1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/quant_weights.h"
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <hwy/base.h> // HWY_ALIGN_MAX
#include <hwy/tests/test_util-inl.h>
#include <numeric>
#include "lib/jxl/base/random.h"
#include "lib/jxl/dct_for_test.h"
#include "lib/jxl/dec_transforms_testonly.h"
#include "lib/jxl/enc_modular.h"
#include "lib/jxl/enc_quant_weights.h"
#include "lib/jxl/enc_transforms.h"
namespace jxl {
namespace {
template <typename T>
void CheckSimilar(T a, T b) {
EXPECT_EQ(a, b);
}
// minimum exponent = -15.
template <>
void CheckSimilar(float a, float b) {
float m = std::max(std::abs(a), std::abs(b));
// 10 bits of precision are used in the format. Relative error should be
// below 2^-10.
EXPECT_LE(std::abs(a - b), m / 1024.0f) << "a: " << a << " b: " << b;
}
TEST(QuantWeightsTest, DC) {
DequantMatrices mat;
float dc_quant[3] = {1e+5, 1e+3, 1e+1};
DequantMatricesSetCustomDC(&mat, dc_quant);
for (size_t c = 0; c < 3; c++) {
CheckSimilar(mat.InvDCQuant(c), dc_quant[c]);
}
}
void RoundtripMatrices(const std::vector<QuantEncoding>& encodings) {
ASSERT_TRUE(encodings.size() == DequantMatrices::kNum);
DequantMatrices mat;
CodecMetadata metadata;
FrameHeader frame_header(&metadata);
ModularFrameEncoder encoder(frame_header, CompressParams{});
DequantMatricesSetCustom(&mat, encodings, &encoder);
const std::vector<QuantEncoding>& encodings_dec = mat.encodings();
for (size_t i = 0; i < encodings.size(); i++) {
const QuantEncoding& e = encodings[i];
const QuantEncoding& d = encodings_dec[i];
// Check values roundtripped correctly.
EXPECT_EQ(e.mode, d.mode);
EXPECT_EQ(e.predefined, d.predefined);
EXPECT_EQ(e.source, d.source);
EXPECT_EQ(static_cast<uint64_t>(e.dct_params.num_distance_bands),
static_cast<uint64_t>(d.dct_params.num_distance_bands));
for (size_t c = 0; c < 3; c++) {
for (size_t j = 0; j < DctQuantWeightParams::kMaxDistanceBands; j++) {
CheckSimilar(e.dct_params.distance_bands[c][j],
d.dct_params.distance_bands[c][j]);
}
}
if (e.mode == QuantEncoding::kQuantModeRAW) {
EXPECT_FALSE(!e.qraw.qtable);
EXPECT_FALSE(!d.qraw.qtable);
EXPECT_EQ(e.qraw.qtable->size(), d.qraw.qtable->size());
for (size_t j = 0; j < e.qraw.qtable->size(); j++) {
EXPECT_EQ((*e.qraw.qtable)[j], (*d.qraw.qtable)[j]);
}
EXPECT_NEAR(e.qraw.qtable_den, d.qraw.qtable_den, 1e-7f);
} else {
// modes different than kQuantModeRAW use one of the other fields used
// here, which all happen to be arrays of floats.
for (size_t c = 0; c < 3; c++) {
for (size_t j = 0; j < 3; j++) {
CheckSimilar(e.idweights[c][j], d.idweights[c][j]);
}
for (size_t j = 0; j < 6; j++) {
CheckSimilar(e.dct2weights[c][j], d.dct2weights[c][j]);
}
for (size_t j = 0; j < 2; j++) {
CheckSimilar(e.dct4multipliers[c][j], d.dct4multipliers[c][j]);
}
CheckSimilar(e.dct4x8multipliers[c], d.dct4x8multipliers[c]);
for (size_t j = 0; j < 9; j++) {
CheckSimilar(e.afv_weights[c][j], d.afv_weights[c][j]);
}
for (size_t j = 0; j < DctQuantWeightParams::kMaxDistanceBands; j++) {
CheckSimilar(e.dct_params_afv_4x4.distance_bands[c][j],
d.dct_params_afv_4x4.distance_bands[c][j]);
}
}
}
}
}
TEST(QuantWeightsTest, AllDefault) {
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
QuantEncoding::Library(0));
RoundtripMatrices(encodings);
}
void TestSingleQuantMatrix(DequantMatrices::QuantTable kind) {
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
QuantEncoding::Library(0));
encodings[kind] = DequantMatrices::Library()[kind];
RoundtripMatrices(encodings);
}
// Ensure we can reasonably represent default quant tables.
TEST(QuantWeightsTest, DCT) { TestSingleQuantMatrix(DequantMatrices::DCT); }
TEST(QuantWeightsTest, IDENTITY) {
TestSingleQuantMatrix(DequantMatrices::IDENTITY);
}
TEST(QuantWeightsTest, DCT2X2) {
TestSingleQuantMatrix(DequantMatrices::DCT2X2);
}
TEST(QuantWeightsTest, DCT4X4) {
TestSingleQuantMatrix(DequantMatrices::DCT4X4);
}
TEST(QuantWeightsTest, DCT16X16) {
TestSingleQuantMatrix(DequantMatrices::DCT16X16);
}
TEST(QuantWeightsTest, DCT32X32) {
TestSingleQuantMatrix(DequantMatrices::DCT32X32);
}
TEST(QuantWeightsTest, DCT8X16) {
TestSingleQuantMatrix(DequantMatrices::DCT8X16);
}
TEST(QuantWeightsTest, DCT8X32) {
TestSingleQuantMatrix(DequantMatrices::DCT8X32);
}
TEST(QuantWeightsTest, DCT16X32) {
TestSingleQuantMatrix(DequantMatrices::DCT16X32);
}
TEST(QuantWeightsTest, DCT4X8) {
TestSingleQuantMatrix(DequantMatrices::DCT4X8);
}
TEST(QuantWeightsTest, AFV0) { TestSingleQuantMatrix(DequantMatrices::AFV0); }
TEST(QuantWeightsTest, RAW) {
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
QuantEncoding::Library(0));
std::vector<int> matrix(3 * 32 * 32);
Rng rng(0);
for (size_t i = 0; i < matrix.size(); i++) matrix[i] = rng.UniformI(1, 256);
encodings[DequantMatrices::kQuantTable[AcStrategy::DCT32X32]] =
QuantEncoding::RAW(matrix, 2);
RoundtripMatrices(encodings);
}
class QuantWeightsTargetTest : public hwy::TestWithParamTarget {};
HWY_TARGET_INSTANTIATE_TEST_SUITE_P(QuantWeightsTargetTest);
TEST_P(QuantWeightsTargetTest, DCTUniform) {
constexpr float kUniformQuant = 4;
float weights[3][2] = {{1.0f / kUniformQuant, 0},
{1.0f / kUniformQuant, 0},
{1.0f / kUniformQuant, 0}};
DctQuantWeightParams dct_params(weights);
std::vector<QuantEncoding> encodings(DequantMatrices::kNum,
QuantEncoding::DCT(dct_params));
DequantMatrices dequant_matrices;
CodecMetadata metadata;
FrameHeader frame_header(&metadata);
ModularFrameEncoder encoder(frame_header, CompressParams{});
DequantMatricesSetCustom(&dequant_matrices, encodings, &encoder);
JXL_CHECK(dequant_matrices.EnsureComputed(~0u));
const float dc_quant[3] = {1.0f / kUniformQuant, 1.0f / kUniformQuant,
1.0f / kUniformQuant};
DequantMatricesSetCustomDC(&dequant_matrices, dc_quant);
HWY_ALIGN_MAX float scratch_space[16 * 16 * 2];
// DCT8
{
HWY_ALIGN_MAX float pixels[64];
std::iota(std::begin(pixels), std::end(pixels), 0);
HWY_ALIGN_MAX float coeffs[64];
const AcStrategy::Type dct = AcStrategy::DCT;
TransformFromPixels(dct, pixels, 8, coeffs, scratch_space);
HWY_ALIGN_MAX double slow_coeffs[64];
for (size_t i = 0; i < 64; i++) slow_coeffs[i] = pixels[i];
DCTSlow<8>(slow_coeffs);
for (size_t i = 0; i < 64; i++) {
// DCTSlow doesn't multiply/divide by 1/N, so we do it manually.
slow_coeffs[i] = roundf(slow_coeffs[i] / kUniformQuant) * kUniformQuant;
coeffs[i] = roundf(coeffs[i] / dequant_matrices.Matrix(dct, 0)[i]) *
dequant_matrices.Matrix(dct, 0)[i];
}
IDCTSlow<8>(slow_coeffs);
TransformToPixels(dct, coeffs, pixels, 8, scratch_space);
for (size_t i = 0; i < 64; i++) {
EXPECT_NEAR(pixels[i], slow_coeffs[i], 1e-4);
}
}
// DCT16
{
HWY_ALIGN_MAX float pixels[64 * 4];
std::iota(std::begin(pixels), std::end(pixels), 0);
HWY_ALIGN_MAX float coeffs[64 * 4];
const AcStrategy::Type dct = AcStrategy::DCT16X16;
TransformFromPixels(dct, pixels, 16, coeffs, scratch_space);
HWY_ALIGN_MAX double slow_coeffs[64 * 4];
for (size_t i = 0; i < 64 * 4; i++) slow_coeffs[i] = pixels[i];
DCTSlow<16>(slow_coeffs);
for (size_t i = 0; i < 64 * 4; i++) {
slow_coeffs[i] = roundf(slow_coeffs[i] / kUniformQuant) * kUniformQuant;
coeffs[i] = roundf(coeffs[i] / dequant_matrices.Matrix(dct, 0)[i]) *
dequant_matrices.Matrix(dct, 0)[i];
}
IDCTSlow<16>(slow_coeffs);
TransformToPixels(dct, coeffs, pixels, 16, scratch_space);
for (size_t i = 0; i < 64 * 4; i++) {
EXPECT_NEAR(pixels[i], slow_coeffs[i], 1e-4);
}
}
// Check that all matrices have the same DC quantization, i.e. that they all
// have the same scaling.
for (size_t i = 0; i < AcStrategy::kNumValidStrategies; i++) {
EXPECT_NEAR(dequant_matrices.Matrix(i, 0)[0], kUniformQuant, 1e-6);
}
}
} // namespace
} // namespace jxl
|