summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/test/fake_encoder.cc
blob: bfc72c123de9fb529d61ccc55217399ceef93cd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "test/fake_encoder.h"

#include <string.h>

#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>

#include "api/video/video_content_type.h"
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/sleep.h"

namespace webrtc {
namespace test {
namespace {
const int kKeyframeSizeFactor = 5;

// Inverse of proportion of frames assigned to each temporal layer for all
// possible temporal layers numbers.
const int kTemporalLayerRateFactor[4][4] = {
    {1, 0, 0, 0},  // 1/1
    {2, 2, 0, 0},  // 1/2 + 1/2
    {4, 4, 2, 0},  // 1/4 + 1/4 + 1/2
    {8, 8, 4, 2},  // 1/8 + 1/8 + 1/4 + 1/2
};

void WriteCounter(unsigned char* payload, uint32_t counter) {
  payload[0] = (counter & 0x00FF);
  payload[1] = (counter & 0xFF00) >> 8;
  payload[2] = (counter & 0xFF0000) >> 16;
  payload[3] = (counter & 0xFF000000) >> 24;
}

}  // namespace

FakeEncoder::FakeEncoder(Clock* clock)
    : clock_(clock),
      num_initializations_(0),
      callback_(nullptr),
      max_target_bitrate_kbps_(-1),
      pending_keyframe_(true),
      counter_(0),
      debt_bytes_(0) {
  for (bool& used : used_layers_) {
    used = false;
  }
}

void FakeEncoder::SetFecControllerOverride(
    FecControllerOverride* fec_controller_override) {
  // Ignored.
}

void FakeEncoder::SetMaxBitrate(int max_kbps) {
  RTC_DCHECK_GE(max_kbps, -1);  // max_kbps == -1 disables it.
  MutexLock lock(&mutex_);
  max_target_bitrate_kbps_ = max_kbps;
  SetRatesLocked(current_rate_settings_);
}

void FakeEncoder::SetQp(int qp) {
  MutexLock lock(&mutex_);
  qp_ = qp;
}

int32_t FakeEncoder::InitEncode(const VideoCodec* config,
                                const Settings& settings) {
  MutexLock lock(&mutex_);
  config_ = *config;
  ++num_initializations_;
  current_rate_settings_.bitrate.SetBitrate(0, 0, config_.startBitrate * 1000);
  current_rate_settings_.framerate_fps = config_.maxFramerate;
  pending_keyframe_ = true;
  last_frame_info_ = FrameInfo();
  return 0;
}

int32_t FakeEncoder::Encode(const VideoFrame& input_image,
                            const std::vector<VideoFrameType>* frame_types) {
  unsigned char max_framerate;
  unsigned char num_simulcast_streams;
  SimulcastStream simulcast_streams[kMaxSimulcastStreams];
  EncodedImageCallback* callback;
  RateControlParameters rates;
  bool keyframe;
  uint32_t counter;
  absl::optional<int> qp;
  {
    MutexLock lock(&mutex_);
    max_framerate = config_.maxFramerate;
    num_simulcast_streams = config_.numberOfSimulcastStreams;
    for (int i = 0; i < num_simulcast_streams; ++i) {
      simulcast_streams[i] = config_.simulcastStream[i];
    }
    callback = callback_;
    rates = current_rate_settings_;
    if (rates.framerate_fps <= 0.0) {
      rates.framerate_fps = max_framerate;
    }
    keyframe = pending_keyframe_;
    pending_keyframe_ = false;
    counter = counter_++;
    qp = qp_;
  }

  FrameInfo frame_info =
      NextFrame(frame_types, keyframe, num_simulcast_streams, rates.bitrate,
                simulcast_streams, static_cast<int>(rates.framerate_fps + 0.5));
  for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
    constexpr int kMinPayLoadLength = 14;
    if (frame_info.layers[i].size < kMinPayLoadLength) {
      // Drop this temporal layer.
      continue;
    }

    auto buffer = EncodedImageBuffer::Create(frame_info.layers[i].size);
    // Fill the buffer with arbitrary data. Write someting to make Asan happy.
    memset(buffer->data(), 9, frame_info.layers[i].size);
    // Write a counter to the image to make each frame unique.
    WriteCounter(buffer->data() + frame_info.layers[i].size - 4, counter);

    EncodedImage encoded;
    encoded.SetEncodedData(buffer);

    encoded.SetTimestamp(input_image.timestamp());
    encoded._frameType = frame_info.keyframe ? VideoFrameType::kVideoFrameKey
                                             : VideoFrameType::kVideoFrameDelta;
    encoded._encodedWidth = simulcast_streams[i].width;
    encoded._encodedHeight = simulcast_streams[i].height;
    if (qp)
      encoded.qp_ = *qp;
    encoded.SetSpatialIndex(i);
    CodecSpecificInfo codec_specific = EncodeHook(encoded, buffer);

    if (callback->OnEncodedImage(encoded, &codec_specific).error !=
        EncodedImageCallback::Result::OK) {
      return -1;
    }
  }
  return 0;
}

CodecSpecificInfo FakeEncoder::EncodeHook(
    EncodedImage& encoded_image,
    rtc::scoped_refptr<EncodedImageBuffer> buffer) {
  CodecSpecificInfo codec_specific;
  codec_specific.codecType = kVideoCodecGeneric;
  return codec_specific;
}

FakeEncoder::FrameInfo FakeEncoder::NextFrame(
    const std::vector<VideoFrameType>* frame_types,
    bool keyframe,
    uint8_t num_simulcast_streams,
    const VideoBitrateAllocation& target_bitrate,
    SimulcastStream simulcast_streams[kMaxSimulcastStreams],
    int framerate) {
  FrameInfo frame_info;
  frame_info.keyframe = keyframe;

  if (frame_types) {
    for (VideoFrameType frame_type : *frame_types) {
      if (frame_type == VideoFrameType::kVideoFrameKey) {
        frame_info.keyframe = true;
        break;
      }
    }
  }

  MutexLock lock(&mutex_);
  for (uint8_t i = 0; i < num_simulcast_streams; ++i) {
    if (target_bitrate.GetBitrate(i, 0) > 0) {
      int temporal_id = last_frame_info_.layers.size() > i
                            ? ++last_frame_info_.layers[i].temporal_id %
                                  simulcast_streams[i].numberOfTemporalLayers
                            : 0;
      frame_info.layers.emplace_back(0, temporal_id);
    }
  }

  if (last_frame_info_.layers.size() < frame_info.layers.size()) {
    // A new keyframe is needed since a new layer will be added.
    frame_info.keyframe = true;
  }

  for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
    FrameInfo::SpatialLayer& layer_info = frame_info.layers[i];
    if (frame_info.keyframe) {
      layer_info.temporal_id = 0;
      size_t avg_frame_size =
          (target_bitrate.GetBitrate(i, 0) + 7) *
          kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
          (8 * framerate);

      // The first frame is a key frame and should be larger.
      // Store the overshoot bytes and distribute them over the coming frames,
      // so that we on average meet the bitrate target.
      debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size;
      layer_info.size = kKeyframeSizeFactor * avg_frame_size;
    } else {
      size_t avg_frame_size =
          (target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) *
          kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
          (8 * framerate);
      layer_info.size = avg_frame_size;
      if (debt_bytes_ > 0) {
        // Pay at most half of the frame size for old debts.
        size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_);
        debt_bytes_ -= payment_size;
        layer_info.size -= payment_size;
      }
    }
  }
  last_frame_info_ = frame_info;
  return frame_info;
}

int32_t FakeEncoder::RegisterEncodeCompleteCallback(
    EncodedImageCallback* callback) {
  MutexLock lock(&mutex_);
  callback_ = callback;
  return 0;
}

int32_t FakeEncoder::Release() {
  return 0;
}

void FakeEncoder::SetRates(const RateControlParameters& parameters) {
  MutexLock lock(&mutex_);
  SetRatesLocked(parameters);
}

void FakeEncoder::SetRatesLocked(const RateControlParameters& parameters) {
  current_rate_settings_ = parameters;
  int allocated_bitrate_kbps = parameters.bitrate.get_sum_kbps();

  // Scale bitrate allocation to not exceed the given max target bitrate.
  if (max_target_bitrate_kbps_ > 0 &&
      allocated_bitrate_kbps > max_target_bitrate_kbps_) {
    for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers;
         ++spatial_idx) {
      for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams;
           ++temporal_idx) {
        if (current_rate_settings_.bitrate.HasBitrate(spatial_idx,
                                                      temporal_idx)) {
          uint32_t bitrate = current_rate_settings_.bitrate.GetBitrate(
              spatial_idx, temporal_idx);
          bitrate = static_cast<uint32_t>(
              (bitrate * int64_t{max_target_bitrate_kbps_}) /
              allocated_bitrate_kbps);
          current_rate_settings_.bitrate.SetBitrate(spatial_idx, temporal_idx,
                                                    bitrate);
        }
      }
    }
  }
}

const char* FakeEncoder::kImplementationName = "fake_encoder";
VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const {
  EncoderInfo info;
  info.implementation_name = kImplementationName;
  info.is_hardware_accelerated = true;
  MutexLock lock(&mutex_);
  for (int sid = 0; sid < config_.numberOfSimulcastStreams; ++sid) {
    int number_of_temporal_layers =
        config_.simulcastStream[sid].numberOfTemporalLayers;
    info.fps_allocation[sid].clear();
    for (int tid = 0; tid < number_of_temporal_layers; ++tid) {
      // {1/4, 1/2, 1} allocation for num layers = 3.
      info.fps_allocation[sid].push_back(255 /
                                         (number_of_temporal_layers - tid));
    }
  }
  return info;
}

int FakeEncoder::GetConfiguredInputFramerate() const {
  MutexLock lock(&mutex_);
  return static_cast<int>(current_rate_settings_.framerate_fps + 0.5);
}

int FakeEncoder::GetNumInitializations() const {
  MutexLock lock(&mutex_);
  return num_initializations_;
}

const VideoCodec& FakeEncoder::config() const {
  MutexLock lock(&mutex_);
  return config_;
}

FakeH264Encoder::FakeH264Encoder(Clock* clock)
    : FakeEncoder(clock), idr_counter_(0) {}

CodecSpecificInfo FakeH264Encoder::EncodeHook(
    EncodedImage& encoded_image,
    rtc::scoped_refptr<EncodedImageBuffer> buffer) {
  static constexpr std::array<uint8_t, 3> kStartCode = {0, 0, 1};
  const size_t kSpsSize = 8;
  const size_t kPpsSize = 11;
  const int kIdrFrequency = 10;
  int current_idr_counter;
  {
    MutexLock lock(&local_mutex_);
    current_idr_counter = idr_counter_;
    ++idr_counter_;
  }
  for (size_t i = 0; i < encoded_image.size(); ++i) {
    buffer->data()[i] = static_cast<uint8_t>(i);
  }

  if (current_idr_counter % kIdrFrequency == 0 &&
      encoded_image.size() > kSpsSize + kPpsSize + 1 + 3 * kStartCode.size()) {
    const size_t kSpsNalHeader = 0x67;
    const size_t kPpsNalHeader = 0x68;
    const size_t kIdrNalHeader = 0x65;
    uint8_t* data = buffer->data();
    memcpy(data, kStartCode.data(), kStartCode.size());
    data += kStartCode.size();
    data[0] = kSpsNalHeader;
    data += kSpsSize;

    memcpy(data, kStartCode.data(), kStartCode.size());
    data += kStartCode.size();
    data[0] = kPpsNalHeader;
    data += kPpsSize;

    memcpy(data, kStartCode.data(), kStartCode.size());
    data += kStartCode.size();
    data[0] = kIdrNalHeader;
  } else {
    memcpy(buffer->data(), kStartCode.data(), kStartCode.size());
    const size_t kNalHeader = 0x41;
    buffer->data()[kStartCode.size()] = kNalHeader;
  }

  CodecSpecificInfo codec_specific;
  codec_specific.codecType = kVideoCodecH264;
  codec_specific.codecSpecific.H264.packetization_mode =
      H264PacketizationMode::NonInterleaved;
  return codec_specific;
}

DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
    : test::FakeEncoder(clock), delay_ms_(delay_ms) {
  // The encoder could be created on a different thread than
  // it is being used on.
  sequence_checker_.Detach();
}

void DelayedEncoder::SetDelay(int delay_ms) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);
  delay_ms_ = delay_ms;
}

int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
                               const std::vector<VideoFrameType>* frame_types) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);

  SleepMs(delay_ms_);

  return FakeEncoder::Encode(input_image, frame_types);
}

MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(
    Clock* clock,
    TaskQueueFactory* task_queue_factory)
    : test::FakeH264Encoder(clock),
      task_queue_factory_(task_queue_factory),
      current_queue_(0),
      queue1_(nullptr),
      queue2_(nullptr) {
  // The encoder could be created on a different thread than
  // it is being used on.
  sequence_checker_.Detach();
}

int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
                                                 const Settings& settings) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);

  queue1_ = task_queue_factory_->CreateTaskQueue(
      "Queue 1", TaskQueueFactory::Priority::NORMAL);
  queue2_ = task_queue_factory_->CreateTaskQueue(
      "Queue 2", TaskQueueFactory::Priority::NORMAL);

  return FakeH264Encoder::InitEncode(config, settings);
}

int32_t MultithreadedFakeH264Encoder::Encode(
    const VideoFrame& input_image,
    const std::vector<VideoFrameType>* frame_types) {
  RTC_DCHECK_RUN_ON(&sequence_checker_);

  TaskQueueBase* queue =
      (current_queue_++ % 2 == 0) ? queue1_.get() : queue2_.get();

  if (!queue) {
    return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
  }

  queue->PostTask([this, input_image, frame_types = *frame_types] {
    EncodeCallback(input_image, &frame_types);
  });

  return WEBRTC_VIDEO_CODEC_OK;
}

int32_t MultithreadedFakeH264Encoder::EncodeCallback(
    const VideoFrame& input_image,
    const std::vector<VideoFrameType>* frame_types) {
  return FakeH264Encoder::Encode(input_image, frame_types);
}

int32_t MultithreadedFakeH264Encoder::Release() {
  RTC_DCHECK_RUN_ON(&sequence_checker_);

  queue1_.reset();
  queue2_.reset();

  return FakeH264Encoder::Release();
}

}  // namespace test
}  // namespace webrtc