mul(Floor(Mul(x, pi2_inv)), pi2);
  const auto xmodpi2 = Sub(x, npi2);
  // Step 2: range reduction to [0, pi]
  const auto x_pi = Min(xmodpi2, Sub(pi2, xmodpi2));
  // Step 3: range reduction to [0, pi/2]
  const auto above_pihalf = Ge(x_pi, Set(df, kPi / 2.0f));
  const auto x_pihalf = IfThenElse(above_pihalf, Sub(Set(df, kPi), x_pi), x_pi);
  // Step 4: Taylor-like approximation, scaled by 2**0.75 to make angle
  // duplication steps faster, on x/4.
  const auto xs = Mul(x_pihalf, Set(df, 0.25f));
  const auto x2 = Mul(xs, xs);
  const auto x4 = Mul(x2, x2);
  const auto cosx_prescaling =
      MulAdd(x4, Set(df, 0.06960438),
             MulAdd(x2, Set(df, -0.84087373), Set(df, 1.68179268)));
  // Step 5: angle duplication.
  const auto cosx_scale1 =
      MulAdd(cosx_prescaling, cosx_prescaling, Set(df, -1.414213562));
  const auto cosx_scale2 = MulAdd(cosx_scale1, cosx_scale1, Set(df, -1));
  // Step 6: change sign if needed.
  const Rebind<uint32_t, DF> du;
  auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, above_pihalf)));
  return BitCast(df, Xor(signbit, BitCast(du, cosx_scale2)));
}

// Computes the error function like std::erf.
// L1 error 7e-4.
template <class DF, class V>
V FastErff(const DF df, V x) {
  // Formula from
  // https://en.wikipedia.org/wiki/Error_function#Numerical_approximations
  // but constants have been recomputed.
  const auto xle0 = Le(x, Zero(df));
  const auto absx = Abs(x);
  // Compute 1 - 1 / ((((x * a + b) * x + c) * x + d) * x + 1)**4
  const auto denom1 =
      MulAdd(absx, Set(df, 7.77394369e-02), Set(df, 2.05260015e-04));
  const auto denom2 = MulAdd(denom1, absx, Set(df, 2.32120216e-01));
  const auto denom3 = MulAdd(denom2, absx, Set(df, 2.77820801e-01));
  const auto denom4 = MulAdd(denom3, absx, Set(df, 1.0f));
  const auto denom5 = Mul(denom4, denom4);
  const auto inv_denom5 = Div(Set(df, 1.0f), denom5);
  const auto result = NegMulAdd(inv_denom5, inv_denom5, Set(df, 1.0f));
  // Change sign if needed.
  const Rebind<uint32_t, DF> du;
  auto signbit = ShiftLeft<31>(BitCast(du, VecFromMask(df, xle0)));
  return BitCast(df, Xor(signbit, BitCast(du, result)));
}

inline float FastLog2f(float f) {
  HWY_CAPPED(float, 1) D;
  return GetLane(FastLog2f(D, Set(D, f)));
}

inline float FastPow2f(float f) {
  HWY_CAPPED(float, 1) D;
  return GetLane(FastPow2f(D, Set(D, f)));
}

inline float FastPowf(float b, float e) {
  HWY_CAPPED(float, 1) D;
  return GetLane(FastPowf(D, Set(D, b), Set(D, e)));
}

inline float FastCosf(float f) {
  HWY_CAPPED(float, 1) D;
  return GetLane(FastCosf(D, Set(D, f)));
}

inline float FastErff(float f) {
  HWY_CAPPED(float, 1) D;
  return GetLane(FastErff(D, Set(D, f)));
}

// Returns cbrt(x) + add with 6 ulp max error.
// Modified from vectormath_exp.h, Apache 2 license.
// https://www.agner.org/optimize/vectorclass.zip
template <class V>
V CubeRootAndAdd(const V x, const V add) {
  const HWY_FULL(float) df;
  const HWY_FULL(int32_t) di;

  const auto kExpBias = Set(di, 0x54800000);  // cast(1.) + cast(1.) / 3
  const auto kExpMul = Set(di, 0x002AAAAA);   // shifted 1/3
  const auto k1_3 = Set(df, 1.0f / 3);
  const auto k4_3 = Set(df, 4.0f / 3);

  const auto xa = x;  // assume inputs never negative
  const auto xa_3 = Mul(k1_3, xa);

  // Multiply exponent by -1/3
  const auto m1 = BitCast(di, xa);
  // Special case for 0. 0 is represented with an exponent of 0, so the
  // "kExpBias - 1/3 * exp" below gives the wrong result. The IfThenZeroElse()
  // sets those values as 0, which prevents having NaNs in the computations
  // below.
  // TODO(eustas): use fused op
  const auto m2 = IfThenZeroElse(
      Eq(m1, Zero(di)), Sub(kExpBias, Mul((ShiftRight<23>(m1)), kExpMul)));
  auto r = BitCast(df, m2);

  // Newton-Raphson iterations
  for (int i = 0; i < 3; i++) {
    const auto r2 = Mul(r, r);
    r = NegMulAdd(xa_3, Mul(r2, r2), Mul(k4_3, r));
  }
  // Final iteration
  auto r2 = Mul(r, r);
  r = MulAdd(k1_3, NegMulAdd(xa, Mul(r2, r2), r), r);
  r2 = Mul(r, r);
  r = MulAdd(r2, x, add);

  return r;
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#endif  // LIB_JXL_FAST_MATH_INL_H_

#if HWY_ONCE
#ifndef FAST_MATH_ONCE
#define FAST_MATH_ONCE

namespace jxl {
inline float FastLog2f(float f) { return HWY_STATIC_DISPATCH(FastLog2f)(f); }
inline float FastPow2f(float f) { return HWY_STATIC_DISPATCH(FastPow2f)(f); }
inline float FastPowf(float b, float e) {
  return HWY_STATIC_DISPATCH(FastPowf)(b, e);
}
inline float FastCosf(float f) { return HWY_STATIC_DISPATCH(FastCosf)(f); }
inline float FastErff(float f) { return HWY_STATIC_DISPATCH(FastErff)(f); }
}  // namespace jxl

#endif  // FAST_MATH_ONCE
#endif  // HWY_ONCE