summaryrefslogtreecommitdiffstats
path: root/xpcom/ds/nsBaseHashtable.h
blob: 7b57ef46660f1cc017dfeaa79169eeb2d37ff1be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef nsBaseHashtable_h__
#define nsBaseHashtable_h__

#include <functional>
#include <utility>

#include "mozilla/dom/SafeRefPtr.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Result.h"
#include "mozilla/UniquePtr.h"
#include "nsCOMPtr.h"
#include "nsDebug.h"
#include "nsHashtablesFwd.h"
#include "nsTHashtable.h"

namespace mozilla::detail {

template <typename SmartPtr>
struct SmartPtrTraits {
  static constexpr bool IsSmartPointer = false;
  static constexpr bool IsRefCounted = false;
};

template <typename Pointee>
struct SmartPtrTraits<UniquePtr<Pointee>> {
  static constexpr bool IsSmartPointer = true;
  static constexpr bool IsRefCounted = false;
  using SmartPointerType = UniquePtr<Pointee>;
  using PointeeType = Pointee;
  using RawPointerType = Pointee*;
  template <typename U>
  using OtherSmartPtrType = UniquePtr<U>;

  template <typename U, typename... Args>
  static SmartPointerType NewObject(Args&&... aConstructionArgs) {
    return mozilla::MakeUnique<U>(std::forward<Args>(aConstructionArgs)...);
  }
};

template <typename Pointee>
struct SmartPtrTraits<RefPtr<Pointee>> {
  static constexpr bool IsSmartPointer = true;
  static constexpr bool IsRefCounted = true;
  using SmartPointerType = RefPtr<Pointee>;
  using PointeeType = Pointee;
  using RawPointerType = Pointee*;
  template <typename U>
  using OtherSmartPtrType = RefPtr<U>;

  template <typename U, typename... Args>
  static SmartPointerType NewObject(Args&&... aConstructionArgs) {
    return MakeRefPtr<U>(std::forward<Args>(aConstructionArgs)...);
  }
};

template <typename Pointee>
struct SmartPtrTraits<SafeRefPtr<Pointee>> {
  static constexpr bool IsSmartPointer = true;
  static constexpr bool IsRefCounted = true;
  using SmartPointerType = SafeRefPtr<Pointee>;
  using PointeeType = Pointee;
  using RawPointerType = Pointee*;
  template <typename U>
  using OtherSmartPtrType = SafeRefPtr<U>;

  template <typename U, typename... Args>
  static SmartPointerType NewObject(Args&&... aConstructionArgs) {
    return MakeSafeRefPtr<U>(std::forward<Args>(aConstructionArgs)...);
  }
};

template <typename Pointee>
struct SmartPtrTraits<nsCOMPtr<Pointee>> {
  static constexpr bool IsSmartPointer = true;
  static constexpr bool IsRefCounted = true;
  using SmartPointerType = nsCOMPtr<Pointee>;
  using PointeeType = Pointee;
  using RawPointerType = Pointee*;
  template <typename U>
  using OtherSmartPtrType = nsCOMPtr<U>;

  template <typename U, typename... Args>
  static SmartPointerType NewObject(Args&&... aConstructionArgs) {
    return MakeRefPtr<U>(std::forward<Args>(aConstructionArgs)...);
  }
};

template <class T>
T* PtrGetWeak(T* aPtr) {
  return aPtr;
}

template <class T>
T* PtrGetWeak(const RefPtr<T>& aPtr) {
  return aPtr.get();
}

template <class T>
T* PtrGetWeak(const SafeRefPtr<T>& aPtr) {
  return aPtr.unsafeGetRawPtr();
}

template <class T>
T* PtrGetWeak(const nsCOMPtr<T>& aPtr) {
  return aPtr.get();
}

template <class T>
T* PtrGetWeak(const UniquePtr<T>& aPtr) {
  return aPtr.get();
}

template <typename EntryType>
class nsBaseHashtableValueIterator : public ::detail::nsTHashtableIteratorBase {
  // friend class nsTHashtable<EntryType>;

 public:
  using iterator_category = std::forward_iterator_tag;
  using value_type = const std::decay_t<typename EntryType::DataType>;
  using difference_type = int32_t;
  using pointer = value_type*;
  using reference = value_type&;

  using iterator_type = nsBaseHashtableValueIterator;
  using const_iterator_type = nsBaseHashtableValueIterator;

  using nsTHashtableIteratorBase::nsTHashtableIteratorBase;

  value_type* operator->() const {
    return &static_cast<const EntryType*>(mIterator.Get())->GetData();
  }
  decltype(auto) operator*() const {
    return static_cast<const EntryType*>(mIterator.Get())->GetData();
  }

  iterator_type& operator++() {
    mIterator.Next();
    return *this;
  }
  iterator_type operator++(int) {
    iterator_type it = *this;
    ++*this;
    return it;
  }
};

template <typename EntryType>
class nsBaseHashtableValueRange {
 public:
  using IteratorType = nsBaseHashtableValueIterator<EntryType>;
  using iterator = IteratorType;

  explicit nsBaseHashtableValueRange(const PLDHashTable& aHashtable)
      : mHashtable{aHashtable} {}

  auto begin() const { return IteratorType{mHashtable}; }
  auto end() const {
    return IteratorType{mHashtable, typename IteratorType::EndIteratorTag{}};
  }
  auto cbegin() const { return begin(); }
  auto cend() const { return end(); }

  uint32_t Count() const { return mHashtable.EntryCount(); }

 private:
  const PLDHashTable& mHashtable;
};

template <typename EntryType>
auto RangeSize(const detail::nsBaseHashtableValueRange<EntryType>& aRange) {
  return aRange.Count();
}

}  // namespace mozilla::detail

/**
 * Data type conversion helper that is used to wrap and unwrap the specified
 * DataType.
 */
template <class DataType, class UserDataType>
class nsDefaultConverter {
 public:
  /**
   * Maps the storage DataType to the exposed UserDataType.
   */
  static UserDataType Unwrap(DataType& src) { return UserDataType(src); }

  /**
   * Const ref variant used for example with nsCOMPtr wrappers.
   */
  static DataType Wrap(const UserDataType& src) { return DataType(src); }

  /**
   * Generic conversion, this is useful for things like already_AddRefed.
   */
  template <typename U>
  static DataType Wrap(U&& src) {
    return std::forward<U>(src);
  }

  template <typename U>
  static UserDataType Unwrap(U&& src) {
    return std::forward<U>(src);
  }
};

/**
 * the private nsTHashtable::EntryType class used by nsBaseHashtable
 * @see nsTHashtable for the specification of this class
 * @see nsBaseHashtable for template parameters
 */
template <class KeyClass, class TDataType>
class nsBaseHashtableET : public KeyClass {
 public:
  using DataType = TDataType;

  const DataType& GetData() const { return mData; }
  DataType* GetModifiableData() { return &mData; }
  template <typename U>
  void SetData(U&& aData) {
    mData = std::forward<U>(aData);
  }

  decltype(auto) GetWeak() const {
    return mozilla::detail::PtrGetWeak(GetData());
  }

 private:
  DataType mData;
  friend class nsTHashtable<nsBaseHashtableET<KeyClass, DataType>>;
  template <typename KeyClassX, typename DataTypeX, typename UserDataTypeX,
            typename ConverterX>
  friend class nsBaseHashtable;
  friend class ::detail::nsTHashtableKeyIterator<
      nsBaseHashtableET<KeyClass, DataType>>;

  typedef typename KeyClass::KeyType KeyType;
  typedef typename KeyClass::KeyTypePointer KeyTypePointer;

  template <typename... Args>
  explicit nsBaseHashtableET(KeyTypePointer aKey, Args&&... aArgs);
  nsBaseHashtableET(nsBaseHashtableET<KeyClass, DataType>&& aToMove) = default;
  ~nsBaseHashtableET() = default;
};

/**
 * Templated hashtable. Usually, this isn't instantiated directly but through
 * its sub-class templates nsInterfaceHashtable, nsClassHashtable,
 * nsRefPtrHashtable and nsTHashMap.
 *
 * Originally, UserDataType used to be the only type exposed to the user in the
 * public member function signatures (hence its name), but this has proven to
 * inadequate over time. Now, UserDataType is only exposed in by-value
 * getter member functions that are called *Get*. Member functions that provide
 * access to the DataType are called Lookup rather than Get. Note that this rule
 * does not apply to nsRefPtrHashtable and nsInterfaceHashtable, as they are
 * provide a similar interface, but are no genuine sub-classes of
 * nsBaseHashtable.
 *
 * @param KeyClass a wrapper-class for the hashtable key, see nsHashKeys.h
 *   for a complete specification.
 * @param DataType the datatype stored in the hashtable,
 *   for example, uint32_t or nsCOMPtr.
 * @param UserDataType the datatype returned from the by-value getter member
 *   functions (named *Get*), for example uint32_t or nsISupports*
 * @param Converter that is used to map from DataType to UserDataType. A
 *   default converter is provided that assumes implicit conversion is an
 *   option.
 */
template <class KeyClass, class DataType, class UserDataType, class Converter>
class nsBaseHashtable
    : protected nsTHashtable<nsBaseHashtableET<KeyClass, DataType>> {
  using Base = nsTHashtable<nsBaseHashtableET<KeyClass, DataType>>;
  typedef mozilla::fallible_t fallible_t;

 public:
  typedef typename KeyClass::KeyType KeyType;
  typedef nsBaseHashtableET<KeyClass, DataType> EntryType;

  using nsTHashtable<EntryType>::Contains;
  using nsTHashtable<EntryType>::GetGeneration;
  using nsTHashtable<EntryType>::SizeOfExcludingThis;
  using nsTHashtable<EntryType>::SizeOfIncludingThis;

  nsBaseHashtable() = default;
  explicit nsBaseHashtable(uint32_t aInitLength)
      : nsTHashtable<EntryType>(aInitLength) {}

  /**
   * Return the number of entries in the table.
   * @return    number of entries
   */
  [[nodiscard]] uint32_t Count() const {
    return nsTHashtable<EntryType>::Count();
  }

  /**
   * Return whether the table is empty.
   * @return    whether empty
   */
  [[nodiscard]] bool IsEmpty() const {
    return nsTHashtable<EntryType>::IsEmpty();
  }

  /**
   * Get the value, returning a flag indicating the presence of the entry in
   * the table.
   *
   * @param aKey the key to retrieve
   * @param aData data associated with this key will be placed at this pointer.
   *        If you only need to check if the key exists, aData may be null.
   * @return true if the key exists. If key does not exist, aData is not
   *   modified.
   *
   * @attention As opposed to Remove, this does not assign a value to *aData if
   * no entry is present! (And also as opposed to the member function Get with
   * the same signature that nsClassHashtable defines and hides this one.)
   */
  [[nodiscard]] bool Get(KeyType aKey, UserDataType* aData) const {
    EntryType* ent = this->GetEntry(aKey);
    if (!ent) {
      return false;
    }

    if (aData) {
      *aData = Converter::Unwrap(ent->mData);
    }

    return true;
  }

  /**
   * Get the value, returning a zero-initialized POD or a default-initialized
   * object if the entry is not present in the table.
   *
   * This overload can only be used if UserDataType is default-constructible.
   * Use the double-argument Get or MaybeGet with non-default-constructible
   * UserDataType.
   *
   * @param aKey the key to retrieve
   * @return The found value, or UserDataType{} if no entry was found with the
   *         given key.
   * @note If zero/default-initialized values are stored in the table, it is
   *       not possible to distinguish between such a value and a missing entry.
   */
  [[nodiscard]] UserDataType Get(KeyType aKey) const {
    EntryType* ent = this->GetEntry(aKey);
    if (!ent) {
      return UserDataType{};
    }

    return Converter::Unwrap(ent->mData);
  }

  /**
   * Get the value, returning Nothing if the entry is not present in the table.
   *
   * @param aKey the key to retrieve
   * @return The found value wrapped in a Maybe, or Nothing if no entry was
   *         found with the given key.
   */
  [[nodiscard]] mozilla::Maybe<UserDataType> MaybeGet(KeyType aKey) const {
    EntryType* ent = this->GetEntry(aKey);
    if (!ent) {
      return mozilla::Nothing();
    }

    return mozilla::Some(Converter::Unwrap(ent->mData));
  }

  using SmartPtrTraits = mozilla::detail::SmartPtrTraits<DataType>;

  /**
   * Looks up aKey in the hash table. If it doesn't exist a new object of
   * SmartPtrTraits::PointeeType will be created (using the arguments provided)
   * and then returned.
   *
   * \note This can only be instantiated if DataType is a smart pointer.
   */
  template <typename... Args>
  auto GetOrInsertNew(KeyType aKey, Args&&... aConstructionArgs) {
    static_assert(
        SmartPtrTraits::IsSmartPointer,
        "GetOrInsertNew can only be used with smart pointer data types");
    return mozilla::detail::PtrGetWeak(LookupOrInsertWith(std::move(aKey), [&] {
      return SmartPtrTraits::template NewObject<
          typename SmartPtrTraits::PointeeType>(
          std::forward<Args>(aConstructionArgs)...);
    }));
  }

  /**
   * Add aKey to the table if not already present, and return a reference to its
   * value.  If aKey is not already in the table then the a default-constructed
   * or the provided value aData is used.
   *
   * If the arguments are non-trivial to provide, consider using
   * LookupOrInsertWith instead.
   */
  template <typename... Args>
  DataType& LookupOrInsert(const KeyType& aKey, Args&&... aArgs) {
    return WithEntryHandle(aKey, [&](auto entryHandle) -> DataType& {
      return entryHandle.OrInsert(std::forward<Args>(aArgs)...);
    });
  }

  /**
   * Add aKey to the table if not already present, and return a reference to its
   * value.  If aKey is not already in the table then the value is
   * constructed using the given factory.
   */
  template <typename F>
  DataType& LookupOrInsertWith(const KeyType& aKey, F&& aFunc) {
    return WithEntryHandle(aKey, [&aFunc](auto entryHandle) -> DataType& {
      return entryHandle.OrInsertWith(std::forward<F>(aFunc));
    });
  }

  /**
   * Add aKey to the table if not already present, and return a reference to its
   * value.  If aKey is not already in the table then the value is
   * constructed using the given factory.
   */
  template <typename F>
  [[nodiscard]] auto TryLookupOrInsertWith(const KeyType& aKey, F&& aFunc) {
    return WithEntryHandle(
        aKey,
        [&aFunc](auto entryHandle)
            -> mozilla::Result<std::reference_wrapper<DataType>,
                               typename std::invoke_result_t<F>::err_type> {
          if (entryHandle) {
            return std::ref(entryHandle.Data());
          }

          // XXX Use MOZ_TRY after generalizing QM_TRY to mfbt.
          auto res = std::forward<F>(aFunc)();
          if (res.isErr()) {
            return res.propagateErr();
          }
          return std::ref(entryHandle.Insert(res.unwrap()));
        });
  }

  /**
   * If it does not yet, inserts a new entry with the handle's key and the
   * value passed to this function. Otherwise, it updates the entry by the
   * value passed to this function.
   *
   * \tparam U DataType must be implicitly convertible (and assignable) from U
   * \post HasEntry()
   * \param aKey the key to put
   * \param aData the new data
   */
  template <typename U>
  DataType& InsertOrUpdate(KeyType aKey, U&& aData) {
    return WithEntryHandle(aKey, [&aData](auto entryHandle) -> DataType& {
      return entryHandle.InsertOrUpdate(std::forward<U>(aData));
    });
  }

  template <typename U>
  [[nodiscard]] bool InsertOrUpdate(KeyType aKey, U&& aData,
                                    const fallible_t& aFallible) {
    return WithEntryHandle(aKey, aFallible, [&aData](auto maybeEntryHandle) {
      if (!maybeEntryHandle) {
        return false;
      }
      maybeEntryHandle->InsertOrUpdate(std::forward<U>(aData));
      return true;
    });
  }

  /**
   * Remove the entry associated with aKey (if any), _moving_ its current value
   * into *aData.  Return true if found.
   *
   * This overload can only be used if DataType is default-constructible. Use
   * the single-argument Remove or Extract with non-default-constructible
   * DataType.
   *
   * @param aKey the key to remove from the hashtable
   * @param aData where to move the value.  If an entry is not found, *aData
   *              will be assigned a default-constructed value (i.e. reset to
   *              zero or nullptr for primitive types).
   * @return true if an entry for aKey was found (and removed)
   */
  // XXX This should also better be marked nodiscard, but due to
  // nsClassHashtable not guaranteeing non-nullness of entries, it is usually
  // only checked if aData is nullptr in such cases.
  // [[nodiscard]]
  bool Remove(KeyType aKey, DataType* aData) {
    if (auto* ent = this->GetEntry(aKey)) {
      if (aData) {
        *aData = std::move(ent->mData);
      }
      this->RemoveEntry(ent);
      return true;
    }
    if (aData) {
      *aData = std::move(DataType());
    }
    return false;
  }

  /**
   * Remove the entry associated with aKey (if any).  Return true if found.
   *
   * @param aKey the key to remove from the hashtable
   * @return true if an entry for aKey was found (and removed)
   */
  bool Remove(KeyType aKey) {
    if (auto* ent = this->GetEntry(aKey)) {
      this->RemoveEntry(ent);
      return true;
    }

    return false;
  }

  /**
   * Retrieve the value for a key and remove the corresponding entry at
   * the same time.
   *
   * @param aKey the key to retrieve and remove
   * @return the found value, or Nothing if no entry was found with the
   *   given key.
   */
  [[nodiscard]] mozilla::Maybe<DataType> Extract(KeyType aKey) {
    mozilla::Maybe<DataType> value;
    if (EntryType* ent = this->GetEntry(aKey)) {
      value.emplace(std::move(ent->mData));
      this->RemoveEntry(ent);
    }
    return value;
  }

  template <typename HashtableRef>
  struct LookupResult {
   private:
    EntryType* mEntry;
    HashtableRef mTable;
#ifdef DEBUG
    uint32_t mTableGeneration;
#endif

   public:
    LookupResult(EntryType* aEntry, HashtableRef aTable)
        : mEntry(aEntry),
          mTable(aTable)
#ifdef DEBUG
          ,
          mTableGeneration(aTable.GetGeneration())
#endif
    {
    }

    // Is there something stored in the table?
    explicit operator bool() const {
      MOZ_ASSERT(mTableGeneration == mTable.GetGeneration());
      return mEntry;
    }

    void Remove() {
      if (!*this) {
        return;
      }
      mTable.RemoveEntry(mEntry);
      mEntry = nullptr;
    }

    [[nodiscard]] DataType& Data() {
      MOZ_ASSERT(!!*this, "must have an entry to access its value");
      return mEntry->mData;
    }

    [[nodiscard]] const DataType& Data() const {
      MOZ_ASSERT(!!*this, "must have an entry to access its value");
      return mEntry->mData;
    }

    [[nodiscard]] DataType* DataPtrOrNull() {
      return static_cast<bool>(*this) ? &mEntry->mData : nullptr;
    }

    [[nodiscard]] const DataType* DataPtrOrNull() const {
      return static_cast<bool>(*this) ? &mEntry->mData : nullptr;
    }

    [[nodiscard]] DataType* operator->() { return &Data(); }
    [[nodiscard]] const DataType* operator->() const { return &Data(); }

    [[nodiscard]] DataType& operator*() { return Data(); }
    [[nodiscard]] const DataType& operator*() const { return Data(); }
  };

  /**
   * Removes all entries matching a predicate.
   *
   * The predicate must be compatible with signature bool (const Iterator &).
   */
  template <typename Pred>
  void RemoveIf(Pred&& aPred) {
    for (auto iter = Iter(); !iter.Done(); iter.Next()) {
      if (aPred(const_cast<std::add_const_t<decltype(iter)>&>(iter))) {
        iter.Remove();
      }
    }
  }

  /**
   * Looks up aKey in the hashtable and returns an object that allows you to
   * read/modify the value of the entry, or remove the entry (if found).
   *
   * A typical usage of this API looks like this:
   *
   *   if (auto entry = hashtable.Lookup(key)) {
   *     DoSomething(entry.Data());
   *     if (entry.Data() > 42) {
   *       entry.Remove();
   *     }
   *   } // else - an entry with the given key doesn't exist
   *
   * This is useful for cases where you want to read/write the value of an entry
   * and (optionally) remove the entry without having to do multiple hashtable
   * lookups.  If you want to insert a new entry if one does not exist, then use
   * WithEntryHandle instead, see below.
   */
  [[nodiscard]] auto Lookup(KeyType aKey) {
    return LookupResult<nsBaseHashtable&>(this->GetEntry(aKey), *this);
  }

  [[nodiscard]] auto Lookup(KeyType aKey) const {
    return LookupResult<const nsBaseHashtable&>(this->GetEntry(aKey), *this);
  }

  /**
   * Used by WithEntryHandle as the argument type to its functor. It is
   * associated with the Key passed to WithEntryHandle and manages only the
   * potential entry with that key. Note that in case no modifying operations
   * are called on the handle, the state of the hashtable remains unchanged,
   * i.e. WithEntryHandle does not modify the hashtable itself.
   *
   * Provides query functions (Key, HasEntry/operator bool, Data) and
   * modifying operations for inserting new entries (Insert), updating existing
   * entries (Update) and removing existing entries (Remove). They have
   * debug-only assertion that fail when the state of the entry doesn't match
   * the expectation. There are variants prefixed with "Or" (OrInsert, OrUpdate,
   * OrRemove) that are a no-op in case the entry does already exist resp. does
   * not exist. There are also variants OrInsertWith and OrUpdateWith that don't
   * accept a value, but a functor, which is only called if the operation takes
   * place, which should be used if the provision of the value is not trivial
   * (e.g. allocates a heap object). Finally, there's InsertOrUpdate that
   * handles both existing and non-existing entries.
   *
   * Note that all functions of EntryHandle only deal with DataType, not with
   * UserDataType.
   */
  class EntryHandle : protected nsTHashtable<EntryType>::EntryHandle {
   public:
    using Base = typename nsTHashtable<EntryType>::EntryHandle;

    EntryHandle(EntryHandle&& aOther) = default;
    ~EntryHandle() = default;

    EntryHandle(const EntryHandle&) = delete;
    EntryHandle& operator=(const EntryHandle&) = delete;
    EntryHandle& operator=(const EntryHandle&&) = delete;

    using Base::Key;

    using Base::HasEntry;

    using Base::operator bool;

    using Base::Entry;

    /**
     * Inserts a new entry with the handle's key and the value passed to this
     * function.
     *
     * \tparam Args DataType must be constructible from Args
     * \pre !HasEntry()
     * \post HasEntry()
     */
    template <typename... Args>
    DataType& Insert(Args&&... aArgs) {
      Base::InsertInternal(std::forward<Args>(aArgs)...);
      return Data();
    }

    /**
     * If it doesn't yet exist, inserts a new entry with the handle's key and
     * the value passed to this function. The value is not consumed if no insert
     * takes place.
     *
     * \tparam Args DataType must be constructible from Args
     * \post HasEntry()
     */
    template <typename... Args>
    DataType& OrInsert(Args&&... aArgs) {
      if (!HasEntry()) {
        return Insert(std::forward<Args>(aArgs)...);
      }
      return Data();
    }

    /**
     * If it doesn't yet exist, inserts a new entry with the handle's key and
     * the result of the functor passed to this function. The functor is not
     * called if no insert takes place.
     *
     * \tparam F must return a value that is implicitly convertible to DataType
     * \post HasEntry()
     */
    template <typename F>
    DataType& OrInsertWith(F&& aFunc) {
      if (!HasEntry()) {
        return Insert(std::forward<F>(aFunc)());
      }
      return Data();
    }

    /**
     * Updates the entry with the handle's key by the value passed to this
     * function.
     *
     * \tparam U DataType must be assignable from U
     * \pre HasEntry()
     */
    template <typename U>
    DataType& Update(U&& aData) {
      MOZ_RELEASE_ASSERT(HasEntry());
      Data() = std::forward<U>(aData);
      return Data();
    }

    /**
     * If an entry with the handle's key already exists, updates its value by
     * the value passed to this function. The value is not consumed if no update
     * takes place.
     *
     * \tparam U DataType must be assignable from U
     */
    template <typename U>
    void OrUpdate(U&& aData) {
      if (HasEntry()) {
        Update(std::forward<U>(aData));
      }
    }

    /**
     * If an entry with the handle's key already exists, updates its value by
     * the the result of the functor passed to this function. The functor is not
     * called if no update takes place.
     *
     * \tparam F must return a value that DataType is assignable from
     */
    template <typename F>
    void OrUpdateWith(F&& aFunc) {
      if (HasEntry()) {
        Update(std::forward<F>(aFunc)());
      }
    }

    /**
     * If it does not yet, inserts a new entry with the handle's key and the
     * value passed to this function. Otherwise, it updates the entry by the
     * value passed to this function.
     *
     * \tparam U DataType must be implicitly convertible (and assignable) from U
     * \post HasEntry()
     */
    template <typename U>
    DataType& InsertOrUpdate(U&& aData) {
      if (!HasEntry()) {
        Insert(std::forward<U>(aData));
      } else {
        Update(std::forward<U>(aData));
      }
      return Data();
    }

    using Base::Remove;

    using Base::OrRemove;

    /**
     * Returns a reference to the value of the entry.
     *
     * \pre HasEntry()
     */
    [[nodiscard]] DataType& Data() { return Entry()->mData; }

    [[nodiscard]] DataType* DataPtrOrNull() {
      return static_cast<bool>(*this) ? &Data() : nullptr;
    }

    [[nodiscard]] DataType* operator->() { return &Data(); }

    [[nodiscard]] DataType& operator*() { return Data(); }

   private:
    friend class nsBaseHashtable;

    explicit EntryHandle(Base&& aBase) : Base(std::move(aBase)) {}
  };

  /**
   * Performs a scoped operation on the entry for aKey, which may or may not
   * exist when the function is called. It calls aFunc with an EntryHandle. The
   * result of aFunc is returned as the result of this function. Its return type
   * may be void. See the documentation of EntryHandle for the query and
   * modifying operations it offers.
   *
   * A simple use of this function is, e.g.,
   *
   *   hashtable.WithEntryHandle(key, [](auto&& entry) { entry.OrInsert(42); });
   *
   * \attention It is not safe to perform modifying operations on the hashtable
   * other than through the EntryHandle within aFunc, and trying to do so will
   * trigger debug assertions, and result in undefined behaviour otherwise.
   */
  template <class F>
  [[nodiscard]] auto WithEntryHandle(KeyType aKey, F&& aFunc)
      -> std::invoke_result_t<F, EntryHandle&&> {
    return Base::WithEntryHandle(
        aKey, [&aFunc](auto entryHandle) -> decltype(auto) {
          return std::forward<F>(aFunc)(EntryHandle{std::move(entryHandle)});
        });
  }

  /**
   * Fallible variant of WithEntryHandle, with the following differences:
   * - The functor aFunc must accept a Maybe<EntryHandle> (instead of an
   *   EntryHandle).
   * - In case allocation of the slot for the entry fails, Nothing is passed to
   *   the functor.
   *
   * For more details, see the explanation on the non-fallible overload above.
   */
  template <class F>
  [[nodiscard]] auto WithEntryHandle(KeyType aKey, const fallible_t& aFallible,
                                     F&& aFunc)
      -> std::invoke_result_t<F, mozilla::Maybe<EntryHandle>&&> {
    return Base::WithEntryHandle(
        aKey, aFallible, [&aFunc](auto maybeEntryHandle) {
          return std::forward<F>(aFunc)(
              maybeEntryHandle
                  ? mozilla::Some(EntryHandle{maybeEntryHandle.extract()})
                  : mozilla::Nothing());
        });
  }

 public:
  class ConstIterator {
   public:
    explicit ConstIterator(nsBaseHashtable* aTable)
        : mBaseIterator(&aTable->mTable) {}
    ~ConstIterator() = default;

    KeyType Key() const {
      return static_cast<EntryType*>(mBaseIterator.Get())->GetKey();
    }
    UserDataType UserData() const {
      return Converter::Unwrap(
          static_cast<EntryType*>(mBaseIterator.Get())->mData);
    }
    const DataType& Data() const {
      return static_cast<EntryType*>(mBaseIterator.Get())->mData;
    }

    bool Done() const { return mBaseIterator.Done(); }
    void Next() { mBaseIterator.Next(); }

    ConstIterator() = delete;
    ConstIterator(const ConstIterator&) = delete;
    ConstIterator(ConstIterator&& aOther) = delete;
    ConstIterator& operator=(const ConstIterator&) = delete;
    ConstIterator& operator=(ConstIterator&&) = delete;

   protected:
    PLDHashTable::Iterator mBaseIterator;
  };

  // This is an iterator that also allows entry removal. Example usage:
  //
  //   for (auto iter = table.Iter(); !iter.Done(); iter.Next()) {
  //     const KeyType key = iter.Key();
  //     const UserDataType data = iter.UserData();
  //     // or
  //     const DataType& data = iter.Data();
  //     // ... do stuff with |key| and/or |data| ...
  //     // ... possibly call iter.Remove() once ...
  //   }
  //
  class Iterator final : public ConstIterator {
   public:
    using ConstIterator::ConstIterator;

    using ConstIterator::Data;
    DataType& Data() {
      return static_cast<EntryType*>(this->mBaseIterator.Get())->mData;
    }

    void Remove() { this->mBaseIterator.Remove(); }
  };

  Iterator Iter() { return Iterator(this); }

  ConstIterator ConstIter() const {
    return ConstIterator(const_cast<nsBaseHashtable*>(this));
  }

  using nsTHashtable<EntryType>::Remove;

  /**
   * Remove the entry associated with aIter.
   *
   * @param aIter the iterator pointing to the entry
   * @pre !aIter.Done()
   */
  void Remove(ConstIterator& aIter) { aIter.mBaseIterator.Remove(); }

  using typename nsTHashtable<EntryType>::iterator;
  using typename nsTHashtable<EntryType>::const_iterator;

  using nsTHashtable<EntryType>::begin;
  using nsTHashtable<EntryType>::end;
  using nsTHashtable<EntryType>::cbegin;
  using nsTHashtable<EntryType>::cend;

  using nsTHashtable<EntryType>::Keys;

  /**
   * Return a range of the values (of DataType). Note this range iterates over
   * the values in place, so modifications to the nsTHashtable invalidate the
   * range while it's iterated, except when calling Remove() with a value
   * iterator derived from that range.
   */
  auto Values() const {
    return mozilla::detail::nsBaseHashtableValueRange<EntryType>{this->mTable};
  }

  /**
   * Remove an entry from a value range, specified via a value iterator, e.g.
   *
   * for (auto it = hash.Values().begin(), end = hash.Values().end();
   *      it != end; * ++it) {
   *   if (*it > 42) { hash.Remove(it); }
   * }
   *
   * You might also consider using RemoveIf though.
   */
  void Remove(mozilla::detail::nsBaseHashtableValueIterator<EntryType>& aIter) {
    aIter.mIterator.Remove();
  }

  /**
   * reset the hashtable, removing all entries
   */
  void Clear() { nsTHashtable<EntryType>::Clear(); }

  /**
   * Measure the size of the table's entry storage. The size of things pointed
   * to by entries must be measured separately; hence the "Shallow" prefix.
   *
   * @param   aMallocSizeOf the function used to measure heap-allocated blocks
   * @return  the summed size of the table's storage
   */
  size_t ShallowSizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return this->mTable.ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  /**
   * Like ShallowSizeOfExcludingThis, but includes sizeof(*this).
   */
  size_t ShallowSizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + ShallowSizeOfExcludingThis(aMallocSizeOf);
  }

  /**
   * Swap the elements in this hashtable with the elements in aOther.
   */
  void SwapElements(nsBaseHashtable& aOther) {
    nsTHashtable<EntryType>::SwapElements(aOther);
  }

  using nsTHashtable<EntryType>::MarkImmutable;

  /**
   * Makes a clone of this hashtable by copying all entries. This requires
   * KeyType and DataType to be copy-constructible.
   */
  nsBaseHashtable Clone() const { return CloneAs<nsBaseHashtable>(); }

 protected:
  template <typename T>
  T CloneAs() const {
    static_assert(std::is_base_of_v<nsBaseHashtable, T>);
    // XXX This can probably be optimized, see Bug 1694368.
    T result(Count());
    for (const auto& srcEntry : *this) {
      result.WithEntryHandle(srcEntry.GetKey(), [&](auto&& dstEntry) {
        dstEntry.Insert(srcEntry.GetData());
      });
    }
    return result;
  }
};

//
// nsBaseHashtableET definitions
//

template <class KeyClass, class DataType>
template <typename... Args>
nsBaseHashtableET<KeyClass, DataType>::nsBaseHashtableET(KeyTypePointer aKey,
                                                         Args&&... aArgs)
    : KeyClass(aKey), mData(std::forward<Args>(aArgs)...) {}

#endif  // nsBaseHashtable_h__