1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
#ifndef mozilla_interceptor_TargetFunction_h
#define mozilla_interceptor_TargetFunction_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/BinarySearch.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Maybe.h"
#include "mozilla/Types.h"
#include "mozilla/Unused.h"
#include "mozilla/Vector.h"
#include <memory>
#include <type_traits>
namespace mozilla {
namespace interceptor {
#if defined(_M_IX86)
template <typename T>
bool CommitAndWriteShortInternal(const T& aMMPolicy, void* aDest,
uint16_t aValue);
template <>
inline bool CommitAndWriteShortInternal<MMPolicyInProcess>(
const MMPolicyInProcess& aMMPolicy, void* aDest, uint16_t aValue) {
return aMMPolicy.WriteAtomic(aDest, aValue);
}
template <>
inline bool CommitAndWriteShortInternal<MMPolicyOutOfProcess>(
const MMPolicyOutOfProcess& aMMPolicy, void* aDest, uint16_t aValue) {
return aMMPolicy.Write(aDest, &aValue, sizeof(uint16_t));
}
#endif // defined(_M_IX86)
// Forward declaration
template <typename MMPolicy>
class ReadOnlyTargetFunction;
template <typename MMPolicy>
class MOZ_STACK_CLASS WritableTargetFunction final {
class AutoProtect final {
using ProtectParams = std::tuple<uintptr_t, uint32_t>;
public:
explicit AutoProtect(const MMPolicy& aMMPolicy) : mMMPolicy(aMMPolicy) {}
AutoProtect(const MMPolicy& aMMPolicy, uintptr_t aAddr, size_t aNumBytes,
uint32_t aNewProt)
: mMMPolicy(aMMPolicy) {
const uint32_t pageSize = mMMPolicy.GetPageSize();
const uintptr_t limit = aAddr + aNumBytes - 1;
const uintptr_t limitPageNum = limit / pageSize;
const uintptr_t basePageNum = aAddr / pageSize;
const uintptr_t numPagesToChange = limitPageNum - basePageNum + 1;
// We'll use the base address of the page instead of aAddr
uintptr_t curAddr = basePageNum * pageSize;
// Now change the protection on each page
for (uintptr_t curPage = 0; curPage < numPagesToChange;
++curPage, curAddr += pageSize) {
uint32_t prevProt;
if (!aMMPolicy.Protect(reinterpret_cast<void*>(curAddr), pageSize,
aNewProt, &prevProt)) {
Clear();
return;
}
// Save the previous protection for curAddr so that we can revert this
// in the destructor.
if (!mProtects.append(std::make_tuple(curAddr, prevProt))) {
Clear();
return;
}
}
}
AutoProtect(AutoProtect&& aOther)
: mMMPolicy(aOther.mMMPolicy), mProtects(std::move(aOther.mProtects)) {
aOther.mProtects.clear();
}
~AutoProtect() { Clear(); }
explicit operator bool() const { return !mProtects.empty(); }
AutoProtect(const AutoProtect&) = delete;
AutoProtect& operator=(const AutoProtect&) = delete;
AutoProtect& operator=(AutoProtect&&) = delete;
private:
void Clear() {
const uint32_t pageSize = mMMPolicy.GetPageSize();
for (auto&& entry : mProtects) {
uint32_t prevProt;
DebugOnly<bool> ok =
mMMPolicy.Protect(reinterpret_cast<void*>(std::get<0>(entry)),
pageSize, std::get<1>(entry), &prevProt);
MOZ_ASSERT(ok);
}
mProtects.clear();
}
private:
const MMPolicy& mMMPolicy;
// We include two entries of inline storage as that is most common in the
// worst case.
Vector<ProtectParams, 2> mProtects;
};
public:
/**
* Used to initialize an invalid WritableTargetFunction, thus signalling an
* error.
*/
explicit WritableTargetFunction(const MMPolicy& aMMPolicy)
: mMMPolicy(aMMPolicy),
mFunc(0),
mNumBytes(0),
mOffset(0),
mStartWriteOffset(0),
mAccumulatedStatus(false),
mProtect(aMMPolicy) {}
WritableTargetFunction(const MMPolicy& aMMPolicy, uintptr_t aFunc,
size_t aNumBytes)
: mMMPolicy(aMMPolicy),
mFunc(aFunc),
mNumBytes(aNumBytes),
mOffset(0),
mStartWriteOffset(0),
mAccumulatedStatus(true),
mProtect(aMMPolicy, aFunc, aNumBytes, PAGE_EXECUTE_READWRITE) {}
WritableTargetFunction(WritableTargetFunction&& aOther)
: mMMPolicy(aOther.mMMPolicy),
mFunc(aOther.mFunc),
mNumBytes(aOther.mNumBytes),
mOffset(aOther.mOffset),
mStartWriteOffset(aOther.mStartWriteOffset),
mLocalBytes(std::move(aOther.mLocalBytes)),
mAccumulatedStatus(aOther.mAccumulatedStatus),
mProtect(std::move(aOther.mProtect)) {
aOther.mAccumulatedStatus = false;
}
~WritableTargetFunction() {
MOZ_ASSERT(mLocalBytes.empty(), "Did you forget to call Commit?");
}
WritableTargetFunction(const WritableTargetFunction&) = delete;
WritableTargetFunction& operator=(const WritableTargetFunction&) = delete;
WritableTargetFunction& operator=(WritableTargetFunction&&) = delete;
/**
* @return true if data was successfully committed.
*/
bool Commit() {
if (!(*this)) {
return false;
}
if (mLocalBytes.empty()) {
// Nothing to commit, treat like success
return true;
}
bool ok =
mMMPolicy.Write(reinterpret_cast<void*>(mFunc + mStartWriteOffset),
mLocalBytes.begin(), mLocalBytes.length());
if (!ok) {
return false;
}
mMMPolicy.FlushInstructionCache();
mStartWriteOffset += mLocalBytes.length();
mLocalBytes.clear();
return true;
}
explicit operator bool() const { return mProtect && mAccumulatedStatus; }
void WriteByte(const uint8_t& aValue) {
if (!mLocalBytes.append(aValue)) {
mAccumulatedStatus = false;
return;
}
mOffset += sizeof(uint8_t);
}
Maybe<uint8_t> ReadByte() {
// Reading is only permitted prior to any writing
MOZ_ASSERT(mOffset == mStartWriteOffset);
if (mOffset > mStartWriteOffset) {
mAccumulatedStatus = false;
return Nothing();
}
uint8_t value;
if (!mMMPolicy.Read(&value, reinterpret_cast<const void*>(mFunc + mOffset),
sizeof(uint8_t))) {
mAccumulatedStatus = false;
return Nothing();
}
mOffset += sizeof(uint8_t);
mStartWriteOffset += sizeof(uint8_t);
return Some(value);
}
Maybe<uintptr_t> ReadEncodedPtr() {
// Reading is only permitted prior to any writing
MOZ_ASSERT(mOffset == mStartWriteOffset);
if (mOffset > mStartWriteOffset) {
mAccumulatedStatus = false;
return Nothing();
}
uintptr_t value;
if (!mMMPolicy.Read(&value, reinterpret_cast<const void*>(mFunc + mOffset),
sizeof(uintptr_t))) {
mAccumulatedStatus = false;
return Nothing();
}
mOffset += sizeof(uintptr_t);
mStartWriteOffset += sizeof(uintptr_t);
return Some(ReadOnlyTargetFunction<MMPolicy>::DecodePtr(value));
}
Maybe<uint32_t> ReadLong() {
// Reading is only permitted prior to any writing
MOZ_ASSERT(mOffset == mStartWriteOffset);
if (mOffset > mStartWriteOffset) {
mAccumulatedStatus = false;
return Nothing();
}
uint32_t value;
if (!mMMPolicy.Read(&value, reinterpret_cast<const void*>(mFunc + mOffset),
sizeof(uint32_t))) {
mAccumulatedStatus = false;
return Nothing();
}
mOffset += sizeof(uint32_t);
mStartWriteOffset += sizeof(uint32_t);
return Some(value);
}
void WriteShort(const uint16_t& aValue) {
if (!mLocalBytes.append(reinterpret_cast<const uint8_t*>(&aValue),
sizeof(uint16_t))) {
mAccumulatedStatus = false;
return;
}
mOffset += sizeof(uint16_t);
}
#if defined(_M_IX86)
public:
/**
* Commits any dirty writes, and then writes a short, atomically if possible.
* This call may succeed in both inproc and outproc cases, but atomicity
* is only guaranteed in the inproc case.
*/
bool CommitAndWriteShort(const uint16_t aValue) {
// First, commit everything that has been written until now
if (!Commit()) {
return false;
}
// Now immediately write the short, atomically if inproc
bool ok = CommitAndWriteShortInternal(
mMMPolicy, reinterpret_cast<void*>(mFunc + mStartWriteOffset), aValue);
if (!ok) {
return false;
}
mMMPolicy.FlushInstructionCache();
mStartWriteOffset += sizeof(uint16_t);
return true;
}
#endif // defined(_M_IX86)
void WriteDisp32(const uintptr_t aAbsTarget) {
intptr_t diff = static_cast<intptr_t>(aAbsTarget) -
static_cast<intptr_t>(mFunc + mOffset + sizeof(int32_t));
CheckedInt<int32_t> checkedDisp(diff);
MOZ_ASSERT(checkedDisp.isValid());
if (!checkedDisp.isValid()) {
mAccumulatedStatus = false;
return;
}
int32_t disp = checkedDisp.value();
if (!mLocalBytes.append(reinterpret_cast<uint8_t*>(&disp),
sizeof(int32_t))) {
mAccumulatedStatus = false;
return;
}
mOffset += sizeof(int32_t);
}
#if defined(_M_X64) || defined(_M_ARM64)
void WriteLong(const uint32_t aValue) {
if (!mLocalBytes.append(reinterpret_cast<const uint8_t*>(&aValue),
sizeof(uint32_t))) {
mAccumulatedStatus = false;
return;
}
mOffset += sizeof(uint32_t);
}
#endif // defined(_M_X64)
void WritePointer(const uintptr_t aAbsTarget) {
if (!mLocalBytes.append(reinterpret_cast<const uint8_t*>(&aAbsTarget),
sizeof(uintptr_t))) {
mAccumulatedStatus = false;
return;
}
mOffset += sizeof(uintptr_t);
}
/**
* @param aValues N-sized array of type T that specifies the set of values
* that are permissible in the first M bytes of the target
* function at aOffset.
* @return true if M values of type T in the function are members of the
* set specified by aValues.
*/
template <typename T, size_t M, size_t N>
bool VerifyValuesAreOneOf(const T (&aValues)[N], const uint8_t aOffset = 0) {
T buf[M];
if (!mMMPolicy.Read(
buf, reinterpret_cast<const void*>(mFunc + mOffset + aOffset),
M * sizeof(T))) {
return false;
}
for (auto&& fnValue : buf) {
bool match = false;
for (auto&& testValue : aValues) {
match |= (fnValue == testValue);
}
if (!match) {
return false;
}
}
return true;
}
uintptr_t GetCurrentAddress() const { return mFunc + mOffset; }
private:
const MMPolicy& mMMPolicy;
const uintptr_t mFunc;
const size_t mNumBytes;
uint32_t mOffset;
uint32_t mStartWriteOffset;
// In an ideal world, we'd only read 5 bytes on 32-bit and 13 bytes on 64-bit,
// to match the minimum bytes that we need to write in in order to patch the
// target function. Since the actual opcodes will often require us to pull in
// extra bytes above that minimum, we set the inline storage to be larger than
// those minima in an effort to give the Vector extra wiggle room before it
// needs to touch the heap.
#if defined(_M_IX86)
static const size_t kInlineStorage = 16;
#elif defined(_M_X64) || defined(_M_ARM64)
static const size_t kInlineStorage = 32;
#endif
Vector<uint8_t, kInlineStorage> mLocalBytes;
bool mAccumulatedStatus;
AutoProtect mProtect;
};
template <typename MMPolicy>
class ReadOnlyTargetBytes {
public:
ReadOnlyTargetBytes(const MMPolicy& aMMPolicy, const void* aBase)
: mMMPolicy(aMMPolicy), mBase(reinterpret_cast<const uint8_t*>(aBase)) {}
ReadOnlyTargetBytes(ReadOnlyTargetBytes&& aOther)
: mMMPolicy(aOther.mMMPolicy), mBase(aOther.mBase) {}
ReadOnlyTargetBytes(const ReadOnlyTargetBytes& aOther,
const uint32_t aOffsetFromOther = 0)
: mMMPolicy(aOther.mMMPolicy), mBase(aOther.mBase + aOffsetFromOther) {}
void EnsureLimit(uint32_t aDesiredLimit) {
// In the out-proc case we use this function to read the target function's
// bytes in the other process into a local buffer. We don't need that for
// the in-process case because we already have direct access to our target
// function's bytes.
}
uint32_t TryEnsureLimit(uint32_t aDesiredLimit) {
// Same as EnsureLimit above. We don't need to ensure for the in-process.
return aDesiredLimit;
}
bool IsValidAtOffset(const int8_t aOffset) const {
if (!aOffset) {
return true;
}
uintptr_t base = reinterpret_cast<uintptr_t>(mBase);
uintptr_t adjusted = base + aOffset;
uint32_t pageSize = mMMPolicy.GetPageSize();
// If |adjusted| is within the same page as |mBase|, we're still valid
if ((base / pageSize) == (adjusted / pageSize)) {
return true;
}
// Otherwise, let's query |adjusted|
return mMMPolicy.IsPageAccessible(adjusted);
}
/**
* This returns a pointer to a *potentially local copy* of the target
* function's bytes. The returned pointer should not be used for any
* pointer arithmetic relating to the target function.
*/
const uint8_t* GetLocalBytes() const { return mBase; }
/**
* This returns a pointer to the target function's bytes. The returned pointer
* may possibly belong to another process, so while it should be used for
* pointer arithmetic, it *must not* be dereferenced.
*/
uintptr_t GetBase() const { return reinterpret_cast<uintptr_t>(mBase); }
const MMPolicy& GetMMPolicy() const { return mMMPolicy; }
ReadOnlyTargetBytes& operator=(const ReadOnlyTargetBytes&) = delete;
ReadOnlyTargetBytes& operator=(ReadOnlyTargetBytes&&) = delete;
private:
const MMPolicy& mMMPolicy;
uint8_t const* const mBase;
};
template <>
class ReadOnlyTargetBytes<MMPolicyOutOfProcess> {
public:
ReadOnlyTargetBytes(const MMPolicyOutOfProcess& aMMPolicy, const void* aBase)
: mMMPolicy(aMMPolicy), mBase(reinterpret_cast<const uint8_t*>(aBase)) {}
ReadOnlyTargetBytes(ReadOnlyTargetBytes&& aOther)
: mMMPolicy(aOther.mMMPolicy),
mLocalBytes(std::move(aOther.mLocalBytes)),
mBase(aOther.mBase) {}
ReadOnlyTargetBytes(const ReadOnlyTargetBytes& aOther)
: mMMPolicy(aOther.mMMPolicy), mBase(aOther.mBase) {
Unused << mLocalBytes.appendAll(aOther.mLocalBytes);
}
ReadOnlyTargetBytes(const ReadOnlyTargetBytes& aOther,
const uint32_t aOffsetFromOther)
: mMMPolicy(aOther.mMMPolicy), mBase(aOther.mBase + aOffsetFromOther) {
if (aOffsetFromOther >= aOther.mLocalBytes.length()) {
return;
}
Unused << mLocalBytes.append(aOther.mLocalBytes.begin() + aOffsetFromOther,
aOther.mLocalBytes.end());
}
void EnsureLimit(uint32_t aDesiredLimit) {
size_t prevSize = mLocalBytes.length();
if (aDesiredLimit < prevSize) {
return;
}
size_t newSize = aDesiredLimit + 1;
if (newSize < kInlineStorage) {
// Always try to read as much memory as we can at once
newSize = kInlineStorage;
}
bool resizeOk = mLocalBytes.resize(newSize);
MOZ_RELEASE_ASSERT(resizeOk);
bool ok = mMMPolicy.Read(&mLocalBytes[prevSize], mBase + prevSize,
newSize - prevSize);
if (ok) {
return;
}
// We couldn't pull more bytes than needed (which may happen if those extra
// bytes are not accessible). In this case, we try just to get the bare
// minimum.
newSize = aDesiredLimit + 1;
resizeOk = mLocalBytes.resize(newSize);
MOZ_RELEASE_ASSERT(resizeOk);
ok = mMMPolicy.Read(&mLocalBytes[prevSize], mBase + prevSize,
newSize - prevSize);
MOZ_RELEASE_ASSERT(ok);
}
// This function tries to ensure as many bytes as possible up to
// |aDesiredLimit| bytes, returning how many bytes were actually ensured.
// As EnsureLimit does, we allocate an extra byte in local to make sure
// mLocalBytes always has at least one byte even though the target memory
// was inaccessible at all.
uint32_t TryEnsureLimit(uint32_t aDesiredLimit) {
size_t prevSize = mLocalBytes.length();
if (aDesiredLimit < prevSize) {
return aDesiredLimit;
}
size_t newSize = aDesiredLimit;
if (newSize < kInlineStorage) {
// Always try to read as much memory as we can at once
newSize = kInlineStorage;
}
bool resizeOk = mLocalBytes.resize(newSize);
MOZ_RELEASE_ASSERT(resizeOk);
size_t bytesRead = mMMPolicy.TryRead(&mLocalBytes[prevSize],
mBase + prevSize, newSize - prevSize);
newSize = prevSize + bytesRead;
resizeOk = mLocalBytes.resize(newSize + 1);
MOZ_RELEASE_ASSERT(resizeOk);
mLocalBytes[newSize] = 0;
return newSize;
}
bool IsValidAtOffset(const int8_t aOffset) const {
if (!aOffset) {
return true;
}
uintptr_t base = reinterpret_cast<uintptr_t>(mBase);
uintptr_t adjusted = base + aOffset;
uint32_t pageSize = mMMPolicy.GetPageSize();
// If |adjusted| is within the same page as |mBase|, we're still valid
if ((base / pageSize) == (adjusted / pageSize)) {
return true;
}
// Otherwise, let's query |adjusted|
return mMMPolicy.IsPageAccessible(adjusted);
}
/**
* This returns a pointer to a *potentially local copy* of the target
* function's bytes. The returned pointer should not be used for any
* pointer arithmetic relating to the target function.
*/
const uint8_t* GetLocalBytes() const {
if (mLocalBytes.empty()) {
return nullptr;
}
return mLocalBytes.begin();
}
/**
* This returns a pointer to the target function's bytes. The returned pointer
* may possibly belong to another process, so while it should be used for
* pointer arithmetic, it *must not* be dereferenced.
*/
uintptr_t GetBase() const { return reinterpret_cast<uintptr_t>(mBase); }
const MMPolicyOutOfProcess& GetMMPolicy() const { return mMMPolicy; }
ReadOnlyTargetBytes& operator=(const ReadOnlyTargetBytes&) = delete;
ReadOnlyTargetBytes& operator=(ReadOnlyTargetBytes&&) = delete;
private:
// In an ideal world, we'd only read 5 bytes on 32-bit and 13 bytes on 64-bit,
// to match the minimum bytes that we need to write in in order to patch the
// target function. Since the actual opcodes will often require us to pull in
// extra bytes above that minimum, we set the inline storage to be larger than
// those minima in an effort to give the Vector extra wiggle room before it
// needs to touch the heap.
#if defined(_M_IX86)
static const size_t kInlineStorage = 16;
#elif defined(_M_X64) || defined(_M_ARM64)
static const size_t kInlineStorage = 32;
#endif
const MMPolicyOutOfProcess& mMMPolicy;
Vector<uint8_t, kInlineStorage> mLocalBytes;
uint8_t const* const mBase;
};
template <typename MMPolicy>
class TargetBytesPtr {
public:
typedef TargetBytesPtr<MMPolicy> Type;
static Type Make(const MMPolicy& aMMPolicy, const void* aFunc) {
return TargetBytesPtr(aMMPolicy, aFunc);
}
static Type CopyFromOffset(const TargetBytesPtr& aOther,
const uint32_t aOffsetFromOther) {
return TargetBytesPtr(aOther, aOffsetFromOther);
}
ReadOnlyTargetBytes<MMPolicy>* operator->() { return &mTargetBytes; }
TargetBytesPtr(TargetBytesPtr&& aOther)
: mTargetBytes(std::move(aOther.mTargetBytes)) {}
TargetBytesPtr(const TargetBytesPtr& aOther)
: mTargetBytes(aOther.mTargetBytes) {}
TargetBytesPtr& operator=(const TargetBytesPtr&) = delete;
TargetBytesPtr& operator=(TargetBytesPtr&&) = delete;
private:
TargetBytesPtr(const MMPolicy& aMMPolicy, const void* aFunc)
: mTargetBytes(aMMPolicy, aFunc) {}
TargetBytesPtr(const TargetBytesPtr& aOther, const uint32_t aOffsetFromOther)
: mTargetBytes(aOther.mTargetBytes, aOffsetFromOther) {}
ReadOnlyTargetBytes<MMPolicy> mTargetBytes;
};
template <>
class TargetBytesPtr<MMPolicyOutOfProcess> {
public:
typedef std::shared_ptr<ReadOnlyTargetBytes<MMPolicyOutOfProcess>> Type;
static Type Make(const MMPolicyOutOfProcess& aMMPolicy, const void* aFunc) {
return std::make_shared<ReadOnlyTargetBytes<MMPolicyOutOfProcess>>(
aMMPolicy, aFunc);
}
static Type CopyFromOffset(const Type& aOther,
const uint32_t aOffsetFromOther) {
return std::make_shared<ReadOnlyTargetBytes<MMPolicyOutOfProcess>>(
*aOther, aOffsetFromOther);
}
};
template <typename MMPolicy>
class MOZ_STACK_CLASS ReadOnlyTargetFunction final {
public:
ReadOnlyTargetFunction(const MMPolicy& aMMPolicy, const void* aFunc)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(aMMPolicy, aFunc)),
mOffset(0) {}
ReadOnlyTargetFunction(const MMPolicy& aMMPolicy, FARPROC aFunc)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(
aMMPolicy, reinterpret_cast<const void*>(aFunc))),
mOffset(0) {}
ReadOnlyTargetFunction(const MMPolicy& aMMPolicy, uintptr_t aFunc)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(
aMMPolicy, reinterpret_cast<const void*>(aFunc))),
mOffset(0) {}
ReadOnlyTargetFunction(ReadOnlyTargetFunction&& aOther)
: mTargetBytes(std::move(aOther.mTargetBytes)), mOffset(aOther.mOffset) {}
ReadOnlyTargetFunction& operator=(const ReadOnlyTargetFunction&) = delete;
ReadOnlyTargetFunction& operator=(ReadOnlyTargetFunction&&) = delete;
~ReadOnlyTargetFunction() = default;
ReadOnlyTargetFunction operator+(const uint32_t aOffset) const {
return ReadOnlyTargetFunction(*this, mOffset + aOffset);
}
uintptr_t GetBaseAddress() const { return mTargetBytes->GetBase(); }
uintptr_t GetAddress() const { return mTargetBytes->GetBase() + mOffset; }
uintptr_t AsEncodedPtr() const {
return EncodePtr(
reinterpret_cast<void*>(mTargetBytes->GetBase() + mOffset));
}
static uintptr_t EncodePtr(void* aPtr) {
return reinterpret_cast<uintptr_t>(::EncodePointer(aPtr));
}
static uintptr_t DecodePtr(uintptr_t aEncodedPtr) {
return reinterpret_cast<uintptr_t>(
::DecodePointer(reinterpret_cast<PVOID>(aEncodedPtr)));
}
bool IsValidAtOffset(const int8_t aOffset) const {
return mTargetBytes->IsValidAtOffset(aOffset);
}
#if defined(_M_ARM64)
uint32_t ReadNextInstruction() {
mTargetBytes->EnsureLimit(mOffset + sizeof(uint32_t));
uint32_t instruction = *reinterpret_cast<const uint32_t*>(
mTargetBytes->GetLocalBytes() + mOffset);
mOffset += sizeof(uint32_t);
return instruction;
}
bool BackUpOneInstruction() {
if (mOffset < sizeof(uint32_t)) {
return false;
}
mOffset -= sizeof(uint32_t);
return true;
}
#else
uint8_t const& operator*() const {
mTargetBytes->EnsureLimit(mOffset);
return *(mTargetBytes->GetLocalBytes() + mOffset);
}
uint8_t const& operator[](uint32_t aIndex) const {
mTargetBytes->EnsureLimit(mOffset + aIndex);
return *(mTargetBytes->GetLocalBytes() + mOffset + aIndex);
}
ReadOnlyTargetFunction& operator++() {
++mOffset;
return *this;
}
ReadOnlyTargetFunction& operator+=(uint32_t aDelta) {
mOffset += aDelta;
return *this;
}
uintptr_t ReadDisp32AsAbsolute() {
mTargetBytes->EnsureLimit(mOffset + sizeof(int32_t));
int32_t disp = *reinterpret_cast<const int32_t*>(
mTargetBytes->GetLocalBytes() + mOffset);
uintptr_t result =
mTargetBytes->GetBase() + mOffset + sizeof(int32_t) + disp;
mOffset += sizeof(int32_t);
return result;
}
bool IsRelativeShortJump(uintptr_t* aOutTarget) {
if ((*this)[0] == 0xeb) {
int8_t offset = static_cast<int8_t>((*this)[1]);
*aOutTarget = GetAddress() + 2 + offset;
return true;
}
return false;
}
# if defined(_M_X64)
// Currently this function is used only in x64.
bool IsRelativeNearJump(uintptr_t* aOutTarget) {
if ((*this)[0] == 0xe9) {
*aOutTarget = (*this + 1).ReadDisp32AsAbsolute();
return true;
}
return false;
}
# endif // defined(_M_X64)
bool IsIndirectNearJump(uintptr_t* aOutTarget) {
if ((*this)[0] == 0xff && (*this)[1] == 0x25) {
# if defined(_M_X64)
*aOutTarget = (*this + 2).ChasePointerFromDisp();
# else
*aOutTarget = (*this + 2).template ChasePointer<uintptr_t*>();
# endif // defined(_M_X64)
return true;
}
# if defined(_M_X64)
else if ((*this)[0] == 0x48 && (*this)[1] == 0xff && (*this)[2] == 0x25) {
// According to Intel SDM, JMP does not have REX.W except JMP m16:64,
// but CPU can execute JMP r/m32 with REX.W. We handle it just in case.
*aOutTarget = (*this + 3).ChasePointerFromDisp();
return true;
}
# endif // defined(_M_X64)
return false;
}
#endif // defined(_M_ARM64)
void Rewind() { mOffset = 0; }
uint32_t GetOffset() const { return mOffset; }
uintptr_t OffsetToAbsolute(const uint8_t aOffset) const {
return mTargetBytes->GetBase() + mOffset + aOffset;
}
uintptr_t GetCurrentAbsolute() const { return OffsetToAbsolute(0); }
/**
* This method promotes the code referenced by this object to be writable.
*
* @param aLen The length of the function's code to make writable. If set
* to zero, this object's current offset is used as the length.
* @param aOffset The result's base address will be offset from this
* object's base address by |aOffset| bytes. This value may be
* negative.
*/
WritableTargetFunction<MMPolicy> Promote(const uint32_t aLen = 0,
const int8_t aOffset = 0) const {
const uint32_t effectiveLength = aLen ? aLen : mOffset;
MOZ_RELEASE_ASSERT(effectiveLength,
"Cannot Promote a zero-length function");
if (!mTargetBytes->IsValidAtOffset(aOffset)) {
return WritableTargetFunction<MMPolicy>(mTargetBytes->GetMMPolicy());
}
WritableTargetFunction<MMPolicy> result(mTargetBytes->GetMMPolicy(),
mTargetBytes->GetBase() + aOffset,
effectiveLength);
return result;
}
private:
template <typename T>
struct ChasePointerHelper {
template <typename MMPolicy_>
static T Result(const MMPolicy_&, T aValue) {
return aValue;
}
};
template <typename T>
struct ChasePointerHelper<T*> {
template <typename MMPolicy_>
static auto Result(const MMPolicy_& aPolicy, T* aValue) {
ReadOnlyTargetFunction<MMPolicy_> ptr(aPolicy, aValue);
return ptr.template ChasePointer<T>();
}
};
public:
// Keep chasing pointers until T is not a pointer type anymore
template <typename T>
auto ChasePointer() {
mTargetBytes->EnsureLimit(mOffset + sizeof(T));
const std::remove_cv_t<T> result =
*reinterpret_cast<const std::remove_cv_t<T>*>(
mTargetBytes->GetLocalBytes() + mOffset);
return ChasePointerHelper<std::remove_cv_t<T>>::Result(
mTargetBytes->GetMMPolicy(), result);
}
uintptr_t ChasePointerFromDisp() {
uintptr_t ptrFromDisp = ReadDisp32AsAbsolute();
ReadOnlyTargetFunction<MMPolicy> ptr(
mTargetBytes->GetMMPolicy(),
reinterpret_cast<const void*>(ptrFromDisp));
return ptr.template ChasePointer<uintptr_t>();
}
private:
ReadOnlyTargetFunction(const ReadOnlyTargetFunction& aOther)
: mTargetBytes(aOther.mTargetBytes), mOffset(aOther.mOffset) {}
ReadOnlyTargetFunction(const ReadOnlyTargetFunction& aOther,
const uint32_t aOffsetFromOther)
: mTargetBytes(TargetBytesPtr<MMPolicy>::CopyFromOffset(
aOther.mTargetBytes, aOffsetFromOther)),
mOffset(0) {}
private:
mutable typename TargetBytesPtr<MMPolicy>::Type mTargetBytes;
uint32_t mOffset;
};
template <typename MMPolicy, typename T>
class MOZ_STACK_CLASS TargetObject {
mutable typename TargetBytesPtr<MMPolicy>::Type mTargetBytes;
TargetObject(const MMPolicy& aMMPolicy, const void* aBaseAddress)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(aMMPolicy, aBaseAddress)) {
mTargetBytes->EnsureLimit(sizeof(T));
}
public:
explicit TargetObject(const MMPolicy& aMMPolicy)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(aMMPolicy, nullptr)) {}
TargetObject(const MMPolicy& aMMPolicy, uintptr_t aBaseAddress)
: TargetObject(aMMPolicy, reinterpret_cast<const void*>(aBaseAddress)) {}
TargetObject(const TargetObject&) = delete;
TargetObject(TargetObject&&) = delete;
TargetObject& operator=(const TargetObject&) = delete;
TargetObject& operator=(TargetObject&&) = delete;
explicit operator bool() const {
return mTargetBytes->GetBase() && mTargetBytes->GetLocalBytes();
}
const T* operator->() const {
return reinterpret_cast<const T*>(mTargetBytes->GetLocalBytes());
}
const T* GetLocalBase() const {
return reinterpret_cast<const T*>(mTargetBytes->GetLocalBytes());
}
};
template <typename MMPolicy, typename T>
class MOZ_STACK_CLASS TargetObjectArray {
mutable typename TargetBytesPtr<MMPolicy>::Type mTargetBytes;
size_t mNumOfItems;
TargetObjectArray(const MMPolicy& aMMPolicy, const void* aBaseAddress,
size_t aNumOfItems)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(aMMPolicy, aBaseAddress)),
mNumOfItems(aNumOfItems) {
uint32_t itemsRead =
mTargetBytes->TryEnsureLimit(sizeof(T) * mNumOfItems) / sizeof(T);
// itemsRead may be bigger than the requested amount because of buffering,
// but mNumOfItems should not include extra bytes of buffering.
if (itemsRead < mNumOfItems) {
mNumOfItems = itemsRead;
}
}
const T* GetLocalBase() const {
return reinterpret_cast<const T*>(mTargetBytes->GetLocalBytes());
}
public:
explicit TargetObjectArray(const MMPolicy& aMMPolicy)
: mTargetBytes(TargetBytesPtr<MMPolicy>::Make(aMMPolicy, nullptr)),
mNumOfItems(0) {}
TargetObjectArray(const MMPolicy& aMMPolicy, uintptr_t aBaseAddress,
size_t aNumOfItems)
: TargetObjectArray(aMMPolicy,
reinterpret_cast<const void*>(aBaseAddress),
aNumOfItems) {}
TargetObjectArray(const TargetObjectArray&) = delete;
TargetObjectArray(TargetObjectArray&&) = delete;
TargetObjectArray& operator=(const TargetObjectArray&) = delete;
TargetObjectArray& operator=(TargetObjectArray&&) = delete;
explicit operator bool() const {
return mTargetBytes->GetBase() && mNumOfItems;
}
const T* operator[](size_t aIndex) const {
if (aIndex >= mNumOfItems) {
return nullptr;
}
return &GetLocalBase()[aIndex];
}
template <typename Comparator>
bool BinarySearchIf(const Comparator& aCompare,
size_t* aMatchOrInsertionPoint) const {
return mozilla::BinarySearchIf(GetLocalBase(), 0, mNumOfItems, aCompare,
aMatchOrInsertionPoint);
}
};
} // namespace interceptor
} // namespace mozilla
#endif // mozilla_interceptor_TargetFunction_h
|