1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/gauss_blur.h"
#include <cmath>
#include <hwy/targets.h>
#include <vector>
#include "lib/extras/time.h"
#include "lib/jxl/base/printf_macros.h"
#include "lib/jxl/convolve.h"
#include "lib/jxl/image_ops.h"
#include "lib/jxl/image_test_utils.h"
#include "lib/jxl/testing.h"
namespace jxl {
bool NearEdge(const int64_t width, const int64_t peak) {
// When around 3*sigma from the edge, there is negligible truncation.
return peak < 10 || peak > width - 10;
}
// Follow the curve downwards by scanning right from `peak` and verifying
// identical values at the same offset to the left.
void VerifySymmetric(const int64_t width, const int64_t peak,
const float* out) {
const double tolerance = NearEdge(width, peak) ? 0.015 : 6E-7;
for (int64_t i = 1;; ++i) {
// Stop if we passed either end of the array
if (peak - i < 0 || peak + i >= width) break;
EXPECT_GT(out[peak + i - 1] + tolerance, out[peak + i]); // descending
EXPECT_NEAR(out[peak - i], out[peak + i], tolerance); // symmetric
}
}
void TestImpulseResponse(size_t width, size_t peak) {
const auto rg3 = CreateRecursiveGaussian(3.0);
const auto rg4 = CreateRecursiveGaussian(4.0);
const auto rg5 = CreateRecursiveGaussian(5.0);
// Extra padding for 4x unrolling
auto in = hwy::AllocateAligned<float>(width + 3);
memset(in.get(), 0, sizeof(float) * (width + 3));
in[peak] = 1.0f;
auto out3 = hwy::AllocateAligned<float>(width + 3);
auto out4 = hwy::AllocateAligned<float>(width + 3);
auto out5 = hwy::AllocateAligned<float>(width + 3);
FastGaussian1D(rg3, in.get(), width, out3.get());
FastGaussian1D(rg4, out3.get(), width, out4.get());
FastGaussian1D(rg5, in.get(), width, out5.get());
VerifySymmetric(width, peak, out3.get());
VerifySymmetric(width, peak, out4.get());
VerifySymmetric(width, peak, out5.get());
// Wider kernel has flatter peak
EXPECT_LT(out5[peak] + 0.05, out3[peak]);
// Gauss3 o Gauss4 ~= Gauss5
const double tolerance = NearEdge(width, peak) ? 0.04 : 0.01;
for (size_t i = 0; i < width; ++i) {
EXPECT_NEAR(out4[i], out5[i], tolerance);
}
}
void TestImpulseResponseForWidth(size_t width) {
for (size_t i = 0; i < width; ++i) {
TestImpulseResponse(width, i);
}
}
TEST(GaussBlurTest, ImpulseResponse) {
TestImpulseResponseForWidth(10); // tiny even
TestImpulseResponseForWidth(15); // small odd
TestImpulseResponseForWidth(32); // power of two
TestImpulseResponseForWidth(31); // power of two - 1
TestImpulseResponseForWidth(33); // power of two + 1
}
ImageF Convolve(const ImageF& in, const std::vector<float>& kernel) {
return ConvolveAndSample(in, kernel, 1);
}
// Higher-precision version for accuracy test.
ImageF ConvolveAndTransposeF64(const ImageF& in,
const std::vector<double>& kernel) {
JXL_ASSERT(kernel.size() % 2 == 1);
ImageF out(in.ysize(), in.xsize());
const int r = kernel.size() / 2;
std::vector<float> row_tmp(in.xsize() + 2 * r);
float* const JXL_RESTRICT rowp = &row_tmp[r];
const double* const kernelp = &kernel[r];
for (size_t y = 0; y < in.ysize(); ++y) {
ExtrapolateBorders(in.Row(y), rowp, in.xsize(), r);
for (size_t x = 0, ox = 0; x < in.xsize(); ++x, ++ox) {
double sum = 0.0;
for (int i = -r; i <= r; ++i) {
sum += rowp[std::max<int>(
0, std::min<int>(static_cast<int>(x) + i, in.xsize()))] *
kernelp[i];
}
out.Row(ox)[y] = static_cast<float>(sum);
}
}
return out;
}
ImageF ConvolveF64(const ImageF& in, const std::vector<double>& kernel) {
ImageF tmp = ConvolveAndTransposeF64(in, kernel);
return ConvolveAndTransposeF64(tmp, kernel);
}
void TestDirac2D(size_t xsize, size_t ysize, double sigma) {
ImageF in(xsize, ysize);
ZeroFillImage(&in);
// We anyway ignore the border below, so might as well choose the middle.
in.Row(ysize / 2)[xsize / 2] = 1.0f;
ImageF temp(xsize, ysize);
ImageF out(xsize, ysize);
const auto rg = CreateRecursiveGaussian(sigma);
ThreadPool* null_pool = nullptr;
FastGaussian(rg, in, null_pool, &temp, &out);
const std::vector<float> kernel =
GaussianKernel(static_cast<int>(4 * sigma), static_cast<float>(sigma));
const ImageF expected = Convolve(in, kernel);
const double max_l1 = sigma < 1.5 ? 5E-3 : 6E-4;
const size_t border = 2 * sigma;
JXL_ASSERT_OK(VerifyRelativeError(expected, out, max_l1, 1E-8, _, border));
}
TEST(GaussBlurTest, Test2D) {
const std::vector<int> dimensions{6, 15, 17, 64, 50, 49};
for (int xsize : dimensions) {
for (int ysize : dimensions) {
for (double sigma : {1.0, 2.5, 3.6, 7.0}) {
TestDirac2D(static_cast<size_t>(xsize), static_cast<size_t>(ysize),
sigma);
}
}
}
}
// Slow (44 sec). To run, remove the disabled prefix.
TEST(GaussBlurTest, DISABLED_SlowTestDirac1D) {
const double sigma = 7.0;
const auto rg = CreateRecursiveGaussian(sigma);
// IPOL accuracy test uses 10^-15 tolerance, this is 2*10^-11.
const size_t radius = static_cast<size_t>(7 * sigma);
const std::vector<double> kernel = GaussianKernel(radius, sigma);
const size_t length = 16384;
ImageF inputs(length, 1);
ZeroFillImage(&inputs);
auto outputs = hwy::AllocateAligned<float>(length);
// One per center position
auto sum_abs_err = hwy::AllocateAligned<double>(length);
std::fill(sum_abs_err.get(), sum_abs_err.get() + length, 0.0);
for (size_t center = radius; center < length - radius; ++center) {
inputs.Row(0)[center - 1] = 0.0f; // reset last peak, entire array now 0
inputs.Row(0)[center] = 1.0f;
FastGaussian1D(rg, inputs.Row(0), length, outputs.get());
const ImageF outputs_fir = ConvolveF64(inputs, kernel);
for (size_t i = 0; i < length; ++i) {
const float abs_err = std::abs(outputs[i] - outputs_fir.Row(0)[i]);
sum_abs_err[i] += static_cast<double>(abs_err);
}
}
const double max_abs_err =
*std::max_element(sum_abs_err.get(), sum_abs_err.get() + length);
printf("Max abs err: %.8e\n", max_abs_err);
}
void TestRandom(size_t xsize, size_t ysize, float min, float max, double sigma,
double max_l1, double max_rel) {
printf("%4" PRIuS " x %4" PRIuS " %4.1f %4.1f sigma %.1f\n", xsize, ysize,
min, max, sigma);
ImageF in(xsize, ysize);
RandomFillImage(&in, min, max, 65537 + xsize * 129 + ysize);
// FastGaussian/Convolve handle borders differently, so keep those pixels 0.
const size_t border = 4 * sigma;
SetBorder(border, 0.0f, &in);
ImageF temp(xsize, ysize);
ImageF out(xsize, ysize);
const auto rg = CreateRecursiveGaussian(sigma);
ThreadPool* null_pool = nullptr;
FastGaussian(rg, in, null_pool, &temp, &out);
const std::vector<float> kernel =
GaussianKernel(static_cast<int>(4 * sigma), static_cast<float>(sigma));
const ImageF expected = Convolve(in, kernel);
JXL_ASSERT_OK(VerifyRelativeError(expected, out, max_l1, max_rel, _, border));
}
void TestRandomForSizes(float min, float max, double sigma) {
double max_l1 = 6E-3;
double max_rel = 3E-3;
TestRandom(128, 1, min, max, sigma, max_l1, max_rel);
TestRandom(1, 128, min, max, sigma, max_l1, max_rel);
TestRandom(30, 201, min, max, sigma, max_l1 * 1.6, max_rel * 1.2);
TestRandom(201, 30, min, max, sigma, max_l1 * 1.6, max_rel * 1.2);
TestRandom(201, 201, min, max, sigma, max_l1 * 2.0, max_rel * 1.2);
}
TEST(GaussBlurTest, TestRandom) {
// small non-negative
TestRandomForSizes(0.0f, 10.0f, 3.0f);
TestRandomForSizes(0.0f, 10.0f, 7.0f);
// small negative
TestRandomForSizes(-4.0f, -1.0f, 3.0f);
TestRandomForSizes(-4.0f, -1.0f, 7.0f);
// mixed positive/negative
TestRandomForSizes(-6.0f, 6.0f, 3.0f);
TestRandomForSizes(-6.0f, 6.0f, 7.0f);
}
TEST(GaussBlurTest, TestSign) {
const size_t xsize = 500;
const size_t ysize = 606;
ImageF in(xsize, ysize);
ZeroFillImage(&in);
const float center[33 * 33] = {
-0.128445f, -0.098473f, -0.121883f, -0.093601f, 0.095665f, -0.271332f,
-0.705475f, -1.324005f, -2.020741f, -1.329464f, 1.834064f, 4.787300f,
5.834560f, 5.272720f, 3.967960f, 3.547935f, 3.432732f, 3.383015f,
3.239326f, 3.290806f, 3.298954f, 3.397808f, 3.359730f, 3.533844f,
3.511856f, 3.436787f, 3.428310f, 3.460209f, 3.550011f, 3.590942f,
3.593109f, 3.560005f, 3.443165f, 0.089741f, 0.179230f, -0.032997f,
-0.182610f, 0.005669f, -0.244759f, -0.395123f, -0.514961f, -1.003529f,
-1.798656f, -2.377975f, 0.222191f, 3.957664f, 5.946804f, 5.543129f,
4.290096f, 3.621010f, 3.407257f, 3.392494f, 3.345367f, 3.391903f,
3.441605f, 3.429260f, 3.444969f, 3.507130f, 3.518612f, 3.443111f,
3.475948f, 3.536148f, 3.470333f, 3.628311f, 3.600243f, 3.292892f,
-0.226730f, -0.573616f, -0.762165f, -0.398739f, -0.189842f, -0.275921f,
-0.446739f, -0.550037f, -0.461033f, -0.724792f, -1.448349f, -1.814064f,
-0.491032f, 2.817703f, 5.213242f, 5.675629f, 4.864548f, 3.876324f,
3.535587f, 3.530312f, 3.413765f, 3.386261f, 3.404854f, 3.383472f,
3.420830f, 3.326496f, 3.257877f, 3.362152f, 3.489609f, 3.619587f,
3.555805f, 3.423164f, 3.309708f, -0.483940f, -0.502926f, -0.592983f,
-0.492527f, -0.413616f, -0.482555f, -0.475506f, -0.447990f, -0.338120f,
-0.189072f, -0.376427f, -0.910828f, -1.878044f, -1.937927f, 1.423218f,
4.871609f, 5.767548f, 5.103741f, 3.983868f, 3.633003f, 3.458263f,
3.507309f, 3.247021f, 3.220612f, 3.326061f, 3.352814f, 3.291061f,
3.322739f, 3.444302f, 3.506207f, 3.556839f, 3.529575f, 3.457024f,
-0.408161f, -0.431343f, -0.454369f, -0.356419f, -0.380924f, -0.399452f,
-0.439476f, -0.412189f, -0.306816f, -0.008213f, -0.325813f, -0.537842f,
-0.984100f, -1.805332f, -2.028198f, 0.773205f, 4.423046f, 5.604839f,
5.231617f, 4.080299f, 3.603008f, 3.498741f, 3.517010f, 3.333897f,
3.381336f, 3.342617f, 3.369686f, 3.434155f, 3.490452f, 3.607029f,
3.555298f, 3.702297f, 3.618679f, -0.503609f, -0.578564f, -0.419014f,
-0.239883f, 0.269836f, 0.022984f, -0.455067f, -0.621777f, -0.304176f,
-0.163792f, -0.490250f, -0.466637f, -0.391792f, -0.657940f, -1.498035f,
-1.895836f, 0.036537f, 3.462456f, 5.586445f, 5.658791f, 4.434784f,
3.423435f, 3.318848f, 3.202328f, 3.532764f, 3.436687f, 3.354881f,
3.356941f, 3.382645f, 3.503902f, 3.512867f, 3.632366f, 3.537312f,
-0.274734f, -0.658829f, -0.726532f, -0.281254f, 0.053196f, -0.064991f,
-0.608517f, -0.720966f, -0.070602f, -0.111320f, -0.440956f, -0.492180f,
-0.488762f, -0.569283f, -1.012741f, -1.582779f, -2.101479f, -1.392380f,
2.451153f, 5.555855f, 6.096313f, 5.230045f, 4.068172f, 3.404274f,
3.392586f, 3.326065f, 3.156670f, 3.284828f, 3.347012f, 3.319252f,
3.352310f, 3.610790f, 3.499847f, -0.150600f, -0.314445f, -0.093575f,
-0.057384f, 0.053688f, -0.189255f, -0.263515f, -0.318653f, 0.053246f,
0.080627f, -0.119553f, -0.152454f, -0.305420f, -0.404869f, -0.385944f,
-0.689949f, -1.204914f, -1.985748f, -1.711361f, 1.260658f, 4.626896f,
5.888351f, 5.450989f, 4.070587f, 3.539200f, 3.383492f, 3.296318f,
3.267334f, 3.436028f, 3.463005f, 3.502625f, 3.522282f, 3.403763f,
-0.348049f, -0.302303f, -0.137016f, -0.041737f, -0.164001f, -0.358849f,
-0.469627f, -0.428291f, -0.375797f, -0.246346f, -0.118950f, -0.084229f,
-0.205681f, -0.241199f, -0.391796f, -0.323151f, -0.241211f, -0.834137f,
-1.684219f, -1.972137f, 0.448399f, 4.019985f, 5.648144f, 5.647846f,
4.295094f, 3.641884f, 3.374790f, 3.197342f, 3.425545f, 3.507481f,
3.478065f, 3.430889f, 3.341900f, -1.016304f, -0.959221f, -0.909466f,
-0.810715f, -0.590729f, -0.594467f, -0.646721f, -0.629364f, -0.528561f,
-0.551819f, -0.301086f, -0.149101f, -0.060146f, -0.162220f, -0.326210f,
-0.156548f, -0.036293f, -0.426098f, -1.145470f, -1.628998f, -2.003052f,
-1.142891f, 2.885162f, 5.652863f, 5.718426f, 4.911140f, 3.234222f,
3.473373f, 3.577183f, 3.271603f, 3.410435f, 3.505489f, 3.434032f,
-0.508911f, -0.438797f, -0.437450f, -0.627426f, -0.511745f, -0.304874f,
-0.274246f, -0.261841f, -0.228466f, -0.342491f, -0.528206f, -0.490082f,
-0.516350f, -0.361694f, -0.398514f, -0.276020f, -0.210369f, -0.355938f,
-0.402622f, -0.538864f, -1.249573f, -2.100105f, -0.996178f, 1.886410f,
4.929745f, 5.630871f, 5.444199f, 4.042740f, 3.739189f, 3.691399f,
3.391956f, 3.469696f, 3.431232f, 0.204849f, 0.205433f, -0.131927f,
-0.367908f, -0.374378f, -0.126820f, -0.186951f, -0.228565f, -0.081776f,
-0.143143f, -0.379230f, -0.598701f, -0.458019f, -0.295586f, -0.407730f,
-0.245853f, -0.043140f, 0.024242f, -0.038998f, -0.044151f, -0.425991f,
-1.240753f, -1.943146f, -2.174755f, 0.523415f, 4.376751f, 5.956558f,
5.850082f, 4.403152f, 3.517399f, 3.560753f, 3.554836f, 3.471985f,
-0.508503f, -0.109783f, 0.057747f, 0.190079f, -0.257153f, -0.591980f,
-0.666771f, -0.525391f, -0.293060f, -0.489731f, -0.304855f, -0.259644f,
-0.367825f, -0.346977f, -0.292889f, -0.215652f, -0.120705f, -0.176010f,
-0.422905f, -0.114647f, -0.289749f, -0.374203f, -0.606754f, -1.127949f,
-1.994583f, -0.588058f, 3.415840f, 5.603470f, 5.811581f, 4.959423f,
3.721760f, 3.710499f, 3.785461f, -0.554588f, -0.565517f, -0.434578f,
-0.012482f, -0.284660f, -0.699795f, -0.957535f, -0.755135f, -0.382034f,
-0.321552f, -0.287571f, -0.279537f, -0.314972f, -0.256287f, -0.372818f,
-0.316017f, -0.287975f, -0.365639f, -0.512589f, -0.420692f, -0.436485f,
-0.295353f, -0.451958f, -0.755459f, -1.272358f, -2.301353f, -1.776161f,
1.572483f, 4.826286f, 5.741898f, 5.162853f, 4.028049f, 3.686325f,
-0.495590f, -0.664413f, -0.760044f, -0.152634f, -0.286480f, -0.340462f,
0.076477f, 0.187706f, -0.068787f, -0.293491f, -0.361145f, -0.292515f,
-0.140671f, -0.190723f, -0.333302f, -0.368168f, -0.192581f, -0.154499f,
-0.236544f, -0.124405f, -0.208321f, -0.465607f, -0.883080f, -1.104813f,
-1.210567f, -1.415665f, -1.924683f, -1.634758f, 0.601017f, 4.276672f,
5.501350f, 5.331257f, 3.809288f, -0.727722f, -0.533619f, -0.511524f,
-0.470688f, -0.610710f, -0.575130f, -0.311115f, -0.090420f, -0.297676f,
-0.646118f, -0.742805f, -0.485050f, -0.330910f, -0.275417f, -0.357037f,
-0.425598f, -0.481876f, -0.488941f, -0.393551f, -0.051105f, -0.090755f,
-0.328674f, -0.536369f, -0.533684f, -0.336960f, -0.689194f, -1.187195f,
-1.860954f, -2.290253f, -0.424774f, 3.050060f, 5.083332f, 5.291920f,
-0.343605f, -0.190975f, -0.303692f, -0.456512f, -0.681820f, -0.690693f,
-0.416729f, -0.286446f, -0.442055f, -0.709148f, -0.569160f, -0.382423f,
-0.402321f, -0.383362f, -0.366413f, -0.290718f, -0.110069f, -0.220280f,
-0.279018f, -0.255424f, -0.262081f, -0.487556f, -0.444492f, -0.250500f,
-0.119583f, -0.291557f, -0.537781f, -1.104073f, -1.737091f, -1.697441f,
-0.323456f, 2.042049f, 4.605103f, -0.310631f, -0.279568f, -0.012695f,
-0.160130f, -0.358746f, -0.421101f, -0.559677f, -0.474136f, -0.416565f,
-0.561817f, -0.534672f, -0.519157f, -0.767197f, -0.605831f, -0.186523f,
0.219872f, 0.264984f, -0.193432f, -0.363182f, -0.467472f, -0.462009f,
-0.571053f, -0.522476f, -0.315903f, -0.237427f, -0.147320f, -0.100201f,
-0.237568f, -0.763435f, -1.242043f, -2.135159f, -1.409485f, 1.236370f,
-0.474247f, -0.517906f, -0.410217f, -0.542244f, -0.795986f, -0.590004f,
-0.388863f, -0.462921f, -0.810627f, -0.778637f, -0.512486f, -0.718025f,
-0.710854f, -0.482513f, -0.318233f, -0.194962f, -0.220116f, -0.421673f,
-0.534233f, -0.403339f, -0.389332f, -0.407303f, -0.437355f, -0.469730f,
-0.359600f, -0.352745f, -0.466755f, -0.414585f, -0.430756f, -0.656822f,
-1.237038f, -2.046097f, -1.574898f, -0.593815f, -0.582165f, -0.336098f,
-0.372612f, -0.554386f, -0.410603f, -0.428276f, -0.647644f, -0.640720f,
-0.582207f, -0.414112f, -0.435547f, -0.435505f, -0.332561f, -0.248116f,
-0.340221f, -0.277855f, -0.352699f, -0.377319f, -0.230850f, -0.313267f,
-0.446270f, -0.346237f, -0.420422f, -0.530781f, -0.400341f, -0.463661f,
-0.209091f, -0.056705f, -0.011772f, -0.169388f, -0.736275f, -1.463017f,
-0.752701f, -0.668865f, -0.329765f, -0.299347f, -0.245667f, -0.286999f,
-0.520420f, -0.675438f, -0.255753f, 0.141357f, -0.079639f, -0.419476f,
-0.374069f, -0.046253f, 0.116116f, -0.145847f, -0.380371f, -0.563412f,
-0.638634f, -0.310116f, -0.260914f, -0.508404f, -0.465508f, -0.527824f,
-0.370979f, -0.305595f, -0.244694f, -0.254490f, 0.009968f, -0.050201f,
-0.331219f, -0.614960f, -0.788208f, -0.483242f, -0.367516f, -0.186951f,
-0.180031f, 0.129711f, -0.127811f, -0.384750f, -0.499542f, -0.418613f,
-0.121635f, 0.203197f, -0.167290f, -0.397270f, -0.355461f, -0.218746f,
-0.376785f, -0.521698f, -0.721581f, -0.845741f, -0.535439f, -0.220882f,
-0.309067f, -0.555248f, -0.690342f, -0.664948f, -0.390102f, 0.020355f,
-0.130447f, -0.173252f, -0.170059f, -0.633663f, -0.956001f, -0.621696f,
-0.388302f, -0.342262f, -0.244370f, -0.386948f, -0.401421f, -0.172979f,
-0.206163f, -0.450058f, -0.525789f, -0.549274f, -0.349251f, -0.474613f,
-0.667976f, -0.435600f, -0.175369f, -0.196877f, -0.202976f, -0.242481f,
-0.258369f, -0.189133f, -0.395397f, -0.765499f, -0.944016f, -0.850967f,
-0.631561f, -0.152493f, -0.046432f, -0.262066f, -0.195919f, 0.048218f,
0.084972f, 0.039902f, 0.000618f, -0.404430f, -0.447456f, -0.418076f,
-0.631935f, -0.717415f, -0.502888f, -0.530514f, -0.747826f, -0.704041f,
-0.674969f, -0.516853f, -0.418446f, -0.327740f, -0.308815f, -0.481636f,
-0.440083f, -0.481720f, -0.341053f, -0.283897f, -0.324368f, -0.352829f,
-0.434349f, -0.545589f, -0.533104f, -0.472755f, -0.570496f, -0.557735f,
-0.708176f, -0.493332f, -0.194416f, -0.186249f, -0.256710f, -0.271835f,
-0.304752f, -0.431267f, -0.422398f, -0.646725f, -0.680801f, -0.249031f,
-0.058567f, -0.213890f, -0.383949f, -0.540291f, -0.549877f, -0.225567f,
-0.037174f, -0.499874f, -0.641010f, -0.628044f, -0.390549f, -0.311497f,
-0.542313f, -0.569565f, -0.473408f, -0.331245f, -0.357197f, -0.285599f,
-0.200157f, -0.201866f, -0.124428f, -0.346016f, -0.392311f, -0.264496f,
-0.285370f, -0.436974f, -0.523483f, -0.410461f, -0.267925f, -0.055016f,
-0.382458f, -0.319771f, -0.049927f, 0.124329f, 0.266102f, -0.106606f,
-0.773647f, -0.973053f, -0.708206f, -0.486137f, -0.319923f, -0.493900f,
-0.490860f, -0.324986f, -0.147346f, -0.146088f, -0.161758f, -0.084396f,
-0.379494f, 0.041626f, -0.113361f, -0.277767f, 0.083366f, 0.126476f,
0.139057f, 0.038040f, 0.038162f, -0.242126f, -0.411736f, -0.370049f,
-0.455357f, -0.039257f, 0.264442f, -0.271492f, -0.425346f, -0.514847f,
-0.448650f, -0.580399f, -0.652603f, -0.774803f, -0.692524f, -0.579578f,
-0.465206f, -0.386265f, -0.458012f, -0.446594f, -0.284893f, -0.345448f,
-0.350876f, -0.440350f, -0.360378f, -0.270428f, 0.237213f, -0.063602f,
-0.364529f, -0.179867f, 0.078197f, 0.117947f, -0.093410f, -0.359119f,
-0.480961f, -0.540638f, -0.436287f, -0.598576f, -0.253735f, -0.060093f,
-0.549145f, -0.808327f, -0.698593f, -0.595764f, -0.582508f, -0.497353f,
-0.480892f, -0.584240f, -0.665791f, -0.690903f, -0.743446f, -0.796677f,
-0.782391f, -0.649010f, -0.628139f, -0.880848f, -0.829361f, -0.373272f,
-0.223667f, 0.174572f, -0.348743f, -0.798901f, -0.692307f, -0.607609f,
-0.401455f, -0.480919f, -0.450798f, -0.435413f, -0.322338f, -0.228382f,
-0.450466f, -0.504440f, -0.477402f, -0.662224f, -0.583397f, -0.217445f,
-0.157459f, -0.079584f, -0.226168f, -0.488720f, -0.669624f, -0.666878f,
-0.565311f, -0.549625f, -0.364601f, -0.497627f, -0.736897f, -0.763023f,
-0.741020f, -0.404503f, 0.184814f, -0.075315f, -0.281513f, -0.532906f,
-0.405800f, -0.313438f, -0.536652f, -0.403381f, 0.011967f, 0.103310f,
-0.269848f, -0.508656f, -0.445923f, -0.644859f, -0.617870f, -0.500927f,
-0.371559f, -0.125580f, 0.028625f, -0.154713f, -0.442024f, -0.492764f,
-0.199371f, 0.236305f, 0.225925f, 0.075577f, -0.285812f, -0.437145f,
-0.374260f, -0.156693f, -0.129635f, -0.243206f, -0.123058f, 0.162148f,
-0.313152f, -0.337982f, -0.358421f, 0.040070f, 0.038925f, -0.333313f,
-0.351662f, 0.023014f, 0.091362f, -0.282890f, -0.373253f, -0.389050f,
-0.532707f, -0.423347f, -0.349968f, -0.287045f, -0.202442f, -0.308430f,
-0.222801f, -0.106323f, -0.056358f, 0.027222f, 0.390732f, 0.033558f,
-0.160088f, -0.382217f, -0.535282f, -0.515900f, -0.022736f, 0.165665f,
-0.111408f, -0.233784f, -0.312357f, -0.541885f, -0.480022f, -0.482513f,
-0.246254f, 0.132244f, 0.090134f, 0.234634f, -0.089249f, -0.460854f,
-0.515457f, -0.450874f, -0.311031f, -0.387680f, -0.360554f, -0.179241f,
-0.283817f, -0.475815f, -0.246399f, -0.388958f, -0.551140f, -0.496239f,
-0.559879f, -0.379761f, -0.254288f, -0.395111f, -0.613018f, -0.459427f,
-0.263580f, -0.268929f, 0.080826f, 0.115616f, -0.097324f, -0.325310f,
-0.480450f, -0.313286f, -0.310371f, -0.517361f, -0.288288f, -0.112679f,
-0.173241f, -0.221664f, -0.039452f, -0.107578f, -0.089630f, -0.483768f,
-0.571087f, -0.497108f, -0.321533f, -0.375492f, -0.540363f, -0.406815f,
-0.388512f, -0.514561f, -0.540192f, -0.402412f, -0.232246f, -0.304749f,
-0.383724f, -0.679596f, -0.685463f, -0.694538f, -0.642937f, -0.425789f,
0.103271f, -0.194862f, -0.487999f, -0.717281f, -0.681850f, -0.709286f,
-0.615398f, -0.554245f, -0.254681f, -0.049950f, -0.002914f, -0.095383f,
-0.370911f, -0.564224f, -0.242714f};
const size_t xtest = xsize / 2;
const size_t ytest = ysize / 2;
for (intptr_t dy = -16; dy <= 16; ++dy) {
float* row = in.Row(ytest + dy);
for (intptr_t dx = -16; dx <= 16; ++dx)
row[xtest + dx] = center[(dy + 16) * 33 + (dx + 16)];
}
const double sigma = 7.155933;
ImageF temp(xsize, ysize);
ImageF out_rg(xsize, ysize);
const auto rg = CreateRecursiveGaussian(sigma);
ThreadPool* null_pool = nullptr;
FastGaussian(rg, in, null_pool, &temp, &out_rg);
ImageF out_old;
{
const std::vector<float> kernel =
GaussianKernel(static_cast<int>(4 * sigma), static_cast<float>(sigma));
printf("old kernel size %" PRIuS "\n", kernel.size());
out_old = Convolve(in, kernel);
}
printf("rg %.4f old %.4f\n", out_rg.Row(ytest)[xtest],
out_old.Row(ytest)[xtest]);
}
} // namespace jxl
|