1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Fast SIMD evaluation of rational polynomials for approximating functions.
#if defined(LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_) == defined(HWY_TARGET_TOGGLE)
#ifdef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
#undef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
#else
#define LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
#endif
#include <stddef.h>
#include <hwy/highway.h>
HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {
namespace {
// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::Div;
using hwy::HWY_NAMESPACE::MulAdd;
// Primary template: default to actual division.
template <typename T, class V>
struct FastDivision {
HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
};
// Partial specialization for float vectors.
template <class V>
struct FastDivision<float, V> {
// One Newton-Raphson iteration.
static HWY_INLINE V ReciprocalNR(const V x) {
const auto rcp = ApproximateReciprocal(x);
const auto sum = Add(rcp, rcp);
const auto x_rcp = Mul(x, rcp);
return NegMulAdd(x_rcp, rcp, sum);
}
V operator()(const V n, const V d) const {
#if 1 // Faster on SKX
return Div(n, d);
#else
return n * ReciprocalNR(d);
#endif
}
};
// Approximates smooth functions via rational polynomials (i.e. dividing two
// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
// specify constants (replicated 4x) independently of the lane count.
template <size_t NP, size_t NQ, class D, class V, typename T>
HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
const T (&p)[NP],
const T (&q)[NQ]) {
constexpr size_t kDegP = NP / 4 - 1;
constexpr size_t kDegQ = NQ / 4 - 1;
auto yp = LoadDup128(d, &p[kDegP * 4]);
auto yq = LoadDup128(d, &q[kDegQ * 4]);
// We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
// compiler warning that the index is out of bounds since we are already
// checking that it is not out of bounds with (kDegP >= n) and the access
// will be optimized away. Similarly with q and kDegQ.
HWY_FENCE;
if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
HWY_FENCE;
if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
HWY_FENCE;
if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
HWY_FENCE;
if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
HWY_FENCE;
if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
HWY_FENCE;
if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
HWY_FENCE;
if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
return FastDivision<T, V>()(yp, yq);
}
} // namespace
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace jxl
HWY_AFTER_NAMESPACE();
#endif // LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
|