summaryrefslogtreecommitdiffstats
path: root/xpcom/threads/SyncRunnable.h
blob: 77f82ba313894d2bc6f2f01fb70596229fdc3650 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_SyncRunnable_h
#define mozilla_SyncRunnable_h

#include <utility>

#include "mozilla/AbstractThread.h"
#include "mozilla/Monitor.h"
#include "mozilla/dom/JSExecutionManager.h"
#include "nsThreadUtils.h"

namespace mozilla {

/**
 * This class will wrap a nsIRunnable and dispatch it to the target thread
 * synchronously. This is different from
 * NS_DispatchAndSpinEventLoopUntilComplete: this class does not spin the event
 * loop waiting for the event to be dispatched. This means that you don't risk
 * reentrance from pending messages, but you must be sure that the target thread
 * does not ever block on this thread, or else you will deadlock.
 *
 * Typical usage:
 *   RefPtr<SyncRunnable> sr = new SyncRunnable(new myrunnable...());
 *   sr->DispatchToThread(t);
 *
 * We also provide convenience wrappers:
 *   SyncRunnable::DispatchToThread(pThread, new myrunnable...());
 *   SyncRunnable::DispatchToThread(pThread, NS_NewRunnableFunction(...));
 *
 */
class SyncRunnable : public Runnable {
 public:
  explicit SyncRunnable(nsIRunnable* aRunnable)
      : Runnable("SyncRunnable"),
        mRunnable(aRunnable),
        mMonitor("SyncRunnable"),
        mDone(false) {}

  explicit SyncRunnable(already_AddRefed<nsIRunnable> aRunnable)
      : Runnable("SyncRunnable"),
        mRunnable(std::move(aRunnable)),
        mMonitor("SyncRunnable"),
        mDone(false) {}

  nsresult DispatchToThread(nsIEventTarget* aThread,
                            bool aForceDispatch = false) {
    nsresult rv;
    bool on;

    if (!aForceDispatch) {
      rv = aThread->IsOnCurrentThread(&on);
      MOZ_ASSERT(NS_SUCCEEDED(rv));
      if (NS_SUCCEEDED(rv) && on) {
        mRunnable->Run();
        return NS_OK;
      }
    }

    rv = aThread->Dispatch(this, NS_DISPATCH_NORMAL);
    if (NS_SUCCEEDED(rv)) {
      mozilla::MonitorAutoLock lock(mMonitor);
      // This could be synchronously dispatching to a thread currently waiting
      // for JS execution clearance. Yield JS execution.
      dom::AutoYieldJSThreadExecution yield;

      while (!mDone) {
        lock.Wait();
      }
    }
    return rv;
  }

  nsresult DispatchToThread(AbstractThread* aThread,
                            bool aForceDispatch = false) {
    if (!aForceDispatch && aThread->IsCurrentThreadIn()) {
      mRunnable->Run();
      return NS_OK;
    }

    // Check we don't have tail dispatching here. Otherwise we will deadlock
    // ourself when spinning the loop below.
    MOZ_ASSERT(!aThread->RequiresTailDispatchFromCurrentThread());

    nsresult rv = aThread->Dispatch(RefPtr<nsIRunnable>(this).forget());
    if (NS_SUCCEEDED(rv)) {
      mozilla::MonitorAutoLock lock(mMonitor);
      while (!mDone) {
        lock.Wait();
      }
    }
    return rv;
  }

  static nsresult DispatchToThread(nsIEventTarget* aThread,
                                   nsIRunnable* aRunnable,
                                   bool aForceDispatch = false) {
    RefPtr<SyncRunnable> s(new SyncRunnable(aRunnable));
    return s->DispatchToThread(aThread, aForceDispatch);
  }

  static nsresult DispatchToThread(AbstractThread* aThread,
                                   nsIRunnable* aRunnable,
                                   bool aForceDispatch = false) {
    RefPtr<SyncRunnable> s(new SyncRunnable(aRunnable));
    return s->DispatchToThread(aThread, aForceDispatch);
  }

  static nsresult DispatchToThread(nsIEventTarget* aThread,
                                   already_AddRefed<nsIRunnable> aRunnable,
                                   bool aForceDispatch = false) {
    RefPtr<SyncRunnable> s(new SyncRunnable(std::move(aRunnable)));
    return s->DispatchToThread(aThread, aForceDispatch);
  }

  static nsresult DispatchToThread(AbstractThread* aThread,
                                   already_AddRefed<nsIRunnable> aRunnable,
                                   bool aForceDispatch = false) {
    RefPtr<SyncRunnable> s(new SyncRunnable(std::move(aRunnable)));
    return s->DispatchToThread(aThread, aForceDispatch);
  }

  // These deleted overloads prevent accidentally (if harmlessly) double-
  // wrapping SyncRunnable, which was previously a common anti-pattern.
  static nsresult DispatchToThread(nsIEventTarget* aThread,
                                   SyncRunnable* aRunnable,
                                   bool aForceDispatch = false) = delete;
  static nsresult DispatchToThread(AbstractThread* aThread,
                                   SyncRunnable* aRunnable,
                                   bool aForceDispatch = false) = delete;

 protected:
  NS_IMETHOD Run() override {
    mRunnable->Run();

    mozilla::MonitorAutoLock lock(mMonitor);
    MOZ_ASSERT(!mDone);

    mDone = true;
    mMonitor.Notify();

    return NS_OK;
  }

 private:
  nsCOMPtr<nsIRunnable> mRunnable;
  mozilla::Monitor mMonitor;
  bool mDone MOZ_GUARDED_BY(mMonitor);
};

}  // namespace mozilla

#endif  // mozilla_SyncRunnable_h