summaryrefslogtreecommitdiffstats
path: root/toolkit/xre/dllservices/mozglue/interceptor/MMPolicies.h
blob: 0a309a1065d26d9dc80f3caaa43d4de197cbf5ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

#ifndef mozilla_interceptor_MMPolicies_h
#define mozilla_interceptor_MMPolicies_h

#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DynamicallyLinkedFunctionPtr.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "mozilla/Span.h"
#include "mozilla/TypedEnumBits.h"
#include "mozilla/Types.h"
#include "mozilla/WindowsMapRemoteView.h"
#include "mozilla/WindowsUnwindInfo.h"

#include <windows.h>

#if (NTDDI_VERSION < NTDDI_WIN10_RS4) || defined(__MINGW32__)
PVOID WINAPI VirtualAlloc2(HANDLE Process, PVOID BaseAddress, SIZE_T Size,
                           ULONG AllocationType, ULONG PageProtection,
                           MEM_EXTENDED_PARAMETER* ExtendedParameters,
                           ULONG ParameterCount);
PVOID WINAPI MapViewOfFile3(HANDLE FileMapping, HANDLE Process,
                            PVOID BaseAddress, ULONG64 Offset, SIZE_T ViewSize,
                            ULONG AllocationType, ULONG PageProtection,
                            MEM_EXTENDED_PARAMETER* ExtendedParameters,
                            ULONG ParameterCount);
#endif  // (NTDDI_VERSION < NTDDI_WIN10_RS4) || defined(__MINGW32__)

// _CRT_RAND_S is not defined everywhere, but we need it.
#if !defined(_CRT_RAND_S)
extern "C" errno_t rand_s(unsigned int* randomValue);
#endif  // !defined(_CRT_RAND_S)

// Declaring only the functions we need in NativeNt.h.  To include the entire
// NativeNt.h causes circular dependency.
namespace mozilla {
namespace nt {
SIZE_T WINAPI VirtualQueryEx(HANDLE aProcess, LPCVOID aAddress,
                             PMEMORY_BASIC_INFORMATION aMemInfo,
                             SIZE_T aMemInfoLen);

SIZE_T WINAPI VirtualQuery(LPCVOID aAddress, PMEMORY_BASIC_INFORMATION aMemInfo,
                           SIZE_T aMemInfoLen);
}  // namespace nt
}  // namespace mozilla

namespace mozilla {
namespace interceptor {

// This class implements memory operations not involving any kernel32's
// functions, so that derived classes can use them.
class MOZ_TRIVIAL_CTOR_DTOR MMPolicyInProcessPrimitive {
 protected:
  bool ProtectInternal(decltype(&::VirtualProtect) aVirtualProtect,
                       void* aVAddress, size_t aSize, uint32_t aProtFlags,
                       uint32_t* aPrevProtFlags) const {
    MOZ_ASSERT(aPrevProtFlags);
    BOOL ok = aVirtualProtect(aVAddress, aSize, aProtFlags,
                              reinterpret_cast<PDWORD>(aPrevProtFlags));
    if (!ok && aPrevProtFlags) {
      // VirtualProtect can fail but still set valid protection flags.
      // Let's clear those upon failure.
      *aPrevProtFlags = 0;
    }

    return !!ok;
  }

 public:
  bool Read(void* aToPtr, const void* aFromPtr, size_t aLen) const {
    ::memcpy(aToPtr, aFromPtr, aLen);
    return true;
  }

  bool Write(void* aToPtr, const void* aFromPtr, size_t aLen) const {
    ::memcpy(aToPtr, aFromPtr, aLen);
    return true;
  }

  /**
   * @return true if the page that hosts aVAddress is accessible.
   */
  bool IsPageAccessible(uintptr_t aVAddress) const {
    MEMORY_BASIC_INFORMATION mbi;
    SIZE_T result = nt::VirtualQuery(reinterpret_cast<LPCVOID>(aVAddress), &mbi,
                                     sizeof(mbi));

    return result && mbi.AllocationProtect && mbi.State == MEM_COMMIT &&
           mbi.Protect != PAGE_NOACCESS;
  }
};

class MOZ_TRIVIAL_CTOR_DTOR MMPolicyBase {
 protected:
  static uintptr_t AlignDown(const uintptr_t aUnaligned,
                             const uintptr_t aAlignTo) {
    MOZ_ASSERT(IsPowerOfTwo(aAlignTo));
#pragma warning(suppress : 4146)
    return aUnaligned & (-aAlignTo);
  }

  static uintptr_t AlignUp(const uintptr_t aUnaligned,
                           const uintptr_t aAlignTo) {
    MOZ_ASSERT(IsPowerOfTwo(aAlignTo));
#pragma warning(suppress : 4146)
    return aUnaligned + ((-aUnaligned) & (aAlignTo - 1));
  }

  static PVOID AlignUpToRegion(PVOID aUnaligned, uintptr_t aAlignTo,
                               size_t aLen, size_t aDesiredLen) {
    uintptr_t unaligned = reinterpret_cast<uintptr_t>(aUnaligned);
    uintptr_t aligned = AlignUp(unaligned, aAlignTo);
    MOZ_ASSERT(aligned >= unaligned);

    if (aLen < aligned - unaligned) {
      return nullptr;
    }

    aLen -= (aligned - unaligned);
    return reinterpret_cast<PVOID>((aLen >= aDesiredLen) ? aligned : 0);
  }

 public:
#if defined(NIGHTLY_BUILD)
  Maybe<DetourError> mLastError;
  const Maybe<DetourError>& GetLastDetourError() const { return mLastError; }
  template <typename... Args>
  void SetLastDetourError(Args&&... aArgs) {
    mLastError = Some(DetourError(std::forward<Args>(aArgs)...));
  }
#else
  template <typename... Args>
  void SetLastDetourError(Args&&... aArgs) {}
#endif  // defined(NIGHTLY_BUILD)

  DWORD ComputeAllocationSize(const uint32_t aRequestedSize) const {
    MOZ_ASSERT(aRequestedSize);
    DWORD result = aRequestedSize;

    const uint32_t granularity = GetAllocGranularity();

    uint32_t mod = aRequestedSize % granularity;
    if (mod) {
      result += (granularity - mod);
    }

    return result;
  }

  DWORD GetAllocGranularity() const {
    static const DWORD kAllocGranularity = []() -> DWORD {
      SYSTEM_INFO sysInfo;
      ::GetSystemInfo(&sysInfo);
      return sysInfo.dwAllocationGranularity;
    }();

    return kAllocGranularity;
  }

  DWORD GetPageSize() const {
    static const DWORD kPageSize = []() -> DWORD {
      SYSTEM_INFO sysInfo;
      ::GetSystemInfo(&sysInfo);
      return sysInfo.dwPageSize;
    }();

    return kPageSize;
  }

  uintptr_t GetMaxUserModeAddress() const {
    static const uintptr_t kMaxUserModeAddr = []() -> uintptr_t {
      SYSTEM_INFO sysInfo;
      ::GetSystemInfo(&sysInfo);
      return reinterpret_cast<uintptr_t>(sysInfo.lpMaximumApplicationAddress);
    }();

    return kMaxUserModeAddr;
  }

  static const uint8_t* GetLowerBound(const Span<const uint8_t>& aBounds) {
    return &(*aBounds.cbegin());
  }

  static const uint8_t* GetUpperBoundIncl(const Span<const uint8_t>& aBounds) {
    // We return an upper bound that is inclusive.
    return &(*(aBounds.cend() - 1));
  }

  static const uint8_t* GetUpperBoundExcl(const Span<const uint8_t>& aBounds) {
    // We return an upper bound that is exclusive by adding 1 to the inclusive
    // upper bound.
    return GetUpperBoundIncl(aBounds) + 1;
  }

  /**
   * It is convenient for us to provide address range information based on a
   * "pivot" and a distance from that pivot, as branch instructions operate
   * within a range of the program counter. OTOH, to actually manage the
   * regions of memory, it is easier to think about them in terms of their
   * lower and upper bounds. This function converts from the former format to
   * the latter format.
   */
  Maybe<Span<const uint8_t>> SpanFromPivotAndDistance(
      const uint32_t aSize, const uintptr_t aPivotAddr,
      const uint32_t aMaxDistanceFromPivot) const {
    if (!aPivotAddr || !aMaxDistanceFromPivot) {
      return Nothing();
    }

    // We don't allow regions below 1MB so that we're not allocating near any
    // sensitive areas in our address space.
    const uintptr_t kMinAllowableAddress = 0x100000;

    const uintptr_t kGranularity(GetAllocGranularity());

    // We subtract the max distance from the pivot to determine our lower bound.
    CheckedInt<uintptr_t> lowerBound(aPivotAddr);
    lowerBound -= aMaxDistanceFromPivot;
    if (lowerBound.isValid()) {
      // In this case, the subtraction has not underflowed, but we still want
      // the lower bound to be at least kMinAllowableAddress.
      lowerBound = std::max(lowerBound.value(), kMinAllowableAddress);
    } else {
      // In this case, we underflowed. Forcibly set the lower bound to
      // kMinAllowableAddress.
      lowerBound = CheckedInt<uintptr_t>(kMinAllowableAddress);
    }

    // Align up to the next unit of allocation granularity when necessary.
    lowerBound = AlignUp(lowerBound.value(), kGranularity);
    MOZ_ASSERT(lowerBound.isValid());
    if (!lowerBound.isValid()) {
      return Nothing();
    }

    // We must ensure that our region is below the maximum allowable user-mode
    // address, or our reservation will fail.
    const uintptr_t kMaxUserModeAddr = GetMaxUserModeAddress();

    // We add the max distance from the pivot to determine our upper bound.
    CheckedInt<uintptr_t> upperBound(aPivotAddr);
    upperBound += aMaxDistanceFromPivot;
    if (upperBound.isValid()) {
      // In this case, the addition has not overflowed, but we still want
      // the upper bound to be at most kMaxUserModeAddr.
      upperBound = std::min(upperBound.value(), kMaxUserModeAddr);
    } else {
      // In this case, we overflowed. Forcibly set the upper bound to
      // kMaxUserModeAddr.
      upperBound = CheckedInt<uintptr_t>(kMaxUserModeAddr);
    }

    // Subtract the desired allocation size so that any chunk allocated in the
    // region will be reachable.
    upperBound -= aSize;
    if (!upperBound.isValid()) {
      return Nothing();
    }

    // Align down to the next unit of allocation granularity when necessary.
    upperBound = AlignDown(upperBound.value(), kGranularity);
    if (!upperBound.isValid()) {
      return Nothing();
    }

    MOZ_ASSERT(lowerBound.value() < upperBound.value());
    if (lowerBound.value() >= upperBound.value()) {
      return Nothing();
    }

    // Return the result as a Span
    return Some(Span(reinterpret_cast<const uint8_t*>(lowerBound.value()),
                     upperBound.value() - lowerBound.value()));
  }

  /**
   * This function locates a virtual memory region of |aDesiredBytesLen| that
   * resides in the interval [aRangeMin, aRangeMax). We do this by scanning the
   * virtual memory space for a block of unallocated memory that is sufficiently
   * large.
   */
  PVOID FindRegion(HANDLE aProcess, const size_t aDesiredBytesLen,
                   const uint8_t* aRangeMin, const uint8_t* aRangeMax) {
    // Convert the given pointers to uintptr_t because we should not
    // compare two pointers unless they are from the same array or object.
    uintptr_t rangeMin = reinterpret_cast<uintptr_t>(aRangeMin);
    uintptr_t rangeMax = reinterpret_cast<uintptr_t>(aRangeMax);

    const DWORD kGranularity = GetAllocGranularity();
    if (!aDesiredBytesLen) {
      SetLastDetourError(MMPOLICY_RESERVE_FINDREGION_INVALIDLEN);
      return nullptr;
    }

    MOZ_ASSERT(rangeMin < rangeMax);
    if (rangeMin >= rangeMax) {
      SetLastDetourError(MMPOLICY_RESERVE_FINDREGION_INVALIDRANGE);
      return nullptr;
    }

    // Generate a randomized base address that falls within the interval
    // [aRangeMin, aRangeMax - aDesiredBytesLen]
    unsigned int rnd = 0;
    rand_s(&rnd);

    // Reduce rnd to a value that falls within the acceptable range
    uintptr_t maxOffset =
        (rangeMax - rangeMin - aDesiredBytesLen) / kGranularity;
    // Divide by maxOffset + 1 because maxOffset * kGranularity is acceptable.
    uintptr_t offset = (uintptr_t(rnd) % (maxOffset + 1)) * kGranularity;

    // Start searching at this address
    const uintptr_t searchStart = rangeMin + offset;
    // The max address needs to incorporate the desired length
    const uintptr_t kMaxPtr = rangeMax - aDesiredBytesLen;

    MOZ_DIAGNOSTIC_ASSERT(searchStart <= kMaxPtr);

    MEMORY_BASIC_INFORMATION mbi;
    SIZE_T len = sizeof(mbi);

    // Scan the range for a free chunk that is at least as large as
    // aDesiredBytesLen
    // Scan [searchStart, kMaxPtr]
    for (uintptr_t address = searchStart; address <= kMaxPtr;) {
      if (nt::VirtualQueryEx(aProcess, reinterpret_cast<uint8_t*>(address),
                             &mbi, len) != len) {
        SetLastDetourError(MMPOLICY_RESERVE_FINDREGION_VIRTUALQUERY_ERROR,
                           ::GetLastError());
        return nullptr;
      }

      if (mbi.State == MEM_FREE) {
        // |mbi.BaseAddress| is aligned with the page granularity, but may not
        // be aligned with the allocation granularity.  VirtualAlloc does not
        // accept such a non-aligned address unless the corresponding allocation
        // region is free.  So we get the next boundary's start address.
        PVOID regionStart = AlignUpToRegion(mbi.BaseAddress, kGranularity,
                                            mbi.RegionSize, aDesiredBytesLen);
        if (regionStart) {
          return regionStart;
        }
      }

      address = reinterpret_cast<uintptr_t>(mbi.BaseAddress) + mbi.RegionSize;
    }

    // Scan [aRangeMin, searchStart)
    for (uintptr_t address = rangeMin; address < searchStart;) {
      if (nt::VirtualQueryEx(aProcess, reinterpret_cast<uint8_t*>(address),
                             &mbi, len) != len) {
        SetLastDetourError(MMPOLICY_RESERVE_FINDREGION_VIRTUALQUERY_ERROR,
                           ::GetLastError());
        return nullptr;
      }

      if (mbi.State == MEM_FREE) {
        PVOID regionStart = AlignUpToRegion(mbi.BaseAddress, kGranularity,
                                            mbi.RegionSize, aDesiredBytesLen);
        if (regionStart) {
          return regionStart;
        }
      }

      address = reinterpret_cast<uintptr_t>(mbi.BaseAddress) + mbi.RegionSize;
    }

    SetLastDetourError(MMPOLICY_RESERVE_FINDREGION_NO_FREE_REGION,
                       ::GetLastError());
    return nullptr;
  }

  /**
   * This function reserves a |aSize| block of virtual memory.
   *
   * When |aBounds| is Nothing, it just calls |aReserveFn| and lets Windows
   * choose the base address.
   *
   * Otherwise, it tries to call |aReserveRangeFn| to reserve the memory within
   * the bounds provided by |aBounds|. It is advantageous to use this function
   * because the OS's VM manager has better information as to which base
   * addresses are the best to use.
   *
   * If |aReserveRangeFn| retuns Nothing, this means that the platform support
   * is not available. In that case, we fall back to manually computing a region
   * to use for reserving the memory by calling |FindRegion|.
   */
  template <typename ReserveFnT, typename ReserveRangeFnT>
  PVOID Reserve(HANDLE aProcess, const uint32_t aSize,
                const ReserveFnT& aReserveFn,
                const ReserveRangeFnT& aReserveRangeFn,
                const Maybe<Span<const uint8_t>>& aBounds) {
    if (!aBounds) {
      // No restrictions, let the OS choose the base address
      PVOID ret = aReserveFn(aProcess, nullptr, aSize);
      if (!ret) {
        SetLastDetourError(MMPOLICY_RESERVE_NOBOUND_RESERVE_ERROR,
                           ::GetLastError());
      }
      return ret;
    }

    const uint8_t* lowerBound = GetLowerBound(aBounds.ref());
    const uint8_t* upperBoundExcl = GetUpperBoundExcl(aBounds.ref());

    Maybe<PVOID> result =
        aReserveRangeFn(aProcess, aSize, lowerBound, upperBoundExcl);
    if (result) {
      return result.value();
    }

    // aReserveRangeFn is not available on this machine. We'll do a manual
    // search.

    size_t curAttempt = 0;
    const size_t kMaxAttempts = 8;

    // We loop here because |FindRegion| may return a base address that
    // is reserved elsewhere before we have had a chance to reserve it
    // ourselves.
    while (curAttempt < kMaxAttempts) {
      PVOID base = FindRegion(aProcess, aSize, lowerBound, upperBoundExcl);
      if (!base) {
        return nullptr;
      }

      result = Some(aReserveFn(aProcess, base, aSize));
      if (result.value()) {
        return result.value();
      }

      ++curAttempt;
    }

    // If we run out of attempts, we fall through to the default case where
    // the system chooses any base address it wants. In that case, the hook
    // will be set on a best-effort basis.
    PVOID ret = aReserveFn(aProcess, nullptr, aSize);
    if (!ret) {
      SetLastDetourError(MMPOLICY_RESERVE_FINAL_RESERVE_ERROR,
                         ::GetLastError());
    }
    return ret;
  }
};

class MOZ_TRIVIAL_CTOR_DTOR MMPolicyInProcess
    : public MMPolicyInProcessPrimitive,
      public MMPolicyBase {
 public:
  typedef MMPolicyInProcess MMPolicyT;

  constexpr MMPolicyInProcess()
      : mBase(nullptr), mReservationSize(0), mCommitOffset(0) {}

  MMPolicyInProcess(const MMPolicyInProcess&) = delete;
  MMPolicyInProcess& operator=(const MMPolicyInProcess&) = delete;

  MMPolicyInProcess(MMPolicyInProcess&& aOther)
      : mBase(nullptr), mReservationSize(0), mCommitOffset(0) {
    *this = std::move(aOther);
  }

  MMPolicyInProcess& operator=(MMPolicyInProcess&& aOther) {
    mBase = aOther.mBase;
    aOther.mBase = nullptr;

    mCommitOffset = aOther.mCommitOffset;
    aOther.mCommitOffset = 0;

    mReservationSize = aOther.mReservationSize;
    aOther.mReservationSize = 0;

    return *this;
  }

  explicit operator bool() const { return !!mBase; }

  /**
   * Should we unhook everything upon destruction?
   */
  bool ShouldUnhookUponDestruction() const { return true; }

#if defined(_M_IX86)
  bool WriteAtomic(void* aDestPtr, const uint16_t aValue) const {
    *static_cast<uint16_t*>(aDestPtr) = aValue;
    return true;
  }
#endif  // defined(_M_IX86)

  bool Protect(void* aVAddress, size_t aSize, uint32_t aProtFlags,
               uint32_t* aPrevProtFlags) const {
    return ProtectInternal(::VirtualProtect, aVAddress, aSize, aProtFlags,
                           aPrevProtFlags);
  }

  bool FlushInstructionCache() const {
    return !!::FlushInstructionCache(::GetCurrentProcess(), nullptr, 0);
  }

  static DWORD GetTrampWriteProtFlags() { return PAGE_EXECUTE_READWRITE; }

#if defined(_M_X64)
  bool IsTrampolineSpaceInLowest2GB() const {
    return (mBase + mReservationSize) <=
           reinterpret_cast<uint8_t*>(0x0000000080000000ULL);
  }

  static constexpr bool kSupportsUnwindInfo = true;

  mozilla::UniquePtr<uint8_t[]> LookupUnwindInfo(
      uintptr_t aOrigFuncAddr, uint32_t* aOffsetFromBeginAddr,
      uint32_t* aOffsetToEndAddr, uintptr_t* aOrigImageBase) const {
    DWORD64 origImageBase = 0;
    auto origFuncEntry =
        RtlLookupFunctionEntry(aOrigFuncAddr, &origImageBase, nullptr);
    if (!origFuncEntry) {
      return nullptr;
    }

    if (aOffsetFromBeginAddr) {
      *aOffsetFromBeginAddr =
          aOrigFuncAddr - (origImageBase + origFuncEntry->BeginAddress);
    }
    if (aOffsetToEndAddr) {
      *aOffsetToEndAddr =
          (origImageBase + origFuncEntry->EndAddress) - aOrigFuncAddr;
    }
    if (aOrigImageBase) {
      *aOrigImageBase = origImageBase;
    }
    return reinterpret_cast<const UnwindInfo*>(origImageBase +
                                               origFuncEntry->UnwindData)
        ->Copy();
  }

  bool AddFunctionTable(uintptr_t aFunctionTable, uint32_t aEntryCount,
                        uintptr_t aBaseAddress) const {
    return bool(
        RtlAddFunctionTable(reinterpret_cast<PRUNTIME_FUNCTION>(aFunctionTable),
                            aEntryCount, aBaseAddress));
  }
#endif  // defined(_M_X64)

 protected:
  uint8_t* GetLocalView() const { return mBase; }

  uintptr_t GetRemoteView() const {
    // Same as local view for in-process
    return reinterpret_cast<uintptr_t>(mBase);
  }

  /**
   * @return the effective number of bytes reserved, or 0 on failure
   */
  uint32_t Reserve(const uint32_t aSize,
                   const Maybe<Span<const uint8_t>>& aBounds) {
    if (!aSize) {
      return 0;
    }

    if (mBase) {
      MOZ_ASSERT(mReservationSize >= aSize);
      return mReservationSize;
    }

    mReservationSize = ComputeAllocationSize(aSize);

    auto reserveFn = [](HANDLE aProcess, PVOID aBase, uint32_t aSize) -> PVOID {
      return ::VirtualAlloc(aBase, aSize, MEM_RESERVE, PAGE_NOACCESS);
    };

    auto reserveWithinRangeFn =
        [](HANDLE aProcess, uint32_t aSize, const uint8_t* aRangeMin,
           const uint8_t* aRangeMaxExcl) -> Maybe<PVOID> {
      static const StaticDynamicallyLinkedFunctionPtr<
          decltype(&::VirtualAlloc2)>
          pVirtualAlloc2(L"kernelbase.dll", "VirtualAlloc2");
      if (!pVirtualAlloc2) {
        return Nothing();
      }

      // NB: MEM_ADDRESS_REQUIREMENTS::HighestEndingAddress is *inclusive*
      MEM_ADDRESS_REQUIREMENTS memReq = {
          const_cast<uint8_t*>(aRangeMin),
          const_cast<uint8_t*>(aRangeMaxExcl - 1)};

      MEM_EXTENDED_PARAMETER memParam = {};
      memParam.Type = MemExtendedParameterAddressRequirements;
      memParam.Pointer = &memReq;

      return Some(pVirtualAlloc2(aProcess, nullptr, aSize, MEM_RESERVE,
                                 PAGE_NOACCESS, &memParam, 1));
    };

    mBase = static_cast<uint8_t*>(
        MMPolicyBase::Reserve(::GetCurrentProcess(), mReservationSize,
                              reserveFn, reserveWithinRangeFn, aBounds));

    if (!mBase) {
      return 0;
    }

    return mReservationSize;
  }

  bool MaybeCommitNextPage(const uint32_t aRequestedOffset,
                           const uint32_t aRequestedLength) {
    if (!(*this)) {
      return false;
    }

    uint32_t limit = aRequestedOffset + aRequestedLength - 1;
    if (limit < mCommitOffset) {
      // No commit required
      return true;
    }

    MOZ_DIAGNOSTIC_ASSERT(mCommitOffset < mReservationSize);
    if (mCommitOffset >= mReservationSize) {
      return false;
    }

    PVOID local = ::VirtualAlloc(mBase + mCommitOffset, GetPageSize(),
                                 MEM_COMMIT, PAGE_EXECUTE_READ);
    if (!local) {
      return false;
    }

    mCommitOffset += GetPageSize();
    return true;
  }

 private:
  uint8_t* mBase;
  uint32_t mReservationSize;
  uint32_t mCommitOffset;
};

// This class manages in-process memory access without using functions
// imported from kernel32.dll.  Instead, it uses functions in its own
// function table that are provided from outside.
class MMPolicyInProcessEarlyStage : public MMPolicyInProcessPrimitive {
 public:
  struct Kernel32Exports {
    decltype(&::FlushInstructionCache) mFlushInstructionCache;
    decltype(&::GetModuleHandleW) mGetModuleHandleW;
    decltype(&::GetSystemInfo) mGetSystemInfo;
    decltype(&::VirtualProtect) mVirtualProtect;
  };

 private:
  static DWORD GetPageSize(const Kernel32Exports& aK32Exports) {
    SYSTEM_INFO sysInfo;
    aK32Exports.mGetSystemInfo(&sysInfo);
    return sysInfo.dwPageSize;
  }

  const Kernel32Exports& mK32Exports;
  const DWORD mPageSize;

 public:
  explicit MMPolicyInProcessEarlyStage(const Kernel32Exports& aK32Exports)
      : mK32Exports(aK32Exports), mPageSize(GetPageSize(mK32Exports)) {}

  // The pattern of constructing a local static variable with a lambda,
  // which can be seen in MMPolicyBase, is compiled into code with the
  // critical section APIs like EnterCriticalSection imported from kernel32.dll.
  // Because this class needs to be able to run in a process's early stage
  // when IAT is not yet resolved, we cannot use that patten, thus simply
  // caching a value as a local member in the class.
  DWORD GetPageSize() const { return mPageSize; }

  bool Protect(void* aVAddress, size_t aSize, uint32_t aProtFlags,
               uint32_t* aPrevProtFlags) const {
    return ProtectInternal(mK32Exports.mVirtualProtect, aVAddress, aSize,
                           aProtFlags, aPrevProtFlags);
  }

  bool FlushInstructionCache() const {
    const HANDLE kCurrentProcess = reinterpret_cast<HANDLE>(-1);
    return !!mK32Exports.mFlushInstructionCache(kCurrentProcess, nullptr, 0);
  }
};

class MMPolicyOutOfProcess : public MMPolicyBase {
 public:
  typedef MMPolicyOutOfProcess MMPolicyT;

  explicit MMPolicyOutOfProcess(HANDLE aProcess)
      : mProcess(nullptr),
        mMapping(nullptr),
        mLocalView(nullptr),
        mRemoteView(nullptr),
        mReservationSize(0),
        mCommitOffset(0) {
    MOZ_ASSERT(aProcess);
    ::DuplicateHandle(::GetCurrentProcess(), aProcess, ::GetCurrentProcess(),
                      &mProcess, kAccessFlags, FALSE, 0);
    MOZ_ASSERT(mProcess);
  }

  explicit MMPolicyOutOfProcess(DWORD aPid)
      : mProcess(::OpenProcess(kAccessFlags, FALSE, aPid)),
        mMapping(nullptr),
        mLocalView(nullptr),
        mRemoteView(nullptr),
        mReservationSize(0),
        mCommitOffset(0) {
    MOZ_ASSERT(mProcess);
  }

  ~MMPolicyOutOfProcess() { Destroy(); }

  MMPolicyOutOfProcess(MMPolicyOutOfProcess&& aOther)
      : mProcess(nullptr),
        mMapping(nullptr),
        mLocalView(nullptr),
        mRemoteView(nullptr),
        mReservationSize(0),
        mCommitOffset(0) {
    *this = std::move(aOther);
  }

  MMPolicyOutOfProcess(const MMPolicyOutOfProcess& aOther) = delete;
  MMPolicyOutOfProcess& operator=(const MMPolicyOutOfProcess&) = delete;

  MMPolicyOutOfProcess& operator=(MMPolicyOutOfProcess&& aOther) {
    Destroy();

    mProcess = aOther.mProcess;
    aOther.mProcess = nullptr;

    mMapping = aOther.mMapping;
    aOther.mMapping = nullptr;

    mLocalView = aOther.mLocalView;
    aOther.mLocalView = nullptr;

    mRemoteView = aOther.mRemoteView;
    aOther.mRemoteView = nullptr;

    mReservationSize = aOther.mReservationSize;
    aOther.mReservationSize = 0;

    mCommitOffset = aOther.mCommitOffset;
    aOther.mCommitOffset = 0;

    return *this;
  }

  explicit operator bool() const {
    return mProcess && mMapping && mLocalView && mRemoteView;
  }

  bool ShouldUnhookUponDestruction() const {
    // We don't clean up hooks for remote processes; they are expected to
    // outlive our process.
    return false;
  }

  // This function reads as many bytes as |aLen| from the target process and
  // succeeds only when the entire area to be read is accessible.
  bool Read(void* aToPtr, const void* aFromPtr, size_t aLen) const {
    MOZ_ASSERT(mProcess);
    if (!mProcess) {
      return false;
    }

    SIZE_T numBytes = 0;
    BOOL ok = ::ReadProcessMemory(mProcess, aFromPtr, aToPtr, aLen, &numBytes);
    return ok && numBytes == aLen;
  }

  // This function reads as many bytes as possible from the target process up
  // to |aLen| bytes and returns the number of bytes which was actually read.
  size_t TryRead(void* aToPtr, const void* aFromPtr, size_t aLen) const {
    MOZ_ASSERT(mProcess);
    if (!mProcess) {
      return 0;
    }

    uint32_t pageSize = GetPageSize();
    uintptr_t pageMask = pageSize - 1;

    auto rangeStart = reinterpret_cast<uintptr_t>(aFromPtr);
    auto rangeEnd = rangeStart + aLen;

    while (rangeStart < rangeEnd) {
      SIZE_T numBytes = 0;
      BOOL ok = ::ReadProcessMemory(mProcess, aFromPtr, aToPtr,
                                    rangeEnd - rangeStart, &numBytes);
      if (ok) {
        return numBytes;
      }

      // If ReadProcessMemory fails, try to read up to each page boundary from
      // the end of the requested area one by one.
      if (rangeEnd & pageMask) {
        rangeEnd &= ~pageMask;
      } else {
        rangeEnd -= pageSize;
      }
    }

    return 0;
  }

  bool Write(void* aToPtr, const void* aFromPtr, size_t aLen) const {
    MOZ_ASSERT(mProcess);
    if (!mProcess) {
      return false;
    }

    SIZE_T numBytes = 0;
    BOOL ok = ::WriteProcessMemory(mProcess, aToPtr, aFromPtr, aLen, &numBytes);
    return ok && numBytes == aLen;
  }

  bool Protect(void* aVAddress, size_t aSize, uint32_t aProtFlags,
               uint32_t* aPrevProtFlags) const {
    MOZ_ASSERT(mProcess);
    if (!mProcess) {
      return false;
    }

    MOZ_ASSERT(aPrevProtFlags);
    BOOL ok = ::VirtualProtectEx(mProcess, aVAddress, aSize, aProtFlags,
                                 reinterpret_cast<PDWORD>(aPrevProtFlags));
    if (!ok && aPrevProtFlags) {
      // VirtualProtectEx can fail but still set valid protection flags.
      // Let's clear those upon failure.
      *aPrevProtFlags = 0;
    }

    return !!ok;
  }

  /**
   * @return true if the page that hosts aVAddress is accessible.
   */
  bool IsPageAccessible(uintptr_t aVAddress) const {
    MEMORY_BASIC_INFORMATION mbi;
    SIZE_T result = nt::VirtualQueryEx(
        mProcess, reinterpret_cast<LPCVOID>(aVAddress), &mbi, sizeof(mbi));

    return result && mbi.AllocationProtect && mbi.State == MEM_COMMIT &&
           mbi.Protect != PAGE_NOACCESS;
  }

  bool FlushInstructionCache() const {
    return !!::FlushInstructionCache(mProcess, nullptr, 0);
  }

  static DWORD GetTrampWriteProtFlags() { return PAGE_READWRITE; }

#if defined(_M_X64)
  bool IsTrampolineSpaceInLowest2GB() const {
    return (GetRemoteView() + mReservationSize) <= 0x0000000080000000ULL;
  }

  // TODO: We should also implement unwind info for our out-of-process policy.
  static constexpr bool kSupportsUnwindInfo = false;

  inline mozilla::UniquePtr<uint8_t[]> LookupUnwindInfo(
      uintptr_t aOrigFuncAddr, uint32_t* aOffsetFromBeginAddr,
      uint32_t* aOffsetToEndAddr, uintptr_t* aOrigImageBase) const {
    return nullptr;
  }

  inline bool AddFunctionTable(uintptr_t aNewTable, uint32_t aEntryCount,
                               uintptr_t aBaseAddress) const {
    return false;
  }
#endif  // defined(_M_X64)

 protected:
  uint8_t* GetLocalView() const { return mLocalView; }

  uintptr_t GetRemoteView() const {
    return reinterpret_cast<uintptr_t>(mRemoteView);
  }

  /**
   * @return the effective number of bytes reserved, or 0 on failure
   */
  uint32_t Reserve(const uint32_t aSize,
                   const Maybe<Span<const uint8_t>>& aBounds) {
    if (!aSize || !mProcess) {
      SetLastDetourError(MMPOLICY_RESERVE_INVALIDARG);
      return 0;
    }

    if (mRemoteView) {
      MOZ_ASSERT(mReservationSize >= aSize);
      SetLastDetourError(MMPOLICY_RESERVE_ZERO_RESERVATIONSIZE);
      return mReservationSize;
    }

    mReservationSize = ComputeAllocationSize(aSize);

    mMapping = ::CreateFileMappingW(INVALID_HANDLE_VALUE, nullptr,
                                    PAGE_EXECUTE_READWRITE | SEC_RESERVE, 0,
                                    mReservationSize, nullptr);
    if (!mMapping) {
      SetLastDetourError(MMPOLICY_RESERVE_CREATEFILEMAPPING, ::GetLastError());
      return 0;
    }

    mLocalView = static_cast<uint8_t*>(
        ::MapViewOfFile(mMapping, FILE_MAP_WRITE, 0, 0, 0));
    if (!mLocalView) {
      SetLastDetourError(MMPOLICY_RESERVE_MAPVIEWOFFILE, ::GetLastError());
      return 0;
    }

    auto reserveFn = [mapping = mMapping](HANDLE aProcess, PVOID aBase,
                                          uint32_t aSize) -> PVOID {
      return mozilla::MapRemoteViewOfFile(mapping, aProcess, 0ULL, aBase, 0, 0,
                                          PAGE_EXECUTE_READ);
    };

    auto reserveWithinRangeFn =
        [mapping = mMapping](HANDLE aProcess, uint32_t aSize,
                             const uint8_t* aRangeMin,
                             const uint8_t* aRangeMaxExcl) -> Maybe<PVOID> {
      static const StaticDynamicallyLinkedFunctionPtr<
          decltype(&::MapViewOfFile3)>
          pMapViewOfFile3(L"kernelbase.dll", "MapViewOfFile3");
      if (!pMapViewOfFile3) {
        return Nothing();
      }

      // NB: MEM_ADDRESS_REQUIREMENTS::HighestEndingAddress is *inclusive*
      MEM_ADDRESS_REQUIREMENTS memReq = {
          const_cast<uint8_t*>(aRangeMin),
          const_cast<uint8_t*>(aRangeMaxExcl - 1)};

      MEM_EXTENDED_PARAMETER memParam = {};
      memParam.Type = MemExtendedParameterAddressRequirements;
      memParam.Pointer = &memReq;

      return Some(pMapViewOfFile3(mapping, aProcess, nullptr, 0, aSize, 0,
                                  PAGE_EXECUTE_READ, &memParam, 1));
    };

    mRemoteView = MMPolicyBase::Reserve(mProcess, mReservationSize, reserveFn,
                                        reserveWithinRangeFn, aBounds);
    if (!mRemoteView) {
      return 0;
    }

    return mReservationSize;
  }

  bool MaybeCommitNextPage(const uint32_t aRequestedOffset,
                           const uint32_t aRequestedLength) {
    if (!(*this)) {
      return false;
    }

    uint32_t limit = aRequestedOffset + aRequestedLength - 1;
    if (limit < mCommitOffset) {
      // No commit required
      return true;
    }

    MOZ_DIAGNOSTIC_ASSERT(mCommitOffset < mReservationSize);
    if (mCommitOffset >= mReservationSize) {
      return false;
    }

    PVOID local = ::VirtualAlloc(mLocalView + mCommitOffset, GetPageSize(),
                                 MEM_COMMIT, PAGE_READWRITE);
    if (!local) {
      return false;
    }

    PVOID remote = ::VirtualAllocEx(
        mProcess, static_cast<uint8_t*>(mRemoteView) + mCommitOffset,
        GetPageSize(), MEM_COMMIT, PAGE_EXECUTE_READ);
    if (!remote) {
      return false;
    }

    mCommitOffset += GetPageSize();
    return true;
  }

 private:
  void Destroy() {
    // We always leak the remote view
    if (mLocalView) {
      ::UnmapViewOfFile(mLocalView);
      mLocalView = nullptr;
    }

    if (mMapping) {
      ::CloseHandle(mMapping);
      mMapping = nullptr;
    }

    if (mProcess) {
      ::CloseHandle(mProcess);
      mProcess = nullptr;
    }
  }

 private:
  HANDLE mProcess;
  HANDLE mMapping;
  uint8_t* mLocalView;
  PVOID mRemoteView;
  uint32_t mReservationSize;
  uint32_t mCommitOffset;

  static const DWORD kAccessFlags = PROCESS_QUERY_INFORMATION |
                                    PROCESS_VM_OPERATION | PROCESS_VM_READ |
                                    PROCESS_VM_WRITE;
};

}  // namespace interceptor
}  // namespace mozilla

#endif  // mozilla_interceptor_MMPolicies_h