1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This file contains the resampling functions for 22 kHz.
* The description header can be found in signal_processing_library.h
*
*/
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/signal_processing/resample_by_2_internal.h"
// Declaration of internally used functions
static void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In, int16_t *Out,
int32_t K);
void WebRtcSpl_32khzTo22khzIntToInt(const int32_t *In, int32_t *Out,
int32_t K);
// interpolation coefficients
static const int16_t kCoefficients32To22[5][9] = {
{127, -712, 2359, -6333, 23456, 16775, -3695, 945, -154},
{-39, 230, -830, 2785, 32366, -2324, 760, -218, 38},
{117, -663, 2222, -6133, 26634, 13070, -3174, 831, -137},
{-77, 457, -1677, 5958, 31175, -4136, 1405, -408, 71},
{ 98, -560, 1900, -5406, 29240, 9423, -2480, 663, -110}
};
//////////////////////
// 22 kHz -> 16 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_22_16 5
// 22 -> 16 resampler
void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, int16_t* out,
WebRtcSpl_State22khzTo16khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_16 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_16; k++)
{
///// 22 --> 44 /////
// int16_t in[220/SUB_BLOCKS_22_16]
// int32_t out[440/SUB_BLOCKS_22_16]
/////
WebRtcSpl_UpBy2ShortToInt(in, 220 / SUB_BLOCKS_22_16, tmpmem + 16, state->S_22_44);
///// 44 --> 32 /////
// int32_t in[440/SUB_BLOCKS_22_16]
// int32_t out[320/SUB_BLOCKS_22_16]
/////
// copy state to and from input array
tmpmem[8] = state->S_44_32[0];
tmpmem[9] = state->S_44_32[1];
tmpmem[10] = state->S_44_32[2];
tmpmem[11] = state->S_44_32[3];
tmpmem[12] = state->S_44_32[4];
tmpmem[13] = state->S_44_32[5];
tmpmem[14] = state->S_44_32[6];
tmpmem[15] = state->S_44_32[7];
state->S_44_32[0] = tmpmem[440 / SUB_BLOCKS_22_16 + 8];
state->S_44_32[1] = tmpmem[440 / SUB_BLOCKS_22_16 + 9];
state->S_44_32[2] = tmpmem[440 / SUB_BLOCKS_22_16 + 10];
state->S_44_32[3] = tmpmem[440 / SUB_BLOCKS_22_16 + 11];
state->S_44_32[4] = tmpmem[440 / SUB_BLOCKS_22_16 + 12];
state->S_44_32[5] = tmpmem[440 / SUB_BLOCKS_22_16 + 13];
state->S_44_32[6] = tmpmem[440 / SUB_BLOCKS_22_16 + 14];
state->S_44_32[7] = tmpmem[440 / SUB_BLOCKS_22_16 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 40 / SUB_BLOCKS_22_16);
///// 32 --> 16 /////
// int32_t in[320/SUB_BLOCKS_22_16]
// int32_t out[160/SUB_BLOCKS_22_16]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 320 / SUB_BLOCKS_22_16, out, state->S_32_16);
// move input/output pointers 10/SUB_BLOCKS_22_16 ms seconds ahead
in += 220 / SUB_BLOCKS_22_16;
out += 160 / SUB_BLOCKS_22_16;
}
}
// initialize state of 22 -> 16 resampler
void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_44[k] = 0;
state->S_44_32[k] = 0;
state->S_32_16[k] = 0;
}
}
//////////////////////
// 16 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 4, 5, 10
#define SUB_BLOCKS_16_22 4
// 16 -> 22 resampler
void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, int16_t* out,
WebRtcSpl_State16khzTo22khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_16_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_16_22; k++)
{
///// 16 --> 32 /////
// int16_t in[160/SUB_BLOCKS_16_22]
// int32_t out[320/SUB_BLOCKS_16_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 160 / SUB_BLOCKS_16_22, tmpmem + 8, state->S_16_32);
///// 32 --> 22 /////
// int32_t in[320/SUB_BLOCKS_16_22]
// int32_t out[220/SUB_BLOCKS_16_22]
/////
// copy state to and from input array
tmpmem[0] = state->S_32_22[0];
tmpmem[1] = state->S_32_22[1];
tmpmem[2] = state->S_32_22[2];
tmpmem[3] = state->S_32_22[3];
tmpmem[4] = state->S_32_22[4];
tmpmem[5] = state->S_32_22[5];
tmpmem[6] = state->S_32_22[6];
tmpmem[7] = state->S_32_22[7];
state->S_32_22[0] = tmpmem[320 / SUB_BLOCKS_16_22];
state->S_32_22[1] = tmpmem[320 / SUB_BLOCKS_16_22 + 1];
state->S_32_22[2] = tmpmem[320 / SUB_BLOCKS_16_22 + 2];
state->S_32_22[3] = tmpmem[320 / SUB_BLOCKS_16_22 + 3];
state->S_32_22[4] = tmpmem[320 / SUB_BLOCKS_16_22 + 4];
state->S_32_22[5] = tmpmem[320 / SUB_BLOCKS_16_22 + 5];
state->S_32_22[6] = tmpmem[320 / SUB_BLOCKS_16_22 + 6];
state->S_32_22[7] = tmpmem[320 / SUB_BLOCKS_16_22 + 7];
WebRtcSpl_32khzTo22khzIntToShort(tmpmem, out, 20 / SUB_BLOCKS_16_22);
// move input/output pointers 10/SUB_BLOCKS_16_22 ms seconds ahead
in += 160 / SUB_BLOCKS_16_22;
out += 220 / SUB_BLOCKS_16_22;
}
}
// initialize state of 16 -> 22 resampler
void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_16_32[k] = 0;
state->S_32_22[k] = 0;
}
}
//////////////////////
// 22 kHz -> 8 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_22_8 2
// 22 -> 8 resampler
void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out,
WebRtcSpl_State22khzTo8khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_22_8 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_22_8; k++)
{
///// 22 --> 22 lowpass /////
// int16_t in[220/SUB_BLOCKS_22_8]
// int32_t out[220/SUB_BLOCKS_22_8]
/////
WebRtcSpl_LPBy2ShortToInt(in, 220 / SUB_BLOCKS_22_8, tmpmem + 16, state->S_22_22);
///// 22 --> 16 /////
// int32_t in[220/SUB_BLOCKS_22_8]
// int32_t out[160/SUB_BLOCKS_22_8]
/////
// copy state to and from input array
tmpmem[8] = state->S_22_16[0];
tmpmem[9] = state->S_22_16[1];
tmpmem[10] = state->S_22_16[2];
tmpmem[11] = state->S_22_16[3];
tmpmem[12] = state->S_22_16[4];
tmpmem[13] = state->S_22_16[5];
tmpmem[14] = state->S_22_16[6];
tmpmem[15] = state->S_22_16[7];
state->S_22_16[0] = tmpmem[220 / SUB_BLOCKS_22_8 + 8];
state->S_22_16[1] = tmpmem[220 / SUB_BLOCKS_22_8 + 9];
state->S_22_16[2] = tmpmem[220 / SUB_BLOCKS_22_8 + 10];
state->S_22_16[3] = tmpmem[220 / SUB_BLOCKS_22_8 + 11];
state->S_22_16[4] = tmpmem[220 / SUB_BLOCKS_22_8 + 12];
state->S_22_16[5] = tmpmem[220 / SUB_BLOCKS_22_8 + 13];
state->S_22_16[6] = tmpmem[220 / SUB_BLOCKS_22_8 + 14];
state->S_22_16[7] = tmpmem[220 / SUB_BLOCKS_22_8 + 15];
WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 20 / SUB_BLOCKS_22_8);
///// 16 --> 8 /////
// int32_t in[160/SUB_BLOCKS_22_8]
// int32_t out[80/SUB_BLOCKS_22_8]
/////
WebRtcSpl_DownBy2IntToShort(tmpmem, 160 / SUB_BLOCKS_22_8, out, state->S_16_8);
// move input/output pointers 10/SUB_BLOCKS_22_8 ms seconds ahead
in += 220 / SUB_BLOCKS_22_8;
out += 80 / SUB_BLOCKS_22_8;
}
}
// initialize state of 22 -> 8 resampler
void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_22_22[k] = 0;
state->S_22_22[k + 8] = 0;
state->S_22_16[k] = 0;
state->S_16_8[k] = 0;
}
}
//////////////////////
// 8 kHz -> 22 kHz //
//////////////////////
// number of subblocks; options: 1, 2, 5, 10
#define SUB_BLOCKS_8_22 2
// 8 -> 22 resampler
void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out,
WebRtcSpl_State8khzTo22khz* state, int32_t* tmpmem)
{
int k;
// process two blocks of 10/SUB_BLOCKS_8_22 ms (to reduce temp buffer size)
for (k = 0; k < SUB_BLOCKS_8_22; k++)
{
///// 8 --> 16 /////
// int16_t in[80/SUB_BLOCKS_8_22]
// int32_t out[160/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2ShortToInt(in, 80 / SUB_BLOCKS_8_22, tmpmem + 18, state->S_8_16);
///// 16 --> 11 /////
// int32_t in[160/SUB_BLOCKS_8_22]
// int32_t out[110/SUB_BLOCKS_8_22]
/////
// copy state to and from input array
tmpmem[10] = state->S_16_11[0];
tmpmem[11] = state->S_16_11[1];
tmpmem[12] = state->S_16_11[2];
tmpmem[13] = state->S_16_11[3];
tmpmem[14] = state->S_16_11[4];
tmpmem[15] = state->S_16_11[5];
tmpmem[16] = state->S_16_11[6];
tmpmem[17] = state->S_16_11[7];
state->S_16_11[0] = tmpmem[160 / SUB_BLOCKS_8_22 + 10];
state->S_16_11[1] = tmpmem[160 / SUB_BLOCKS_8_22 + 11];
state->S_16_11[2] = tmpmem[160 / SUB_BLOCKS_8_22 + 12];
state->S_16_11[3] = tmpmem[160 / SUB_BLOCKS_8_22 + 13];
state->S_16_11[4] = tmpmem[160 / SUB_BLOCKS_8_22 + 14];
state->S_16_11[5] = tmpmem[160 / SUB_BLOCKS_8_22 + 15];
state->S_16_11[6] = tmpmem[160 / SUB_BLOCKS_8_22 + 16];
state->S_16_11[7] = tmpmem[160 / SUB_BLOCKS_8_22 + 17];
WebRtcSpl_32khzTo22khzIntToInt(tmpmem + 10, tmpmem, 10 / SUB_BLOCKS_8_22);
///// 11 --> 22 /////
// int32_t in[110/SUB_BLOCKS_8_22]
// int16_t out[220/SUB_BLOCKS_8_22]
/////
WebRtcSpl_UpBy2IntToShort(tmpmem, 110 / SUB_BLOCKS_8_22, out, state->S_11_22);
// move input/output pointers 10/SUB_BLOCKS_8_22 ms seconds ahead
in += 80 / SUB_BLOCKS_8_22;
out += 220 / SUB_BLOCKS_8_22;
}
}
// initialize state of 8 -> 22 resampler
void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state)
{
int k;
for (k = 0; k < 8; k++)
{
state->S_8_16[k] = 0;
state->S_16_11[k] = 0;
state->S_11_22[k] = 0;
}
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToInt(const int32_t* in1, const int32_t* in2,
const int16_t* coef_ptr, int32_t* out1,
int32_t* out2)
{
int32_t tmp1 = 16384;
int32_t tmp2 = 16384;
int16_t coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
*out1 = tmp1 + coef * in1[8];
*out2 = tmp2 + coef * in2[-8];
}
// compute two inner-products and store them to output array
static void WebRtcSpl_DotProdIntToShort(const int32_t* in1, const int32_t* in2,
const int16_t* coef_ptr, int16_t* out1,
int16_t* out2)
{
int32_t tmp1 = 16384;
int32_t tmp2 = 16384;
int16_t coef;
coef = coef_ptr[0];
tmp1 += coef * in1[0];
tmp2 += coef * in2[-0];
coef = coef_ptr[1];
tmp1 += coef * in1[1];
tmp2 += coef * in2[-1];
coef = coef_ptr[2];
tmp1 += coef * in1[2];
tmp2 += coef * in2[-2];
coef = coef_ptr[3];
tmp1 += coef * in1[3];
tmp2 += coef * in2[-3];
coef = coef_ptr[4];
tmp1 += coef * in1[4];
tmp2 += coef * in2[-4];
coef = coef_ptr[5];
tmp1 += coef * in1[5];
tmp2 += coef * in2[-5];
coef = coef_ptr[6];
tmp1 += coef * in1[6];
tmp2 += coef * in2[-6];
coef = coef_ptr[7];
tmp1 += coef * in1[7];
tmp2 += coef * in2[-7];
coef = coef_ptr[8];
tmp1 += coef * in1[8];
tmp2 += coef * in2[-8];
// scale down, round and saturate
tmp1 >>= 15;
if (tmp1 > (int32_t)0x00007FFF)
tmp1 = 0x00007FFF;
if (tmp1 < (int32_t)0xFFFF8000)
tmp1 = 0xFFFF8000;
tmp2 >>= 15;
if (tmp2 > (int32_t)0x00007FFF)
tmp2 = 0x00007FFF;
if (tmp2 < (int32_t)0xFFFF8000)
tmp2 = 0xFFFF8000;
*out1 = (int16_t)tmp1;
*out2 = (int16_t)tmp2;
}
// Resampling ratio: 11/16
// input: int32_t (normalized, not saturated) :: size 16 * K
// output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToInt(const int32_t* In,
int32_t* Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
int32_t m;
for (m = 0; m < K; m++)
{
// first output sample
Out[0] = ((int32_t)In[3] << 15) + (1 << 14);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToInt(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}
// Resampling ratio: 11/16
// input: int32_t (normalized, not saturated) :: size 16 * K
// output: int16_t (saturated) :: size 11 * K
// K: Number of blocks
void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In,
int16_t *Out,
int32_t K)
{
/////////////////////////////////////////////////////////////
// Filter operation:
//
// Perform resampling (16 input samples -> 11 output samples);
// process in sub blocks of size 16 samples.
int32_t tmp;
int32_t m;
for (m = 0; m < K; m++)
{
// first output sample
tmp = In[3];
if (tmp > (int32_t)0x00007FFF)
tmp = 0x00007FFF;
if (tmp < (int32_t)0xFFFF8000)
tmp = 0xFFFF8000;
Out[0] = (int16_t)tmp;
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]);
// sum and accumulate filter coefficients and input samples
WebRtcSpl_DotProdIntToShort(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]);
// update pointers
In += 16;
Out += 11;
}
}
|