1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/units/data_rate.h"
#include "rtc_base/logging.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
TEST(DataRateTest, CompilesWithChecksAndLogs) {
DataRate a = DataRate::KilobitsPerSec(300);
DataRate b = DataRate::KilobitsPerSec(210);
RTC_CHECK_GT(a, b);
RTC_LOG(LS_INFO) << a;
}
TEST(DataRateTest, ConstExpr) {
constexpr int64_t kValue = 12345;
constexpr DataRate kDataRateZero = DataRate::Zero();
constexpr DataRate kDataRateInf = DataRate::Infinity();
static_assert(kDataRateZero.IsZero(), "");
static_assert(kDataRateInf.IsInfinite(), "");
static_assert(kDataRateInf.bps_or(-1) == -1, "");
static_assert(kDataRateInf > kDataRateZero, "");
constexpr DataRate kDataRateBps = DataRate::BitsPerSec(kValue);
constexpr DataRate kDataRateKbps = DataRate::KilobitsPerSec(kValue);
static_assert(kDataRateBps.bps<double>() == kValue, "");
static_assert(kDataRateBps.bps_or(0) == kValue, "");
static_assert(kDataRateKbps.kbps_or(0) == kValue, "");
}
TEST(DataRateTest, GetBackSameValues) {
const int64_t kValue = 123 * 8;
EXPECT_EQ(DataRate::BitsPerSec(kValue).bps(), kValue);
EXPECT_EQ(DataRate::KilobitsPerSec(kValue).kbps(), kValue);
}
TEST(DataRateTest, GetDifferentPrefix) {
const int64_t kValue = 123 * 8000;
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps(), kValue / 1000);
}
TEST(DataRateTest, IdentityChecks) {
const int64_t kValue = 3000;
EXPECT_TRUE(DataRate::Zero().IsZero());
EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsZero());
EXPECT_TRUE(DataRate::Infinity().IsInfinite());
EXPECT_FALSE(DataRate::Zero().IsInfinite());
EXPECT_FALSE(DataRate::BitsPerSec(kValue).IsInfinite());
EXPECT_FALSE(DataRate::Infinity().IsFinite());
EXPECT_TRUE(DataRate::BitsPerSec(kValue).IsFinite());
EXPECT_TRUE(DataRate::Zero().IsFinite());
}
TEST(DataRateTest, ComparisonOperators) {
const int64_t kSmall = 450;
const int64_t kLarge = 451;
const DataRate small = DataRate::BitsPerSec(kSmall);
const DataRate large = DataRate::BitsPerSec(kLarge);
EXPECT_EQ(DataRate::Zero(), DataRate::BitsPerSec(0));
EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity());
EXPECT_EQ(small, small);
EXPECT_LE(small, small);
EXPECT_GE(small, small);
EXPECT_NE(small, large);
EXPECT_LE(small, large);
EXPECT_LT(small, large);
EXPECT_GE(large, small);
EXPECT_GT(large, small);
EXPECT_LT(DataRate::Zero(), small);
EXPECT_GT(DataRate::Infinity(), large);
}
TEST(DataRateTest, ConvertsToAndFromDouble) {
const int64_t kValue = 128;
const double kDoubleValue = static_cast<double>(kValue);
const double kDoubleKbps = kValue * 1e-3;
const double kFloatKbps = static_cast<float>(kDoubleKbps);
EXPECT_EQ(DataRate::BitsPerSec(kValue).bps<double>(), kDoubleValue);
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps<double>(), kDoubleKbps);
EXPECT_EQ(DataRate::BitsPerSec(kValue).kbps<float>(), kFloatKbps);
EXPECT_EQ(DataRate::BitsPerSec(kDoubleValue).bps(), kValue);
EXPECT_EQ(DataRate::KilobitsPerSec(kDoubleKbps).bps(), kValue);
const double kInfinity = std::numeric_limits<double>::infinity();
EXPECT_EQ(DataRate::Infinity().bps<double>(), kInfinity);
EXPECT_TRUE(DataRate::BitsPerSec(kInfinity).IsInfinite());
EXPECT_TRUE(DataRate::KilobitsPerSec(kInfinity).IsInfinite());
}
TEST(DataRateTest, Clamping) {
const DataRate upper = DataRate::KilobitsPerSec(800);
const DataRate lower = DataRate::KilobitsPerSec(100);
const DataRate under = DataRate::KilobitsPerSec(100);
const DataRate inside = DataRate::KilobitsPerSec(500);
const DataRate over = DataRate::KilobitsPerSec(1000);
EXPECT_EQ(under.Clamped(lower, upper), lower);
EXPECT_EQ(inside.Clamped(lower, upper), inside);
EXPECT_EQ(over.Clamped(lower, upper), upper);
DataRate mutable_rate = lower;
mutable_rate.Clamp(lower, upper);
EXPECT_EQ(mutable_rate, lower);
mutable_rate = inside;
mutable_rate.Clamp(lower, upper);
EXPECT_EQ(mutable_rate, inside);
mutable_rate = over;
mutable_rate.Clamp(lower, upper);
EXPECT_EQ(mutable_rate, upper);
}
TEST(DataRateTest, MathOperations) {
const int64_t kValueA = 450;
const int64_t kValueB = 267;
const DataRate rate_a = DataRate::BitsPerSec(kValueA);
const DataRate rate_b = DataRate::BitsPerSec(kValueB);
const int32_t kInt32Value = 123;
const double kFloatValue = 123.0;
EXPECT_EQ((rate_a + rate_b).bps(), kValueA + kValueB);
EXPECT_EQ((rate_a - rate_b).bps(), kValueA - kValueB);
EXPECT_EQ((rate_a * kValueB).bps(), kValueA * kValueB);
EXPECT_EQ((rate_a * kInt32Value).bps(), kValueA * kInt32Value);
EXPECT_EQ((rate_a * kFloatValue).bps(), kValueA * kFloatValue);
EXPECT_EQ(rate_a / rate_b, static_cast<double>(kValueA) / kValueB);
EXPECT_EQ((rate_a / 10).bps(), kValueA / 10);
EXPECT_NEAR((rate_a / 0.5).bps(), kValueA * 2, 1);
DataRate mutable_rate = DataRate::BitsPerSec(kValueA);
mutable_rate += rate_b;
EXPECT_EQ(mutable_rate.bps(), kValueA + kValueB);
mutable_rate -= rate_a;
EXPECT_EQ(mutable_rate.bps(), kValueB);
}
TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) {
const int64_t kSeconds = 5;
const int64_t kBitsPerSecond = 440;
const int64_t kBytes = 44000;
const TimeDelta delta_a = TimeDelta::Seconds(kSeconds);
const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond);
const DataSize size_c = DataSize::Bytes(kBytes);
EXPECT_EQ((delta_a * rate_b).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((rate_b * delta_a).bytes(), kSeconds * kBitsPerSecond / 8);
EXPECT_EQ((size_c / delta_a).bps(), kBytes * 8 / kSeconds);
EXPECT_EQ((size_c / rate_b).seconds(), kBytes * 8 / kBitsPerSecond);
}
TEST(UnitConversionTest, DataRateAndDataSizeAndFrequency) {
const int64_t kHertz = 30;
const int64_t kBitsPerSecond = 96000;
const int64_t kBytes = 1200;
const Frequency freq_a = Frequency::Hertz(kHertz);
const DataRate rate_b = DataRate::BitsPerSec(kBitsPerSecond);
const DataSize size_c = DataSize::Bytes(kBytes);
EXPECT_EQ((freq_a * size_c).bps(), kHertz * kBytes * 8);
EXPECT_EQ((size_c * freq_a).bps(), kHertz * kBytes * 8);
EXPECT_EQ((rate_b / size_c).hertz<int64_t>(), kBitsPerSecond / kBytes / 8);
EXPECT_EQ((rate_b / freq_a).bytes(), kBitsPerSecond / kHertz / 8);
}
TEST(UnitConversionDeathTest, DivisionFailsOnLargeSize) {
// Note that the failure is expected since the current implementation is
// implementated in a way that does not support division of large sizes. If
// the implementation is changed, this test can safely be removed.
const int64_t kJustSmallEnoughForDivision =
std::numeric_limits<int64_t>::max() / 8000000;
const DataSize large_size = DataSize::Bytes(kJustSmallEnoughForDivision);
const DataRate data_rate = DataRate::KilobitsPerSec(100);
const TimeDelta time_delta = TimeDelta::Millis(100);
EXPECT_TRUE((large_size / data_rate).IsFinite());
EXPECT_TRUE((large_size / time_delta).IsFinite());
#if GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON
const int64_t kToolargeForDivision = kJustSmallEnoughForDivision + 1;
const DataSize too_large_size = DataSize::Bytes(kToolargeForDivision);
EXPECT_DEATH(too_large_size / data_rate, "");
EXPECT_DEATH(too_large_size / time_delta, "");
#endif // GTEST_HAS_DEATH_TEST && !!defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON
}
} // namespace test
} // namespace webrtc
|