1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef LIB_JXL_MODULAR_ENCODING_CONTEXT_PREDICT_H_
#define LIB_JXL_MODULAR_ENCODING_CONTEXT_PREDICT_H_
#include <utility>
#include <vector>
#include "lib/jxl/fields.h"
#include "lib/jxl/modular/modular_image.h"
#include "lib/jxl/modular/options.h"
namespace jxl {
namespace weighted {
constexpr static size_t kNumPredictors = 4;
constexpr static int64_t kPredExtraBits = 3;
constexpr static int64_t kPredictionRound = ((1 << kPredExtraBits) >> 1) - 1;
constexpr static size_t kNumProperties = 1;
struct Header : public Fields {
JXL_FIELDS_NAME(WeightedPredictorHeader)
// TODO(janwas): move to cc file, avoid including fields.h.
Header() { Bundle::Init(this); }
Status VisitFields(Visitor *JXL_RESTRICT visitor) override {
if (visitor->AllDefault(*this, &all_default)) {
// Overwrite all serialized fields, but not any nonserialized_*.
visitor->SetDefault(this);
return true;
}
auto visit_p = [visitor](pixel_type val, pixel_type *p) {
uint32_t up = *p;
JXL_QUIET_RETURN_IF_ERROR(visitor->Bits(5, val, &up));
*p = up;
return Status(true);
};
JXL_QUIET_RETURN_IF_ERROR(visit_p(16, &p1C));
JXL_QUIET_RETURN_IF_ERROR(visit_p(10, &p2C));
JXL_QUIET_RETURN_IF_ERROR(visit_p(7, &p3Ca));
JXL_QUIET_RETURN_IF_ERROR(visit_p(7, &p3Cb));
JXL_QUIET_RETURN_IF_ERROR(visit_p(7, &p3Cc));
JXL_QUIET_RETURN_IF_ERROR(visit_p(0, &p3Cd));
JXL_QUIET_RETURN_IF_ERROR(visit_p(0, &p3Ce));
JXL_QUIET_RETURN_IF_ERROR(visitor->Bits(4, 0xd, &w[0]));
JXL_QUIET_RETURN_IF_ERROR(visitor->Bits(4, 0xc, &w[1]));
JXL_QUIET_RETURN_IF_ERROR(visitor->Bits(4, 0xc, &w[2]));
JXL_QUIET_RETURN_IF_ERROR(visitor->Bits(4, 0xc, &w[3]));
return true;
}
bool all_default;
pixel_type p1C = 0, p2C = 0, p3Ca = 0, p3Cb = 0, p3Cc = 0, p3Cd = 0, p3Ce = 0;
uint32_t w[kNumPredictors] = {};
};
struct State {
pixel_type_w prediction[kNumPredictors] = {};
pixel_type_w pred = 0; // *before* removing the added bits.
std::vector<uint32_t> pred_errors[kNumPredictors];
std::vector<int32_t> error;
const Header header;
// Allows to approximate division by a number from 1 to 64.
uint32_t divlookup[64];
constexpr static pixel_type_w AddBits(pixel_type_w x) {
return uint64_t(x) << kPredExtraBits;
}
State(Header header, size_t xsize, size_t ysize) : header(header) {
// Extra margin to avoid out-of-bounds writes.
// All have space for two rows of data.
for (size_t i = 0; i < 4; i++) {
pred_errors[i].resize((xsize + 2) * 2);
}
error.resize((xsize + 2) * 2);
// Initialize division lookup table.
for (int i = 0; i < 64; i++) {
divlookup[i] = (1 << 24) / (i + 1);
}
}
// Approximates 4+(maxweight<<24)/(x+1), avoiding division
JXL_INLINE uint32_t ErrorWeight(uint64_t x, uint32_t maxweight) const {
int shift = static_cast<int>(FloorLog2Nonzero(x + 1)) - 5;
if (shift < 0) shift = 0;
return 4 + ((maxweight * divlookup[x >> shift]) >> shift);
}
// Approximates the weighted average of the input values with the given
// weights, avoiding division. Weights must sum to at least 16.
JXL_INLINE pixel_type_w
WeightedAverage(const pixel_type_w *JXL_RESTRICT p,
std::array<uint32_t, kNumPredictors> w) const {
uint32_t weight_sum = 0;
for (size_t i = 0; i < kNumPredictors; i++) {
weight_sum += w[i];
}
JXL_DASSERT(weight_sum > 15);
uint32_t log_weight = FloorLog2Nonzero(weight_sum); // at least 4.
weight_sum = 0;
for (size_t i = 0; i < kNumPredictors; i++) {
w[i] >>= log_weight - 4;
weight_sum += w[i];
}
// for rounding.
pixel_type_w sum = (weight_sum >> 1) - 1;
for (size_t i = 0; i < kNumPredictors; i++) {
sum += p[i] * w[i];
}
return (sum * divlookup[weight_sum - 1]) >> 24;
}
template <bool compute_properties>
JXL_INLINE pixel_type_w Predict(size_t x, size_t y, size_t xsize,
pixel_type_w N, pixel_type_w W,
pixel_type_w NE, pixel_type_w NW,
pixel_type_w NN, Properties *properties,
size_t offset) {
size_t cur_row = y & 1 ? 0 : (xsize + 2);
size_t prev_row = y & 1 ? (xsize + 2) : 0;
size_t pos_N = prev_row + x;
size_t pos_NE = x < xsize - 1 ? pos_N + 1 : pos_N;
size_t pos_NW = x > 0 ? pos_N - 1 : pos_N;
std::array<uint32_t, kNumPredictors> weights;
for (size_t i = 0; i < kNumPredictors; i++) {
// pred_errors[pos_N] also contains the error of pixel W.
// pred_errors[pos_NW] also contains the error of pixel WW.
weights[i] = pred_errors[i][pos_N] + pred_errors[i][pos_NE] +
pred_errors[i][pos_NW];
weights[i] = ErrorWeight(weights[i], header.w[i]);
}
N = AddBits(N);
W = AddBits(W);
NE = AddBits(NE);
NW = AddBits(NW);
NN = AddBits(NN);
pixel_type_w teW = x == 0 ? 0 : error[cur_row + x - 1];
pixel_type_w teN = error[pos_N];
pixel_type_w teNW = error[pos_NW];
pixel_type_w sumWN = teN + teW;
pixel_type_w teNE = error[pos_NE];
if (compute_properties) {
pixel_type_w p = teW;
if (std::abs(teN) > std::abs(p)) p = teN;
if (std::abs(teNW) > std::abs(p)) p = teNW;
if (std::abs(teNE) > std::abs(p)) p = teNE;
(*properties)[offset++] = p;
}
prediction[0] = W + NE - N;
prediction[1] = N - (((sumWN + teNE) * header.p1C) >> 5);
prediction[2] = W - (((sumWN + teNW) * header.p2C) >> 5);
prediction[3] =
N - ((teNW * header.p3Ca + teN * header.p3Cb + teNE * header.p3Cc +
(NN - N) * header.p3Cd + (NW - W) * header.p3Ce) >>
5);
pred = WeightedAverage(prediction, weights);
// If all three have the same sign, skip clamping.
if (((teN ^ teW) | (teN ^ teNW)) > 0) {
return (pred + kPredictionRound) >> kPredExtraBits;
}
// Otherwise, clamp to min/max of neighbouring pixels (just W, NE, N).
pixel_type_w mx = std::max(W, std::max(NE, N));
pixel_type_w mn = std::min(W, std::min(NE, N));
pred = std::max(mn, std::min(mx, pred));
return (pred + kPredictionRound) >> kPredExtraBits;
}
JXL_INLINE void UpdateErrors(pixel_type_w val, size_t x, size_t y,
size_t xsize) {
size_t cur_row = y & 1 ? 0 : (xsize + 2);
size_t prev_row = y & 1 ? (xsize + 2) : 0;
val = AddBits(val);
error[cur_row + x] = pred - val;
for (size_t i = 0; i < kNumPredictors; i++) {
pixel_type_w err =
(std::abs(prediction[i] - val) + kPredictionRound) >> kPredExtraBits;
// For predicting in the next row.
pred_errors[i][cur_row + x] = err;
// Add the error on this pixel to the error on the NE pixel. This has the
// effect of adding the error on this pixel to the E and EE pixels.
pred_errors[i][prev_row + x + 1] += err;
}
}
};
// Encoder helper function to set the parameters to some presets.
inline void PredictorMode(int i, Header *header) {
switch (i) {
case 0:
// ~ lossless16 predictor
header->w[0] = 0xd;
header->w[1] = 0xc;
header->w[2] = 0xc;
header->w[3] = 0xc;
header->p1C = 16;
header->p2C = 10;
header->p3Ca = 7;
header->p3Cb = 7;
header->p3Cc = 7;
header->p3Cd = 0;
header->p3Ce = 0;
break;
case 1:
// ~ default lossless8 predictor
header->w[0] = 0xd;
header->w[1] = 0xc;
header->w[2] = 0xc;
header->w[3] = 0xb;
header->p1C = 8;
header->p2C = 8;
header->p3Ca = 4;
header->p3Cb = 0;
header->p3Cc = 3;
header->p3Cd = 23;
header->p3Ce = 2;
break;
case 2:
// ~ west lossless8 predictor
header->w[0] = 0xd;
header->w[1] = 0xc;
header->w[2] = 0xd;
header->w[3] = 0xc;
header->p1C = 10;
header->p2C = 9;
header->p3Ca = 7;
header->p3Cb = 0;
header->p3Cc = 0;
header->p3Cd = 16;
header->p3Ce = 9;
break;
case 3:
// ~ north lossless8 predictor
header->w[0] = 0xd;
header->w[1] = 0xd;
header->w[2] = 0xc;
header->w[3] = 0xc;
header->p1C = 16;
header->p2C = 8;
header->p3Ca = 0;
header->p3Cb = 16;
header->p3Cc = 0;
header->p3Cd = 23;
header->p3Ce = 0;
break;
case 4:
default:
// something else, because why not
header->w[0] = 0xd;
header->w[1] = 0xc;
header->w[2] = 0xc;
header->w[3] = 0xc;
header->p1C = 10;
header->p2C = 10;
header->p3Ca = 5;
header->p3Cb = 5;
header->p3Cc = 5;
header->p3Cd = 12;
header->p3Ce = 4;
break;
}
}
} // namespace weighted
// Stores a node and its two children at the same time. This significantly
// reduces the number of branches needed during decoding.
struct FlatDecisionNode {
// Property + splitval of the top node.
int32_t property0; // -1 if leaf.
union {
PropertyVal splitval0;
Predictor predictor;
};
uint32_t childID; // childID is ctx id if leaf.
// Property+splitval of the two child nodes.
union {
PropertyVal splitvals[2];
int32_t multiplier;
};
union {
int32_t properties[2];
int64_t predictor_offset;
};
};
using FlatTree = std::vector<FlatDecisionNode>;
class MATreeLookup {
public:
explicit MATreeLookup(const FlatTree &tree) : nodes_(tree) {}
struct LookupResult {
uint32_t context;
Predictor predictor;
int64_t offset;
int32_t multiplier;
};
JXL_INLINE LookupResult Lookup(const Properties &properties) const {
uint32_t pos = 0;
while (true) {
const FlatDecisionNode &node = nodes_[pos];
if (node.property0 < 0) {
return {node.childID, node.predictor, node.predictor_offset,
node.multiplier};
}
bool p0 = properties[node.property0] <= node.splitval0;
uint32_t off0 = properties[node.properties[0]] <= node.splitvals[0];
uint32_t off1 =
2 | (properties[node.properties[1]] <= node.splitvals[1] ? 1 : 0);
pos = node.childID + (p0 ? off1 : off0);
}
}
private:
const FlatTree &nodes_;
};
static constexpr size_t kExtraPropsPerChannel = 4;
static constexpr size_t kNumNonrefProperties =
kNumStaticProperties + 13 + weighted::kNumProperties;
constexpr size_t kWPProp = kNumNonrefProperties - weighted::kNumProperties;
constexpr size_t kGradientProp = 9;
// Clamps gradient to the min/max of n, w (and l, implicitly).
static JXL_INLINE int32_t ClampedGradient(const int32_t n, const int32_t w,
const int32_t l) {
const int32_t m = std::min(n, w);
const int32_t M = std::max(n, w);
// The end result of this operation doesn't overflow or underflow if the
// result is between m and M, but the intermediate value may overflow, so we
// do the intermediate operations in uint32_t and check later if we had an
// overflow or underflow condition comparing m, M and l directly.
// grad = M + m - l = n + w - l
const int32_t grad =
static_cast<int32_t>(static_cast<uint32_t>(n) + static_cast<uint32_t>(w) -
static_cast<uint32_t>(l));
// We use two sets of ternary operators to force the evaluation of them in
// any case, allowing the compiler to avoid branches and use cmovl/cmovg in
// x86.
const int32_t grad_clamp_M = (l < m) ? M : grad;
return (l > M) ? m : grad_clamp_M;
}
inline pixel_type_w Select(pixel_type_w a, pixel_type_w b, pixel_type_w c) {
pixel_type_w p = a + b - c;
pixel_type_w pa = std::abs(p - a);
pixel_type_w pb = std::abs(p - b);
return pa < pb ? a : b;
}
inline void PrecomputeReferences(const Channel &ch, size_t y,
const Image &image, uint32_t i,
Channel *references) {
ZeroFillImage(&references->plane);
uint32_t offset = 0;
size_t num_extra_props = references->w;
intptr_t onerow = references->plane.PixelsPerRow();
for (int32_t j = static_cast<int32_t>(i) - 1;
j >= 0 && offset < num_extra_props; j--) {
if (image.channel[j].w != image.channel[i].w ||
image.channel[j].h != image.channel[i].h) {
continue;
}
if (image.channel[j].hshift != image.channel[i].hshift) continue;
if (image.channel[j].vshift != image.channel[i].vshift) continue;
pixel_type *JXL_RESTRICT rp = references->Row(0) + offset;
const pixel_type *JXL_RESTRICT rpp = image.channel[j].Row(y);
const pixel_type *JXL_RESTRICT rpprev = image.channel[j].Row(y ? y - 1 : 0);
for (size_t x = 0; x < ch.w; x++, rp += onerow) {
pixel_type_w v = rpp[x];
rp[0] = std::abs(v);
rp[1] = v;
pixel_type_w vleft = (x ? rpp[x - 1] : 0);
pixel_type_w vtop = (y ? rpprev[x] : vleft);
pixel_type_w vtopleft = (x && y ? rpprev[x - 1] : vleft);
pixel_type_w vpredicted = ClampedGradient(vleft, vtop, vtopleft);
rp[2] = std::abs(v - vpredicted);
rp[3] = v - vpredicted;
}
offset += kExtraPropsPerChannel;
}
}
struct PredictionResult {
int context = 0;
pixel_type_w guess = 0;
Predictor predictor;
int32_t multiplier;
};
inline void InitPropsRow(
Properties *p,
const std::array<pixel_type, kNumStaticProperties> &static_props,
const int y) {
for (size_t i = 0; i < kNumStaticProperties; i++) {
(*p)[i] = static_props[i];
}
(*p)[2] = y;
(*p)[9] = 0; // local gradient.
}
namespace detail {
enum PredictorMode {
kUseTree = 1,
kUseWP = 2,
kForceComputeProperties = 4,
kAllPredictions = 8,
kNoEdgeCases = 16
};
JXL_INLINE pixel_type_w PredictOne(Predictor p, pixel_type_w left,
pixel_type_w top, pixel_type_w toptop,
pixel_type_w topleft, pixel_type_w topright,
pixel_type_w leftleft,
pixel_type_w toprightright,
pixel_type_w wp_pred) {
switch (p) {
case Predictor::Zero:
return pixel_type_w{0};
case Predictor::Left:
return left;
case Predictor::Top:
return top;
case Predictor::Select:
return Select(left, top, topleft);
case Predictor::Weighted:
return wp_pred;
case Predictor::Gradient:
return pixel_type_w{ClampedGradient(left, top, topleft)};
case Predictor::TopLeft:
return topleft;
case Predictor::TopRight:
return topright;
case Predictor::LeftLeft:
return leftleft;
case Predictor::Average0:
return (left + top) / 2;
case Predictor::Average1:
return (left + topleft) / 2;
case Predictor::Average2:
return (topleft + top) / 2;
case Predictor::Average3:
return (top + topright) / 2;
case Predictor::Average4:
return (6 * top - 2 * toptop + 7 * left + 1 * leftleft +
1 * toprightright + 3 * topright + 8) /
16;
default:
return pixel_type_w{0};
}
}
template <int mode>
JXL_INLINE PredictionResult Predict(
Properties *p, size_t w, const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const size_t x, const size_t y, Predictor predictor,
const MATreeLookup *lookup, const Channel *references,
weighted::State *wp_state, pixel_type_w *predictions) {
// We start in position 3 because of 2 static properties + y.
size_t offset = 3;
constexpr bool compute_properties =
mode & kUseTree || mode & kForceComputeProperties;
constexpr bool nec = mode & kNoEdgeCases;
pixel_type_w left = (nec || x ? pp[-1] : (y ? pp[-onerow] : 0));
pixel_type_w top = (nec || y ? pp[-onerow] : left);
pixel_type_w topleft = (nec || (x && y) ? pp[-1 - onerow] : left);
pixel_type_w topright = (nec || (x + 1 < w && y) ? pp[1 - onerow] : top);
pixel_type_w leftleft = (nec || x > 1 ? pp[-2] : left);
pixel_type_w toptop = (nec || y > 1 ? pp[-onerow - onerow] : top);
pixel_type_w toprightright =
(nec || (x + 2 < w && y) ? pp[2 - onerow] : topright);
if (compute_properties) {
// location
(*p)[offset++] = x;
// neighbors
(*p)[offset++] = std::abs(top);
(*p)[offset++] = std::abs(left);
(*p)[offset++] = top;
(*p)[offset++] = left;
// local gradient
(*p)[offset] = left - (*p)[offset + 1];
offset++;
// local gradient
(*p)[offset++] = left + top - topleft;
// FFV1 context properties
(*p)[offset++] = left - topleft;
(*p)[offset++] = topleft - top;
(*p)[offset++] = top - topright;
(*p)[offset++] = top - toptop;
(*p)[offset++] = left - leftleft;
}
pixel_type_w wp_pred = 0;
if (mode & kUseWP) {
wp_pred = wp_state->Predict<compute_properties>(
x, y, w, top, left, topright, topleft, toptop, p, offset);
}
if (!nec && compute_properties) {
offset += weighted::kNumProperties;
// Extra properties.
const pixel_type *JXL_RESTRICT rp = references->Row(x);
for (size_t i = 0; i < references->w; i++) {
(*p)[offset++] = rp[i];
}
}
PredictionResult result;
if (mode & kUseTree) {
MATreeLookup::LookupResult lr = lookup->Lookup(*p);
result.context = lr.context;
result.guess = lr.offset;
result.multiplier = lr.multiplier;
predictor = lr.predictor;
}
if (mode & kAllPredictions) {
for (size_t i = 0; i < kNumModularPredictors; i++) {
predictions[i] = PredictOne((Predictor)i, left, top, toptop, topleft,
topright, leftleft, toprightright, wp_pred);
}
}
result.guess += PredictOne(predictor, left, top, toptop, topleft, topright,
leftleft, toprightright, wp_pred);
result.predictor = predictor;
return result;
}
} // namespace detail
inline PredictionResult PredictNoTreeNoWP(size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x,
const int y, Predictor predictor) {
return detail::Predict</*mode=*/0>(
/*p=*/nullptr, w, pp, onerow, x, y, predictor, /*lookup=*/nullptr,
/*references=*/nullptr, /*wp_state=*/nullptr, /*predictions=*/nullptr);
}
inline PredictionResult PredictNoTreeWP(size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x,
const int y, Predictor predictor,
weighted::State *wp_state) {
return detail::Predict<detail::kUseWP>(
/*p=*/nullptr, w, pp, onerow, x, y, predictor, /*lookup=*/nullptr,
/*references=*/nullptr, wp_state, /*predictions=*/nullptr);
}
inline PredictionResult PredictTreeNoWP(Properties *p, size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x,
const int y,
const MATreeLookup &tree_lookup,
const Channel &references) {
return detail::Predict<detail::kUseTree>(
p, w, pp, onerow, x, y, Predictor::Zero, &tree_lookup, &references,
/*wp_state=*/nullptr, /*predictions=*/nullptr);
}
// Only use for y > 1, x > 1, x < w-2, and empty references
JXL_INLINE PredictionResult
PredictTreeNoWPNEC(Properties *p, size_t w, const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x, const int y,
const MATreeLookup &tree_lookup, const Channel &references) {
return detail::Predict<detail::kUseTree | detail::kNoEdgeCases>(
p, w, pp, onerow, x, y, Predictor::Zero, &tree_lookup, &references,
/*wp_state=*/nullptr, /*predictions=*/nullptr);
}
inline PredictionResult PredictTreeWP(Properties *p, size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x,
const int y,
const MATreeLookup &tree_lookup,
const Channel &references,
weighted::State *wp_state) {
return detail::Predict<detail::kUseTree | detail::kUseWP>(
p, w, pp, onerow, x, y, Predictor::Zero, &tree_lookup, &references,
wp_state, /*predictions=*/nullptr);
}
inline PredictionResult PredictLearn(Properties *p, size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x,
const int y, Predictor predictor,
const Channel &references,
weighted::State *wp_state) {
return detail::Predict<detail::kForceComputeProperties | detail::kUseWP>(
p, w, pp, onerow, x, y, predictor, /*lookup=*/nullptr, &references,
wp_state, /*predictions=*/nullptr);
}
inline void PredictLearnAll(Properties *p, size_t w,
const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x, const int y,
const Channel &references,
weighted::State *wp_state,
pixel_type_w *predictions) {
detail::Predict<detail::kForceComputeProperties | detail::kUseWP |
detail::kAllPredictions>(
p, w, pp, onerow, x, y, Predictor::Zero,
/*lookup=*/nullptr, &references, wp_state, predictions);
}
inline void PredictAllNoWP(size_t w, const pixel_type *JXL_RESTRICT pp,
const intptr_t onerow, const int x, const int y,
pixel_type_w *predictions) {
detail::Predict<detail::kAllPredictions>(
/*p=*/nullptr, w, pp, onerow, x, y, Predictor::Zero,
/*lookup=*/nullptr,
/*references=*/nullptr, /*wp_state=*/nullptr, predictions);
}
} // namespace jxl
#endif // LIB_JXL_MODULAR_ENCODING_CONTEXT_PREDICT_H_
|