summaryrefslogtreecommitdiffstats
path: root/src/VBox/Debugger/DBGPlugInLinux.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 16:49:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 16:49:04 +0000
commit16f504a9dca3fe3b70568f67b7d41241ae485288 (patch)
treec60f36ada0496ba928b7161059ba5ab1ab224f9d /src/VBox/Debugger/DBGPlugInLinux.cpp
parentInitial commit. (diff)
downloadvirtualbox-upstream.tar.xz
virtualbox-upstream.zip
Adding upstream version 7.0.6-dfsg.upstream/7.0.6-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/Debugger/DBGPlugInLinux.cpp')
-rw-r--r--src/VBox/Debugger/DBGPlugInLinux.cpp3046
1 files changed, 3046 insertions, 0 deletions
diff --git a/src/VBox/Debugger/DBGPlugInLinux.cpp b/src/VBox/Debugger/DBGPlugInLinux.cpp
new file mode 100644
index 00000000..9712fe77
--- /dev/null
+++ b/src/VBox/Debugger/DBGPlugInLinux.cpp
@@ -0,0 +1,3046 @@
+/* $Id: DBGPlugInLinux.cpp $ */
+/** @file
+ * DBGPlugInLinux - Debugger and Guest OS Digger Plugin For Linux.
+ */
+
+/*
+ * Copyright (C) 2008-2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_DBGF /// @todo add new log group.
+#include "DBGPlugIns.h"
+#include "DBGPlugInCommonELF.h"
+#include <VBox/vmm/vmmr3vtable.h>
+#include <VBox/dis.h>
+#include <iprt/ctype.h>
+#include <iprt/file.h>
+#include <iprt/err.h>
+#include <iprt/mem.h>
+#include <iprt/stream.h>
+#include <iprt/string.h>
+#include <iprt/vfs.h>
+#include <iprt/zip.h>
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+
+/** @name InternalLinux structures
+ * @{ */
+
+
+/** @} */
+
+
+/**
+ * Config item type.
+ */
+typedef enum DBGDIGGERLINUXCFGITEMTYPE
+{
+ /** Invalid type. */
+ DBGDIGGERLINUXCFGITEMTYPE_INVALID = 0,
+ /** String. */
+ DBGDIGGERLINUXCFGITEMTYPE_STRING,
+ /** Number. */
+ DBGDIGGERLINUXCFGITEMTYPE_NUMBER,
+ /** Flag whether this feature is included in the
+ * kernel or as a module. */
+ DBGDIGGERLINUXCFGITEMTYPE_FLAG
+} DBGDIGGERLINUXCFGITEMTYPE;
+
+/**
+ * Item in the config database.
+ */
+typedef struct DBGDIGGERLINUXCFGITEM
+{
+ /** String space core. */
+ RTSTRSPACECORE Core;
+ /** Config item type. */
+ DBGDIGGERLINUXCFGITEMTYPE enmType;
+ /** Data based on the type. */
+ union
+ {
+ /** Number. */
+ int64_t i64Num;
+ /** Flag. */
+ bool fModule;
+ /** String - variable in size. */
+ char aszString[1];
+ } u;
+} DBGDIGGERLINUXCFGITEM;
+/** Pointer to a config database item. */
+typedef DBGDIGGERLINUXCFGITEM *PDBGDIGGERLINUXCFGITEM;
+/** Pointer to a const config database item. */
+typedef const DBGDIGGERLINUXCFGITEM *PCDBGDIGGERLINUXCFGITEM;
+
+/**
+ * Linux guest OS digger instance data.
+ */
+typedef struct DBGDIGGERLINUX
+{
+ /** Whether the information is valid or not.
+ * (For fending off illegal interface method calls.) */
+ bool fValid;
+ /** Set if 64-bit, clear if 32-bit. */
+ bool f64Bit;
+ /** Set if the kallsyms table uses relative addressing, clear
+ * if absolute addresses are used. */
+ bool fRelKrnlAddr;
+ /** The relative base when kernel symbols use offsets rather than
+ * absolute addresses. */
+ RTGCUINTPTR uKernelRelativeBase;
+ /** The guest kernel version used for version comparisons. */
+ uint32_t uKrnlVer;
+ /** The guest kernel major version. */
+ uint32_t uKrnlVerMaj;
+ /** The guest kernel minor version. */
+ uint32_t uKrnlVerMin;
+ /** The guest kernel build version. */
+ uint32_t uKrnlVerBld;
+
+ /** The address of the linux banner.
+ * This is set during probing. */
+ DBGFADDRESS AddrLinuxBanner;
+ /** Kernel base address.
+ * This is set during probing, refined during kallsyms parsing. */
+ DBGFADDRESS AddrKernelBase;
+ /** The kernel size. */
+ uint32_t cbKernel;
+
+ /** The number of kernel symbols (kallsyms_num_syms).
+ * This is set during init. */
+ uint32_t cKernelSymbols;
+ /** The size of the kernel name table (sizeof(kallsyms_names)). */
+ uint32_t cbKernelNames;
+ /** Number of entries in the kernel_markers table. */
+ uint32_t cKernelNameMarkers;
+ /** The size of the kernel symbol token table. */
+ uint32_t cbKernelTokenTable;
+ /** The address of the encoded kernel symbol names (kallsyms_names). */
+ DBGFADDRESS AddrKernelNames;
+ /** The address of the kernel symbol addresses (kallsyms_addresses). */
+ DBGFADDRESS AddrKernelAddresses;
+ /** The address of the kernel symbol name markers (kallsyms_markers). */
+ DBGFADDRESS AddrKernelNameMarkers;
+ /** The address of the kernel symbol token table (kallsyms_token_table). */
+ DBGFADDRESS AddrKernelTokenTable;
+ /** The address of the kernel symbol token index table (kallsyms_token_index). */
+ DBGFADDRESS AddrKernelTokenIndex;
+
+ /** The kernel message log interface. */
+ DBGFOSIDMESG IDmesg;
+
+ /** The config database root. */
+ RTSTRSPACE hCfgDb;
+} DBGDIGGERLINUX;
+/** Pointer to the linux guest OS digger instance data. */
+typedef DBGDIGGERLINUX *PDBGDIGGERLINUX;
+
+
+/**
+ * The current printk_log structure.
+ */
+typedef struct LNXPRINTKHDR
+{
+ /** Monotonic timestamp. */
+ uint64_t nsTimestamp;
+ /** The total size of this message record. */
+ uint16_t cbTotal;
+ /** The size of the text part (immediately follows the header). */
+ uint16_t cbText;
+ /** The size of the optional dictionary part (follows the text). */
+ uint16_t cbDict;
+ /** The syslog facility number. */
+ uint8_t bFacility;
+ /** First 5 bits are internal flags, next 3 bits are log level. */
+ uint8_t fFlagsAndLevel;
+} LNXPRINTKHDR;
+AssertCompileSize(LNXPRINTKHDR, 2*sizeof(uint64_t));
+/** Pointer to linux printk_log header. */
+typedef LNXPRINTKHDR *PLNXPRINTKHDR;
+/** Pointer to linux const printk_log header. */
+typedef LNXPRINTKHDR const *PCLNXPRINTKHDR;
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** First kernel map address for 32bit Linux hosts (__START_KERNEL_map). */
+#define LNX32_KERNEL_ADDRESS_START UINT32_C(0xc0000000)
+/** First kernel map address for 64bit Linux hosts (__START_KERNEL_map). */
+#define LNX64_KERNEL_ADDRESS_START UINT64_C(0xffffffff80000000)
+/** Validates a 32-bit linux kernel address */
+#define LNX32_VALID_ADDRESS(Addr) ((Addr) > UINT32_C(0x80000000) && (Addr) < UINT32_C(0xfffff000))
+/** Validates a 64-bit linux kernel address */
+#define LNX64_VALID_ADDRESS(Addr) ((Addr) > UINT64_C(0xffff800000000000) && (Addr) < UINT64_C(0xfffffffffffff000))
+
+/** The max kernel size. */
+#define LNX_MAX_KERNEL_SIZE UINT32_C(0x0f000000)
+/** Maximum kernel log buffer size. */
+#define LNX_MAX_KERNEL_LOG_SIZE (16 * _1M)
+
+/** The maximum size we expect for kallsyms_names. */
+#define LNX_MAX_KALLSYMS_NAMES_SIZE UINT32_C(0x200000)
+/** The maximum size we expect for kallsyms_token_table. */
+#define LNX_MAX_KALLSYMS_TOKEN_TABLE_SIZE UINT32_C(0x10000)
+/** The minimum number of symbols we expect in kallsyms_num_syms. */
+#define LNX_MIN_KALLSYMS_SYMBOLS UINT32_C(2048)
+/** The maximum number of symbols we expect in kallsyms_num_syms. */
+#define LNX_MAX_KALLSYMS_SYMBOLS UINT32_C(1048576)
+/** The min length an encoded symbol in kallsyms_names is expected to have. */
+#define LNX_MIN_KALLSYMS_ENC_LENGTH UINT8_C(1)
+/** The max length an encoded symbol in kallsyms_names is expected to have.
+ * @todo check real life here. */
+#define LNX_MAX_KALLSYMS_ENC_LENGTH UINT8_C(28)
+/** The approximate maximum length of a string token. */
+#define LNX_MAX_KALLSYMS_TOKEN_LEN UINT16_C(32)
+/** Maximum compressed config size expected. */
+#define LNX_MAX_COMPRESSED_CFG_SIZE _1M
+
+/** Module tag for linux ('linuxmod' on little endian ASCII systems). */
+#define DIG_LNX_MOD_TAG UINT64_C(0x545f5d78758e898c)
+/** Macro for building a Linux kernel version which can be used for comparisons. */
+#define LNX_MK_VER(major, minor, build) (((major) << 22) | ((minor) << 12) | (build))
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static DECLCALLBACK(int) dbgDiggerLinuxInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** Table of common linux kernel addresses. */
+static uint64_t g_au64LnxKernelAddresses[] =
+{
+ UINT64_C(0xc0100000),
+ UINT64_C(0x90100000),
+ UINT64_C(0xffffffff80200000)
+};
+
+static const uint8_t g_abLinuxVersion[] = "Linux version ";
+/** The needle for searching for the kernel log area (the value is observed in pretty much all 32bit and 64bit x86 kernels).
+ * This needle should appear only once in the memory due to the address being filled in by a format string. */
+static const uint8_t g_abKrnlLogNeedle[] = "BIOS-e820: [mem 0x0000000000000000";
+
+
+/**
+ * Tries to resolve the kernel log buffer start and end by searching for needle.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM handle.
+ * @param pVMM The VMM function table.
+ * @param pGCPtrLogBuf Where to store the start of the kernel log buffer on success.
+ * @param pcbLogBuf Where to store the size of the kernel log buffer on success.
+ */
+static int dbgDiggerLinuxKrnlLogBufFindByNeedle(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM,
+ RTGCPTR *pGCPtrLogBuf, uint32_t *pcbLogBuf)
+{
+ int rc = VINF_SUCCESS;
+
+ /* Try to find the needle, it should be very early in the kernel log buffer. */
+ DBGFADDRESS AddrScan;
+ DBGFADDRESS AddrHit;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrScan, pThis->f64Bit ? LNX64_KERNEL_ADDRESS_START : LNX32_KERNEL_ADDRESS_START);
+
+ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &AddrScan, ~(RTGCUINTPTR)0, 1 /*uAlign*/,
+ g_abKrnlLogNeedle, sizeof(g_abKrnlLogNeedle) - 1, &AddrHit);
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t cbLogBuf = 0;
+ uint64_t tsLastNs = 0;
+ DBGFADDRESS AddrCur;
+
+ pVMM->pfnDBGFR3AddrSub(&AddrHit, sizeof(LNXPRINTKHDR));
+ AddrCur = AddrHit;
+
+ /* Try to find the end of the kernel log buffer. */
+ for (;;)
+ {
+ if (cbLogBuf >= LNX_MAX_KERNEL_LOG_SIZE)
+ break;
+
+ LNXPRINTKHDR Hdr;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &AddrCur, &Hdr, sizeof(Hdr));
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t const cbLogAlign = 4;
+
+ /*
+ * If the header does not look valid anymore we stop.
+ * Timestamps are monotonically increasing.
+ */
+ if ( !Hdr.cbTotal /* Zero entry size means there is no record anymore, doesn't make sense to look futher. */
+ || Hdr.cbText + Hdr.cbDict + sizeof(Hdr) > Hdr.cbTotal
+ || (Hdr.cbTotal & (cbLogAlign - 1)) != 0
+ || tsLastNs > Hdr.nsTimestamp)
+ break;
+
+ /** @todo Maybe read text part and verify it is all ASCII. */
+
+ cbLogBuf += Hdr.cbTotal;
+ pVMM->pfnDBGFR3AddrAdd(&AddrCur, Hdr.cbTotal);
+ }
+
+ if (RT_FAILURE(rc))
+ break;
+ }
+
+ /** @todo Go back to find the start address of the kernel log (or we loose potential kernel log messages). */
+
+ if ( RT_SUCCESS(rc)
+ && cbLogBuf)
+ {
+ /* Align log buffer size to a power of two. */
+ uint32_t idxBitLast = ASMBitLastSetU32(cbLogBuf);
+ idxBitLast--; /* There is at least one bit set, see check above. */
+
+ if (cbLogBuf & (RT_BIT_32(idxBitLast) - 1))
+ idxBitLast++;
+
+ *pGCPtrLogBuf = AddrHit.FlatPtr;
+ *pcbLogBuf = RT_MIN(RT_BIT_32(idxBitLast), LNX_MAX_KERNEL_LOG_SIZE);
+ }
+ else if (RT_SUCCESS(rc))
+ rc = VERR_NOT_FOUND;
+ }
+
+ return rc;
+}
+
+
+/**
+ * Converts a given offset into an absolute address if relative kernel offsets are used for
+ * kallsyms.
+ *
+ * @returns The absolute kernel address.
+ * @param pThis The Linux digger data.
+ * @param uOffset The offset to convert.
+ */
+DECLINLINE(RTGCUINTPTR) dbgDiggerLinuxConvOffsetToAddr(PDBGDIGGERLINUX pThis, int32_t uOffset)
+{
+ RTGCUINTPTR uAddr;
+
+ /*
+ * How the absolute address is calculated from the offset depends on the
+ * CONFIG_KALLSYMS_ABSOLUTE_PERCPU config which is only set for 64bit
+ * SMP kernels (we assume that all 64bit kernels always have SMP enabled too).
+ */
+ if (pThis->f64Bit)
+ {
+ if (uOffset >= 0)
+ uAddr = uOffset;
+ else
+ uAddr = pThis->uKernelRelativeBase - 1 - uOffset;
+ }
+ else
+ uAddr = pThis->uKernelRelativeBase + (uint32_t)uOffset;
+
+ return uAddr;
+}
+
+/**
+ * Disassembles a simple getter returning the value for it.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM handle.
+ * @param pVMM The VMM function table.
+ * @param hMod The module to use.
+ * @param pszSymbol The symbol of the getter.
+ * @param pvVal Where to store the value on success.
+ * @param cbVal Size of the value in bytes.
+ */
+static int dbgDiggerLinuxDisassembleSimpleGetter(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTDBGMOD hMod,
+ const char *pszSymbol, void *pvVal, uint32_t cbVal)
+{
+ int rc = VINF_SUCCESS;
+
+ RTDBGSYMBOL SymInfo;
+ rc = RTDbgModSymbolByName(hMod, pszSymbol, &SymInfo);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Do the diassembling. Disassemble until a ret instruction is encountered
+ * or a limit is reached (don't want to disassemble for too long as the getter
+ * should be short).
+ * push and pop instructions are skipped as well as any mov instructions not
+ * touching the rax or eax register (depending on the size of the value).
+ */
+ unsigned cInstrDisassembled = 0;
+ uint32_t offInstr = 0;
+ bool fRet = false;
+ DISSTATE DisState;
+ RT_ZERO(DisState);
+
+ do
+ {
+ DBGFADDRESS Addr;
+ RTGCPTR GCPtrCur = (RTGCPTR)SymInfo.Value + pThis->AddrKernelBase.FlatPtr + offInstr;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, GCPtrCur);
+
+ /* Prefetch the instruction. */
+ uint8_t abInstr[32];
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &Addr, &abInstr[0], sizeof(abInstr));
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t cbInstr = 0;
+
+ rc = DISInstr(&abInstr[0], pThis->f64Bit ? DISCPUMODE_64BIT : DISCPUMODE_32BIT, &DisState, &cbInstr);
+ if (RT_SUCCESS(rc))
+ {
+ switch (DisState.pCurInstr->uOpcode)
+ {
+ case OP_PUSH:
+ case OP_POP:
+ case OP_NOP:
+ case OP_LEA:
+ break;
+ case OP_RETN:
+ /* Getter returned, abort disassembling. */
+ fRet = true;
+ break;
+ case OP_MOV:
+ /*
+ * Check that the destination is either rax or eax depending on the
+ * value size.
+ *
+ * Param1 is the destination and Param2 the source.
+ */
+ if ( ( ( (DisState.Param1.fUse & (DISUSE_BASE | DISUSE_REG_GEN32))
+ && cbVal == sizeof(uint32_t))
+ || ( (DisState.Param1.fUse & (DISUSE_BASE | DISUSE_REG_GEN64))
+ && cbVal == sizeof(uint64_t)))
+ && DisState.Param1.Base.idxGenReg == DISGREG_RAX)
+ {
+ /* Parse the source. */
+ if (DisState.Param2.fUse & (DISUSE_IMMEDIATE32 | DISUSE_IMMEDIATE64))
+ memcpy(pvVal, &DisState.Param2.uValue, cbVal);
+ else if (DisState.Param2.fUse & (DISUSE_RIPDISPLACEMENT32|DISUSE_DISPLACEMENT32|DISUSE_DISPLACEMENT64))
+ {
+ RTGCPTR GCPtrVal = 0;
+
+ if (DisState.Param2.fUse & DISUSE_RIPDISPLACEMENT32)
+ GCPtrVal = GCPtrCur + DisState.Param2.uDisp.i32 + cbInstr;
+ else if (DisState.Param2.fUse & DISUSE_DISPLACEMENT32)
+ GCPtrVal = (RTGCPTR)DisState.Param2.uDisp.u32;
+ else if (DisState.Param2.fUse & DISUSE_DISPLACEMENT64)
+ GCPtrVal = (RTGCPTR)DisState.Param2.uDisp.u64;
+ else
+ AssertMsgFailedBreakStmt(("Invalid displacement\n"), rc = VERR_INVALID_STATE);
+
+ DBGFADDRESS AddrVal;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/,
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrVal, GCPtrVal),
+ pvVal, cbVal);
+ }
+ }
+ break;
+ default:
+ /* All other instructions will cause an error for now (playing safe here). */
+ rc = VERR_INVALID_PARAMETER;
+ break;
+ }
+ cInstrDisassembled++;
+ offInstr += cbInstr;
+ }
+ }
+ } while ( RT_SUCCESS(rc)
+ && cInstrDisassembled < 20
+ && !fRet);
+ }
+
+ return rc;
+}
+
+/**
+ * Try to get at the log buffer starting address and size by disassembling emit_log_char.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM handle.
+ * @param pVMM The VMM function table.
+ * @param hMod The module to use.
+ * @param pGCPtrLogBuf Where to store the log buffer pointer on success.
+ * @param pcbLogBuf Where to store the size of the log buffer on success.
+ */
+static int dbgDiggerLinuxQueryAsciiLogBufferPtrs(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTDBGMOD hMod,
+ RTGCPTR *pGCPtrLogBuf, uint32_t *pcbLogBuf)
+{
+ int rc = VINF_SUCCESS;
+
+ /**
+ * We disassemble emit_log_char to get at the log buffer address and size.
+ * This is used in case the symbols are not exported in kallsyms.
+ *
+ * This is what it typically looks like:
+ * vmlinux!emit_log_char:
+ * %00000000c01204a1 56 push esi
+ * %00000000c01204a2 8b 35 d0 1c 34 c0 mov esi, dword [0c0341cd0h]
+ * %00000000c01204a8 53 push ebx
+ * %00000000c01204a9 8b 1d 74 3b 3e c0 mov ebx, dword [0c03e3b74h]
+ * %00000000c01204af 8b 0d d8 1c 34 c0 mov ecx, dword [0c0341cd8h]
+ * %00000000c01204b5 8d 56 ff lea edx, [esi-001h]
+ * %00000000c01204b8 21 da and edx, ebx
+ * %00000000c01204ba 88 04 11 mov byte [ecx+edx], al
+ * %00000000c01204bd 8d 53 01 lea edx, [ebx+001h]
+ * %00000000c01204c0 89 d0 mov eax, edx
+ * [...]
+ */
+ RTDBGSYMBOL SymInfo;
+ rc = RTDbgModSymbolByName(hMod, "emit_log_char", &SymInfo);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Do the diassembling. Disassemble until a ret instruction is encountered
+ * or a limit is reached (don't want to disassemble for too long as the getter
+ * should be short). Certain instructions found are ignored (push, nop, etc.).
+ */
+ unsigned cInstrDisassembled = 0;
+ uint32_t offInstr = 0;
+ bool fRet = false;
+ DISSTATE DisState;
+ unsigned cAddressesUsed = 0;
+ struct { size_t cb; RTGCPTR GCPtrOrigSrc; } aAddresses[5];
+ RT_ZERO(DisState);
+ RT_ZERO(aAddresses);
+
+ do
+ {
+ DBGFADDRESS Addr;
+ RTGCPTR GCPtrCur = (RTGCPTR)SymInfo.Value + pThis->AddrKernelBase.FlatPtr + offInstr;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, GCPtrCur);
+
+ /* Prefetch the instruction. */
+ uint8_t abInstr[32];
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &Addr, &abInstr[0], sizeof(abInstr));
+ if (RT_SUCCESS(rc))
+ {
+ uint32_t cbInstr = 0;
+
+ rc = DISInstr(&abInstr[0], pThis->f64Bit ? DISCPUMODE_64BIT : DISCPUMODE_32BIT, &DisState, &cbInstr);
+ if (RT_SUCCESS(rc))
+ {
+ switch (DisState.pCurInstr->uOpcode)
+ {
+ case OP_PUSH:
+ case OP_POP:
+ case OP_NOP:
+ case OP_LEA:
+ case OP_AND:
+ case OP_CBW:
+ case OP_DEC:
+ break;
+ case OP_RETN:
+ /* emit_log_char returned, abort disassembling. */
+ rc = VERR_NOT_FOUND;
+ fRet = true;
+ break;
+ case OP_MOV:
+ case OP_MOVSXD:
+ /*
+ * If a mov is encountered writing to memory with al (or dil for amd64) being the source the
+ * character is stored and we can infer the base address and size of the log buffer from
+ * the source addresses.
+ */
+ if ( (DisState.Param2.fUse & DISUSE_REG_GEN8)
+ && ( (DisState.Param2.Base.idxGenReg == DISGREG_AL && !pThis->f64Bit)
+ || (DisState.Param2.Base.idxGenReg == DISGREG_DIL && pThis->f64Bit))
+ && DISUSE_IS_EFFECTIVE_ADDR(DisState.Param1.fUse))
+ {
+ RTGCPTR GCPtrLogBuf = 0;
+ uint32_t cbLogBuf = 0;
+
+ /*
+ * We can stop disassembling now and inspect all registers, look for a valid kernel address first.
+ * Only one of the accessed registers should hold a valid kernel address.
+ * For the log size look for the biggest non kernel address.
+ */
+ for (unsigned i = 0; i < cAddressesUsed; i++)
+ {
+ DBGFADDRESS AddrVal;
+ union { uint8_t abVal[8]; uint32_t u32Val; uint64_t u64Val; } Val;
+
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/,
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &AddrVal,
+ aAddresses[i].GCPtrOrigSrc),
+ &Val.abVal[0], aAddresses[i].cb);
+ if (RT_SUCCESS(rc))
+ {
+ if (pThis->f64Bit && aAddresses[i].cb == sizeof(uint64_t))
+ {
+ if (LNX64_VALID_ADDRESS(Val.u64Val))
+ {
+ if (GCPtrLogBuf == 0)
+ GCPtrLogBuf = Val.u64Val;
+ else
+ {
+ rc = VERR_NOT_FOUND;
+ break;
+ }
+ }
+ }
+ else
+ {
+ AssertMsgBreakStmt(aAddresses[i].cb == sizeof(uint32_t),
+ ("Invalid value size\n"), rc = VERR_INVALID_STATE);
+
+ /* Might be a kernel address or a size indicator. */
+ if (!pThis->f64Bit && LNX32_VALID_ADDRESS(Val.u32Val))
+ {
+ if (GCPtrLogBuf == 0)
+ GCPtrLogBuf = Val.u32Val;
+ else
+ {
+ rc = VERR_NOT_FOUND;
+ break;
+ }
+ }
+ else
+ {
+ /*
+ * The highest value will be the log buffer because the other
+ * accessed variables are indexes into the buffer and hence
+ * always smaller than the size.
+ */
+ if (cbLogBuf < Val.u32Val)
+ cbLogBuf = Val.u32Val;
+ }
+ }
+ }
+ }
+
+ if ( RT_SUCCESS(rc)
+ && GCPtrLogBuf != 0
+ && cbLogBuf != 0)
+ {
+ *pGCPtrLogBuf = GCPtrLogBuf;
+ *pcbLogBuf = cbLogBuf;
+ }
+ else if (RT_SUCCESS(rc))
+ rc = VERR_NOT_FOUND;
+
+ fRet = true;
+ break;
+ }
+ else
+ {
+ /*
+ * In case of a memory to register move store the destination register index and the
+ * source address in the relation table for later processing.
+ */
+ if ( (DisState.Param1.fUse & (DISUSE_BASE | DISUSE_REG_GEN32 | DISUSE_REG_GEN64))
+ && (DisState.Param2.cb == sizeof(uint32_t) || DisState.Param2.cb == sizeof(uint64_t))
+ && (DisState.Param2.fUse & (DISUSE_RIPDISPLACEMENT32|DISUSE_DISPLACEMENT32|DISUSE_DISPLACEMENT64)))
+ {
+ RTGCPTR GCPtrVal = 0;
+
+ if (DisState.Param2.fUse & DISUSE_RIPDISPLACEMENT32)
+ GCPtrVal = GCPtrCur + DisState.Param2.uDisp.i32 + cbInstr;
+ else if (DisState.Param2.fUse & DISUSE_DISPLACEMENT32)
+ GCPtrVal = (RTGCPTR)DisState.Param2.uDisp.u32;
+ else if (DisState.Param2.fUse & DISUSE_DISPLACEMENT64)
+ GCPtrVal = (RTGCPTR)DisState.Param2.uDisp.u64;
+ else
+ AssertMsgFailedBreakStmt(("Invalid displacement\n"), rc = VERR_INVALID_STATE);
+
+ if (cAddressesUsed < RT_ELEMENTS(aAddresses))
+ {
+ /* movsxd reads always 32bits. */
+ if (DisState.pCurInstr->uOpcode == OP_MOVSXD)
+ aAddresses[cAddressesUsed].cb = sizeof(uint32_t);
+ else
+ aAddresses[cAddressesUsed].cb = DisState.Param2.cb;
+ aAddresses[cAddressesUsed].GCPtrOrigSrc = GCPtrVal;
+ cAddressesUsed++;
+ }
+ else
+ {
+ rc = VERR_INVALID_PARAMETER;
+ break;
+ }
+ }
+ }
+ break;
+ default:
+ /* All other instructions will cause an error for now (playing safe here). */
+ rc = VERR_INVALID_PARAMETER;
+ break;
+ }
+ cInstrDisassembled++;
+ offInstr += cbInstr;
+ }
+ }
+ } while ( RT_SUCCESS(rc)
+ && cInstrDisassembled < 20
+ && !fRet);
+ }
+
+ return rc;
+}
+
+/**
+ * Try to get at the log buffer starting address and size by disassembling some exposed helpers.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM handle.
+ * @param pVMM The VMM function table.
+ * @param hMod The module to use.
+ * @param pGCPtrLogBuf Where to store the log buffer pointer on success.
+ * @param pcbLogBuf Where to store the size of the log buffer on success.
+ */
+static int dbgDiggerLinuxQueryLogBufferPtrs(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTDBGMOD hMod,
+ RTGCPTR *pGCPtrLogBuf, uint32_t *pcbLogBuf)
+{
+ int rc = VINF_SUCCESS;
+
+ struct { void *pvVar; uint32_t cbHost, cbGuest; const char *pszSymbol; } aSymbols[] =
+ {
+ { pGCPtrLogBuf, (uint32_t)sizeof(RTGCPTR), (uint32_t)(pThis->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t)), "log_buf_addr_get" },
+ { pcbLogBuf, (uint32_t)sizeof(uint32_t), (uint32_t)sizeof(uint32_t), "log_buf_len_get" }
+ };
+ for (uint32_t i = 0; i < RT_ELEMENTS(aSymbols) && RT_SUCCESS(rc); i++)
+ {
+ RT_BZERO(aSymbols[i].pvVar, aSymbols[i].cbHost);
+ Assert(aSymbols[i].cbHost >= aSymbols[i].cbGuest);
+ rc = dbgDiggerLinuxDisassembleSimpleGetter(pThis, pUVM, pVMM, hMod, aSymbols[i].pszSymbol,
+ aSymbols[i].pvVar, aSymbols[i].cbGuest);
+ }
+
+ return rc;
+}
+
+/**
+ * Returns whether the log buffer is a simple ascii buffer or a record based implementation
+ * based on the kernel version found.
+ *
+ * @returns Flag whether the log buffer is the simple ascii buffer.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ */
+static bool dbgDiggerLinuxLogBufferIsAsciiBuffer(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM)
+{
+ char szTmp[128];
+ char const *pszVer = &szTmp[sizeof(g_abLinuxVersion) - 1];
+
+ RT_ZERO(szTmp);
+ int rc = pVMM->pfnDBGFR3MemReadString(pUVM, 0, &pThis->AddrLinuxBanner, szTmp, sizeof(szTmp) - 1);
+ if ( RT_SUCCESS(rc)
+ && RTStrVersionCompare(pszVer, "3.4") == -1)
+ return true;
+
+ return false;
+}
+
+/**
+ * Worker to get at the kernel log for pre 3.4 kernels where the log buffer was just a char buffer.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM user mdoe handle.
+ * @param pVMM The VMM function table.
+ * @param hMod The debug module handle.
+ * @param fFlags Flags reserved for future use, MBZ.
+ * @param cMessages The number of messages to retrieve, counting from the
+ * end of the log (i.e. like tail), use UINT32_MAX for all.
+ * @param pszBuf The output buffer.
+ * @param cbBuf The buffer size.
+ * @param pcbActual Where to store the number of bytes actually returned,
+ * including zero terminator. On VERR_BUFFER_OVERFLOW this
+ * holds the necessary buffer size. Optional.
+ */
+static int dbgDiggerLinuxLogBufferQueryAscii(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTDBGMOD hMod,
+ uint32_t fFlags, uint32_t cMessages,
+ char *pszBuf, size_t cbBuf, size_t *pcbActual)
+{
+ RT_NOREF2(fFlags, cMessages);
+ int rc = VINF_SUCCESS;
+ RTGCPTR GCPtrLogBuf;
+ uint32_t cbLogBuf;
+
+ struct { void *pvVar; size_t cbHost, cbGuest; const char *pszSymbol; } aSymbols[] =
+ {
+ { &GCPtrLogBuf, sizeof(GCPtrLogBuf), pThis->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t), "log_buf" },
+ { &cbLogBuf, sizeof(cbLogBuf), sizeof(cbLogBuf), "log_buf_len" },
+ };
+ for (uint32_t i = 0; i < RT_ELEMENTS(aSymbols); i++)
+ {
+ RTDBGSYMBOL SymInfo;
+ rc = RTDbgModSymbolByName(hMod, aSymbols[i].pszSymbol, &SymInfo);
+ if (RT_SUCCESS(rc))
+ {
+ RT_BZERO(aSymbols[i].pvVar, aSymbols[i].cbHost);
+ Assert(aSymbols[i].cbHost >= aSymbols[i].cbGuest);
+ DBGFADDRESS Addr;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/,
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr,
+ (RTGCPTR)SymInfo.Value + pThis->AddrKernelBase.FlatPtr),
+ aSymbols[i].pvVar, aSymbols[i].cbGuest);
+ if (RT_SUCCESS(rc))
+ continue;
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Reading '%s' at %RGv: %Rrc\n", aSymbols[i].pszSymbol, Addr.FlatPtr, rc));
+ }
+ else
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Error looking up '%s': %Rrc\n", aSymbols[i].pszSymbol, rc));
+ rc = VERR_NOT_FOUND;
+ break;
+ }
+
+ /*
+ * Some kernels don't expose the variables in kallsyms so we have to try disassemble
+ * some public helpers to get at the addresses.
+ *
+ * @todo: Maybe cache those values so we don't have to do the heavy work every time?
+ */
+ if (rc == VERR_NOT_FOUND)
+ {
+ rc = dbgDiggerLinuxQueryAsciiLogBufferPtrs(pThis, pUVM, pVMM, hMod, &GCPtrLogBuf, &cbLogBuf);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ /*
+ * Check if the values make sense.
+ */
+ if (pThis->f64Bit ? !LNX64_VALID_ADDRESS(GCPtrLogBuf) : !LNX32_VALID_ADDRESS(GCPtrLogBuf))
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_buf' value %RGv is not valid.\n", GCPtrLogBuf));
+ return VERR_NOT_FOUND;
+ }
+ if ( cbLogBuf < 4096
+ || !RT_IS_POWER_OF_TWO(cbLogBuf)
+ || cbLogBuf > 16*_1M)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_buf_len' value %#x is not valid.\n", cbLogBuf));
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Read the whole log buffer.
+ */
+ uint8_t *pbLogBuf = (uint8_t *)RTMemAlloc(cbLogBuf);
+ if (!pbLogBuf)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Failed to allocate %#x bytes for log buffer\n", cbLogBuf));
+ return VERR_NO_MEMORY;
+ }
+ DBGFADDRESS Addr;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, GCPtrLogBuf), pbLogBuf, cbLogBuf);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Error reading %#x bytes of log buffer at %RGv: %Rrc\n",
+ cbLogBuf, Addr.FlatPtr, rc));
+ RTMemFree(pbLogBuf);
+ return VERR_NOT_FOUND;
+ }
+
+ /** @todo Try to parse where the single messages start to make use of cMessages. */
+ size_t cchLength = RTStrNLen((const char *)pbLogBuf, cbLogBuf);
+ memcpy(&pszBuf[0], pbLogBuf, RT_MIN(cbBuf, cchLength));
+
+ /* Done with the buffer. */
+ RTMemFree(pbLogBuf);
+
+ /* Set return size value. */
+ if (pcbActual)
+ *pcbActual = RT_MIN(cbBuf, cchLength);
+
+ return cbBuf <= cchLength ? VERR_BUFFER_OVERFLOW : VINF_SUCCESS;
+}
+
+
+/**
+ * Worker to process a given record based kernel log.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM user mode handle.
+ * @param pVMM The VMM function table.
+ * @param GCPtrLogBuf Flat guest address of the start of the log buffer.
+ * @param cbLogBuf Power of two aligned size of the log buffer.
+ * @param idxFirst Index in the log bfufer of the first message.
+ * @param idxNext Index where to write hte next message in the log buffer.
+ * @param fFlags Flags reserved for future use, MBZ.
+ * @param cMessages The number of messages to retrieve, counting from the
+ * end of the log (i.e. like tail), use UINT32_MAX for all.
+ * @param pszBuf The output buffer.
+ * @param cbBuf The buffer size.
+ * @param pcbActual Where to store the number of bytes actually returned,
+ * including zero terminator. On VERR_BUFFER_OVERFLOW this
+ * holds the necessary buffer size. Optional.
+ */
+static int dbgDiggerLinuxKrnLogBufferProcess(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTGCPTR GCPtrLogBuf,
+ uint32_t cbLogBuf, uint32_t idxFirst, uint32_t idxNext,
+ uint32_t fFlags, uint32_t cMessages, char *pszBuf, size_t cbBuf,
+ size_t *pcbActual)
+{
+ RT_NOREF(fFlags);
+
+ /*
+ * Check if the values make sense.
+ */
+ if (pThis->f64Bit ? !LNX64_VALID_ADDRESS(GCPtrLogBuf) : !LNX32_VALID_ADDRESS(GCPtrLogBuf))
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_buf' value %RGv is not valid.\n", GCPtrLogBuf));
+ return VERR_NOT_FOUND;
+ }
+ if ( cbLogBuf < _4K
+ || !RT_IS_POWER_OF_TWO(cbLogBuf)
+ || cbLogBuf > LNX_MAX_KERNEL_LOG_SIZE)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_buf_len' value %#x is not valid.\n", cbLogBuf));
+ return VERR_NOT_FOUND;
+ }
+ uint32_t const cbLogAlign = 4;
+ if ( idxFirst > cbLogBuf - sizeof(LNXPRINTKHDR)
+ || (idxFirst & (cbLogAlign - 1)) != 0)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_first_idx' value %#x is not valid.\n", idxFirst));
+ return VERR_NOT_FOUND;
+ }
+ if ( idxNext > cbLogBuf - sizeof(LNXPRINTKHDR)
+ || (idxNext & (cbLogAlign - 1)) != 0)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: 'log_next_idx' value %#x is not valid.\n", idxNext));
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Read the whole log buffer.
+ */
+ uint8_t *pbLogBuf = (uint8_t *)RTMemAlloc(cbLogBuf);
+ if (!pbLogBuf)
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Failed to allocate %#x bytes for log buffer\n", cbLogBuf));
+ return VERR_NO_MEMORY;
+ }
+ DBGFADDRESS Addr;
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, GCPtrLogBuf), pbLogBuf, cbLogBuf);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Error reading %#x bytes of log buffer at %RGv: %Rrc\n",
+ cbLogBuf, Addr.FlatPtr, rc));
+ RTMemFree(pbLogBuf);
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Count the messages in the buffer while doing some basic validation.
+ */
+ uint32_t const cbUsed = idxFirst == idxNext ? cbLogBuf /* could be empty... */
+ : idxFirst < idxNext ? idxNext - idxFirst : cbLogBuf - idxFirst + idxNext;
+ uint32_t cbLeft = cbUsed;
+ uint32_t offCur = idxFirst;
+ uint32_t cLogMsgs = 0;
+
+ while (cbLeft > 0)
+ {
+ PCLNXPRINTKHDR pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ if (!pHdr->cbTotal)
+ {
+ /* Wrap around packet, most likely... */
+ if (cbLogBuf - offCur >= cbLeft)
+ break;
+ offCur = 0;
+ pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ }
+ if (RT_UNLIKELY( pHdr->cbTotal > cbLogBuf - sizeof(*pHdr) - offCur
+ || pHdr->cbTotal > cbLeft
+ || (pHdr->cbTotal & (cbLogAlign - 1)) != 0
+ || pHdr->cbTotal < (uint32_t)pHdr->cbText + (uint32_t)pHdr->cbDict + sizeof(*pHdr) ))
+ {
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Invalid printk_log record at %#x: cbTotal=%#x cbText=%#x cbDict=%#x cbLogBuf=%#x cbLeft=%#x\n",
+ offCur, pHdr->cbTotal, pHdr->cbText, pHdr->cbDict, cbLogBuf, cbLeft));
+ break;
+ }
+
+ if (pHdr->cbText > 0)
+ cLogMsgs++;
+
+ /* next */
+ offCur += pHdr->cbTotal;
+ cbLeft -= pHdr->cbTotal;
+ }
+ if (!cLogMsgs)
+ {
+ RTMemFree(pbLogBuf);
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Copy the messages into the output buffer.
+ */
+ offCur = idxFirst;
+ cbLeft = cbUsed - cbLeft;
+
+ /* Skip messages that the caller doesn't want. */
+ if (cMessages < cLogMsgs)
+ {
+ uint32_t cToSkip = cLogMsgs - cMessages;
+ cLogMsgs -= cToSkip;
+
+ while (cToSkip > 0)
+ {
+ PCLNXPRINTKHDR pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ if (!pHdr->cbTotal)
+ {
+ offCur = 0;
+ pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ }
+ if (pHdr->cbText > 0)
+ cToSkip--;
+
+ /* next */
+ offCur += pHdr->cbTotal;
+ cbLeft -= pHdr->cbTotal;
+ }
+ }
+
+ /* Now copy the messages. */
+ size_t offDst = 0;
+ while (cbLeft > 0)
+ {
+ PCLNXPRINTKHDR pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ if ( !pHdr->cbTotal
+ || !cLogMsgs)
+ {
+ if (cbLogBuf - offCur >= cbLeft)
+ break;
+ offCur = 0;
+ pHdr = (PCLNXPRINTKHDR)&pbLogBuf[offCur];
+ }
+
+ if (pHdr->cbText > 0)
+ {
+ char *pchText = (char *)(pHdr + 1);
+ size_t cchText = RTStrNLen(pchText, pHdr->cbText);
+ if (offDst + cchText < cbBuf)
+ {
+ memcpy(&pszBuf[offDst], pHdr + 1, cchText);
+ pszBuf[offDst + cchText] = '\n';
+ }
+ else if (offDst < cbBuf)
+ memcpy(&pszBuf[offDst], pHdr + 1, cbBuf - offDst);
+ offDst += cchText + 1;
+ }
+
+ /* next */
+ offCur += pHdr->cbTotal;
+ cbLeft -= pHdr->cbTotal;
+ }
+
+ /* Done with the buffer. */
+ RTMemFree(pbLogBuf);
+
+ /* Make sure we've reserved a char for the terminator. */
+ if (!offDst)
+ offDst = 1;
+
+ /* Set return size value. */
+ if (pcbActual)
+ *pcbActual = offDst;
+
+ if (offDst <= cbBuf)
+ return VINF_SUCCESS;
+ return VERR_BUFFER_OVERFLOW;
+}
+
+
+/**
+ * Worker to get at the kernel log for post 3.4 kernels where the log buffer contains records.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The VM user mdoe handle.
+ * @param pVMM The VMM function table.
+ * @param hMod The debug module handle.
+ * @param fFlags Flags reserved for future use, MBZ.
+ * @param cMessages The number of messages to retrieve, counting from the
+ * end of the log (i.e. like tail), use UINT32_MAX for all.
+ * @param pszBuf The output buffer.
+ * @param cbBuf The buffer size.
+ * @param pcbActual Where to store the number of bytes actually returned,
+ * including zero terminator. On VERR_BUFFER_OVERFLOW this
+ * holds the necessary buffer size. Optional.
+ */
+static int dbgDiggerLinuxLogBufferQueryRecords(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, RTDBGMOD hMod,
+ uint32_t fFlags, uint32_t cMessages,
+ char *pszBuf, size_t cbBuf, size_t *pcbActual)
+{
+ int rc = VINF_SUCCESS;
+ RTGCPTR GCPtrLogBuf;
+ uint32_t cbLogBuf;
+ uint32_t idxFirst;
+ uint32_t idxNext;
+
+ struct { void *pvVar; size_t cbHost, cbGuest; const char *pszSymbol; } aSymbols[] =
+ {
+ { &GCPtrLogBuf, sizeof(GCPtrLogBuf), pThis->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t), "log_buf" },
+ { &cbLogBuf, sizeof(cbLogBuf), sizeof(cbLogBuf), "log_buf_len" },
+ { &idxFirst, sizeof(idxFirst), sizeof(idxFirst), "log_first_idx" },
+ { &idxNext, sizeof(idxNext), sizeof(idxNext), "log_next_idx" },
+ };
+ for (uint32_t i = 0; i < RT_ELEMENTS(aSymbols); i++)
+ {
+ RTDBGSYMBOL SymInfo;
+ rc = RTDbgModSymbolByName(hMod, aSymbols[i].pszSymbol, &SymInfo);
+ if (RT_SUCCESS(rc))
+ {
+ RT_BZERO(aSymbols[i].pvVar, aSymbols[i].cbHost);
+ Assert(aSymbols[i].cbHost >= aSymbols[i].cbGuest);
+ DBGFADDRESS Addr;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/,
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr,
+ (RTGCPTR)SymInfo.Value + pThis->AddrKernelBase.FlatPtr),
+ aSymbols[i].pvVar, aSymbols[i].cbGuest);
+ if (RT_SUCCESS(rc))
+ continue;
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Reading '%s' at %RGv: %Rrc\n", aSymbols[i].pszSymbol, Addr.FlatPtr, rc));
+ }
+ else
+ LogRel(("dbgDiggerLinuxIDmsg_QueryKernelLog: Error looking up '%s': %Rrc\n", aSymbols[i].pszSymbol, rc));
+ rc = VERR_NOT_FOUND;
+ break;
+ }
+
+ /*
+ * Some kernels don't expose the variables in kallsyms so we have to try disassemble
+ * some public helpers to get at the addresses.
+ *
+ * @todo: Maybe cache those values so we don't have to do the heavy work every time?
+ */
+ if (rc == VERR_NOT_FOUND)
+ {
+ idxFirst = 0;
+ idxNext = 0;
+ rc = dbgDiggerLinuxQueryLogBufferPtrs(pThis, pUVM, pVMM, hMod, &GCPtrLogBuf, &cbLogBuf);
+ if (RT_FAILURE(rc))
+ {
+ /*
+ * Last resort, scan for a known value which should appear only once in the kernel log buffer
+ * and try to deduce the boundaries from there.
+ */
+ return dbgDiggerLinuxKrnlLogBufFindByNeedle(pThis, pUVM, pVMM, &GCPtrLogBuf, &cbLogBuf);
+ }
+ }
+
+ return dbgDiggerLinuxKrnLogBufferProcess(pThis, pUVM, pVMM, GCPtrLogBuf, cbLogBuf, idxFirst, idxNext,
+ fFlags, cMessages, pszBuf, cbBuf, pcbActual);
+}
+
+/**
+ * @interface_method_impl{DBGFOSIDMESG,pfnQueryKernelLog}
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxIDmsg_QueryKernelLog(PDBGFOSIDMESG pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, uint32_t fFlags,
+ uint32_t cMessages, char *pszBuf, size_t cbBuf, size_t *pcbActual)
+{
+ PDBGDIGGERLINUX pData = RT_FROM_MEMBER(pThis, DBGDIGGERLINUX, IDmesg);
+
+ if (cMessages < 1)
+ return VERR_INVALID_PARAMETER;
+
+ /*
+ * Resolve the symbols we need and read their values.
+ */
+ RTDBGAS hAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL);
+ RTDBGMOD hMod;
+ int rc = RTDbgAsModuleByName(hAs, "vmlinux", 0, &hMod);
+ RTDbgAsRelease(hAs);
+
+ size_t cbActual = 0;
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Check whether the kernel log buffer is a simple char buffer or the newer
+ * record based implementation.
+ * The record based implementation was presumably introduced with kernel 3.4,
+ * see: http://thread.gmane.org/gmane.linux.kernel/1284184
+ */
+ if (dbgDiggerLinuxLogBufferIsAsciiBuffer(pData, pUVM, pVMM))
+ rc = dbgDiggerLinuxLogBufferQueryAscii(pData, pUVM, pVMM, hMod, fFlags, cMessages, pszBuf, cbBuf, &cbActual);
+ else
+ rc = dbgDiggerLinuxLogBufferQueryRecords(pData, pUVM, pVMM, hMod, fFlags, cMessages, pszBuf, cbBuf, &cbActual);
+
+ /* Release the module in any case. */
+ RTDbgModRelease(hMod);
+ }
+ else
+ {
+ /*
+ * For the record based kernel versions we have a last resort heuristic which doesn't
+ * require any symbols, try that here.
+ */
+ if (!dbgDiggerLinuxLogBufferIsAsciiBuffer(pData, pUVM, pVMM))
+ {
+ RTGCPTR GCPtrLogBuf = 0;
+ uint32_t cbLogBuf = 0;
+
+ rc = dbgDiggerLinuxKrnlLogBufFindByNeedle(pData, pUVM, pVMM, &GCPtrLogBuf, &cbLogBuf);
+ if (RT_SUCCESS(rc))
+ rc = dbgDiggerLinuxKrnLogBufferProcess(pData, pUVM, pVMM, GCPtrLogBuf, cbLogBuf, 0 /*idxFirst*/, 0 /*idxNext*/,
+ fFlags, cMessages, pszBuf, cbBuf, &cbActual);
+ }
+ else
+ rc = VERR_NOT_FOUND;
+ }
+
+ if (RT_FAILURE(rc) && rc != VERR_BUFFER_OVERFLOW)
+ return rc;
+
+ if (pcbActual)
+ *pcbActual = cbActual;
+
+ /*
+ * All VBox strings are UTF-8 and bad things may in theory happen if we
+ * pass bad UTF-8 to code which assumes it's all valid. So, we enforce
+ * UTF-8 upon the guest kernel messages here even if they (probably) have
+ * no defined code set in reality.
+ */
+ if ( RT_SUCCESS(rc)
+ && cbActual <= cbBuf)
+ {
+ pszBuf[cbActual - 1] = '\0';
+ RTStrPurgeEncoding(pszBuf);
+ return VINF_SUCCESS;
+ }
+
+ if (cbBuf)
+ {
+ pszBuf[cbBuf - 1] = '\0';
+ RTStrPurgeEncoding(pszBuf);
+ }
+ return VERR_BUFFER_OVERFLOW;
+}
+
+
+/**
+ * Worker destroying the config database.
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxCfgDbDestroyWorker(PRTSTRSPACECORE pStr, void *pvUser)
+{
+ PDBGDIGGERLINUXCFGITEM pCfgItem = (PDBGDIGGERLINUXCFGITEM)pStr;
+ RTStrFree((char *)pCfgItem->Core.pszString);
+ RTMemFree(pCfgItem);
+ NOREF(pvUser);
+ return 0;
+}
+
+
+/**
+ * Destroy the config database.
+ *
+ * @returns nothing.
+ * @param pThis The Linux digger data.
+ */
+static void dbgDiggerLinuxCfgDbDestroy(PDBGDIGGERLINUX pThis)
+{
+ RTStrSpaceDestroy(&pThis->hCfgDb, dbgDiggerLinuxCfgDbDestroyWorker, NULL);
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnStackUnwindAssist
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxStackUnwindAssist(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, VMCPUID idCpu,
+ PDBGFSTACKFRAME pFrame, PRTDBGUNWINDSTATE pState, PCCPUMCTX pInitialCtx,
+ RTDBGAS hAs, uint64_t *puScratch)
+{
+ RT_NOREF(pUVM, pVMM, pvData, idCpu, pFrame, pState, pInitialCtx, hAs, puScratch);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnQueryInterface
+ */
+static DECLCALLBACK(void *) dbgDiggerLinuxQueryInterface(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData, DBGFOSINTERFACE enmIf)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ RT_NOREF(pUVM, pVMM);
+
+ switch (enmIf)
+ {
+ case DBGFOSINTERFACE_DMESG:
+ return &pThis->IDmesg;
+
+ default:
+ return NULL;
+ }
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnQueryVersion
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxQueryVersion(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData,
+ char *pszVersion, size_t cchVersion)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ Assert(pThis->fValid);
+
+ /*
+ * It's all in the linux banner.
+ */
+ int rc = pVMM->pfnDBGFR3MemReadString(pUVM, 0, &pThis->AddrLinuxBanner, pszVersion, cchVersion);
+ if (RT_SUCCESS(rc))
+ {
+ char *pszEnd = RTStrEnd(pszVersion, cchVersion);
+ AssertReturn(pszEnd, VERR_BUFFER_OVERFLOW);
+ while ( pszEnd > pszVersion
+ && RT_C_IS_SPACE(pszEnd[-1]))
+ pszEnd--;
+ *pszEnd = '\0';
+ }
+ else
+ RTStrPrintf(pszVersion, cchVersion, "DBGFR3MemRead -> %Rrc", rc);
+
+ return rc;
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnTerm
+ */
+static DECLCALLBACK(void) dbgDiggerLinuxTerm(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ Assert(pThis->fValid);
+
+ /*
+ * Destroy configuration database.
+ */
+ dbgDiggerLinuxCfgDbDestroy(pThis);
+
+ /*
+ * Unlink and release our modules.
+ */
+ RTDBGAS hDbgAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL);
+ if (hDbgAs != NIL_RTDBGAS)
+ {
+ uint32_t iMod = RTDbgAsModuleCount(hDbgAs);
+ while (iMod-- > 0)
+ {
+ RTDBGMOD hMod = RTDbgAsModuleByIndex(hDbgAs, iMod);
+ if (hMod != NIL_RTDBGMOD)
+ {
+ if (RTDbgModGetTag(hMod) == DIG_LNX_MOD_TAG)
+ {
+ int rc = RTDbgAsModuleUnlink(hDbgAs, hMod);
+ AssertRC(rc);
+ }
+ RTDbgModRelease(hMod);
+ }
+ }
+ RTDbgAsRelease(hDbgAs);
+ }
+
+ pThis->fValid = false;
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnRefresh
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxRefresh(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ RT_NOREF(pThis);
+ Assert(pThis->fValid);
+
+ /*
+ * For now we'll flush and reload everything.
+ */
+ dbgDiggerLinuxTerm(pUVM, pVMM, pvData);
+ return dbgDiggerLinuxInit(pUVM, pVMM, pvData);
+}
+
+
+/**
+ * Worker for dbgDiggerLinuxFindStartOfNamesAndSymbolCount that update the
+ * digger data.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pThis The Linux digger data to update.
+ * @param pVMM The VMM function table.
+ * @param pAddrKernelNames The kallsyms_names address.
+ * @param cKernelSymbols The number of kernel symbol.
+ * @param cbAddress The guest address size.
+ */
+static int dbgDiggerLinuxFoundStartOfNames(PDBGDIGGERLINUX pThis, PCVMMR3VTABLE pVMM, PCDBGFADDRESS pAddrKernelNames,
+ uint32_t cKernelSymbols, uint32_t cbAddress)
+{
+ pThis->cKernelSymbols = cKernelSymbols;
+ pThis->AddrKernelNames = *pAddrKernelNames;
+ pThis->AddrKernelAddresses = *pAddrKernelNames;
+ uint32_t cbSymbolsSkip = (pThis->fRelKrnlAddr ? 2 : 1) * cbAddress; /* Relative addressing introduces kallsyms_relative_base. */
+ uint32_t cbOffsets = pThis->fRelKrnlAddr ? sizeof(int32_t) : cbAddress; /* Offsets are always 32bits wide for relative addressing. */
+ uint32_t cbAlign = 0;
+
+ /*
+ * If the number of symbols is odd there is padding to align the following guest pointer
+ * sized data properly on 64bit systems with relative addressing.
+ */
+ if ( pThis->fRelKrnlAddr
+ && pThis->f64Bit
+ && (pThis->cKernelSymbols & 1))
+ cbAlign = sizeof(int32_t);
+ pVMM->pfnDBGFR3AddrSub(&pThis->AddrKernelAddresses, cKernelSymbols * cbOffsets + cbSymbolsSkip + cbAlign);
+
+ Log(("dbgDiggerLinuxFoundStartOfNames: AddrKernelAddresses=%RGv\n"
+ "dbgDiggerLinuxFoundStartOfNames: cKernelSymbols=%#x (at %RGv)\n"
+ "dbgDiggerLinuxFoundStartOfNames: AddrKernelName=%RGv\n",
+ pThis->AddrKernelAddresses.FlatPtr,
+ pThis->cKernelSymbols, pThis->AddrKernelNames.FlatPtr - cbAddress,
+ pThis->AddrKernelNames.FlatPtr));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Tries to find the address of the kallsyms_names, kallsyms_num_syms and
+ * kallsyms_addresses symbols.
+ *
+ * The kallsyms_num_syms is read and stored in pThis->cKernelSymbols, while the
+ * addresses of the other two are stored as pThis->AddrKernelNames and
+ * pThis->AddrKernelAddresses.
+ *
+ * @returns VBox status code, success indicating that all three variables have
+ * been found and taken down.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ * @param pHitAddr An address we think is inside kallsyms_names.
+ */
+static int dbgDiggerLinuxFindStartOfNamesAndSymbolCount(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis,
+ PCDBGFADDRESS pHitAddr)
+{
+ /*
+ * Search backwards in chunks.
+ */
+ union
+ {
+ uint8_t ab[0x1000];
+ uint32_t au32[0x1000 / sizeof(uint32_t)];
+ uint64_t au64[0x1000 / sizeof(uint64_t)];
+ } uBuf;
+ uint32_t cbLeft = LNX_MAX_KALLSYMS_NAMES_SIZE;
+ uint32_t cbBuf = pHitAddr->FlatPtr & (sizeof(uBuf) - 1);
+ DBGFADDRESS CurAddr = *pHitAddr;
+ pVMM->pfnDBGFR3AddrSub(&CurAddr, cbBuf);
+ cbBuf += sizeof(uint64_t) - 1; /* In case our kobj hit is in the first 4/8 bytes. */
+ for (;;)
+ {
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &CurAddr, &uBuf, sizeof(uBuf));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Since Linux 4.6 there are two different methods to store the kallsyms addresses
+ * in the image.
+ *
+ * The first and longer existing method is to store the absolute addresses in an
+ * array starting at kallsyms_addresses followed by a field which stores the number
+ * of kernel symbols called kallsyms_num_syms.
+ * The newer method is to use offsets stored in kallsyms_offsets and have a base pointer
+ * to relate the offsets to called kallsyms_relative_base. One entry in kallsyms_offsets is
+ * always 32bit wide regardless of the guest pointer size (this halves the table on 64bit
+ * systems) but means more work for us for the 64bit case.
+ *
+ * When absolute addresses are used the following assumptions hold:
+ *
+ * We assume that the three symbols are aligned on guest pointer boundary.
+ *
+ * The boundary between the two tables should be noticable as the number
+ * is unlikely to be more than 16 millions, there will be at least one zero
+ * byte where it is, 64-bit will have 5 zero bytes. Zero bytes aren't all
+ * that common in the kallsyms_names table.
+ *
+ * Also the kallsyms_names table starts with a length byte, which means
+ * we're likely to see a byte in the range 1..31.
+ *
+ * The kallsyms_addresses are mostly sorted (except for the start where the
+ * absolute symbols are), so we'll spot a bunch of kernel addresses
+ * immediately preceeding the kallsyms_num_syms field.
+ *
+ * Lazy bird: If kallsyms_num_syms is on a buffer boundrary, we skip
+ * the check for kernel addresses preceeding it.
+ *
+ * For relative offsets most of the assumptions from above are true too
+ * except that we have to distinguish between the relative base address and the offsets.
+ * Every observed kernel has a valid kernel address fo the relative base and kallsyms_relative_base
+ * always comes before kallsyms_num_syms and is aligned on a guest pointer boundary.
+ * Offsets are stored before kallsyms_relative_base and don't contain valid kernel addresses.
+ *
+ * To distinguish between absolute and relative offsetting we check the data before a candidate
+ * for kallsyms_num_syms. If all entries before the kallsyms_num_syms candidate are valid kernel
+ * addresses absolute addresses are assumed. If this is not the case but the first entry before
+ * kallsyms_num_syms is a valid kernel address we check whether the data before and the possible
+ * relative base form a valid kernel address and assume relative offsets.
+ *
+ * Other notable changes between various Linux kernel versions:
+ *
+ * 4.20.0+: Commit 80ffbaa5b1bd98e80e3239a3b8cfda2da433009a made kallsyms_num_syms 32bit
+ * even on 64bit systems but the alignment of the variables makes the code below work for now
+ * (tested with a 5.4 and 5.12 kernel) do we keep it that way to avoid making the code even
+ * messy.
+ */
+ if (pThis->f64Bit)
+ {
+ uint32_t i = cbBuf / sizeof(uint64_t) - 1;
+ while (i-- > 0)
+ if ( uBuf.au64[i] <= LNX_MAX_KALLSYMS_SYMBOLS
+ && uBuf.au64[i] >= LNX_MIN_KALLSYMS_SYMBOLS)
+ {
+ uint8_t *pb = (uint8_t *)&uBuf.au64[i + 1];
+ if ( pb[0] <= LNX_MAX_KALLSYMS_ENC_LENGTH
+ && pb[0] >= LNX_MIN_KALLSYMS_ENC_LENGTH)
+ {
+ /*
+ * Check whether we have a valid kernel address and try to distinguish
+ * whether the kernel uses relative offsetting or absolute addresses.
+ */
+ if ( (i >= 1 && LNX64_VALID_ADDRESS(uBuf.au64[i - 1]))
+ && (i >= 2 && !LNX64_VALID_ADDRESS(uBuf.au64[i - 2]))
+ && (i >= 3 && !LNX64_VALID_ADDRESS(uBuf.au64[i - 3])))
+ {
+ RTGCUINTPTR uKrnlRelBase = uBuf.au64[i - 1];
+ DBGFADDRESS RelAddr = CurAddr;
+ int32_t aiRelOff[3];
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/,
+ pVMM->pfnDBGFR3AddrAdd(&RelAddr,
+ (i - 1) * sizeof(uint64_t) - sizeof(aiRelOff)),
+ &aiRelOff[0], sizeof(aiRelOff));
+ if ( RT_SUCCESS(rc)
+ && LNX64_VALID_ADDRESS(uKrnlRelBase + aiRelOff[0])
+ && LNX64_VALID_ADDRESS(uKrnlRelBase + aiRelOff[1])
+ && LNX64_VALID_ADDRESS(uKrnlRelBase + aiRelOff[2]))
+ {
+ Log(("dbgDiggerLinuxFindStartOfNamesAndSymbolCount: relative base %RGv (at %RGv)\n",
+ uKrnlRelBase, CurAddr.FlatPtr + (i - 1) * sizeof(uint64_t)));
+ pThis->fRelKrnlAddr = true;
+ pThis->uKernelRelativeBase = uKrnlRelBase;
+ return dbgDiggerLinuxFoundStartOfNames(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, (i + 1) * sizeof(uint64_t)),
+ (uint32_t)uBuf.au64[i], sizeof(uint64_t));
+ }
+ }
+
+ if ( (i <= 0 || LNX64_VALID_ADDRESS(uBuf.au64[i - 1]))
+ && (i <= 1 || LNX64_VALID_ADDRESS(uBuf.au64[i - 2]))
+ && (i <= 2 || LNX64_VALID_ADDRESS(uBuf.au64[i - 3])))
+ return dbgDiggerLinuxFoundStartOfNames(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, (i + 1) * sizeof(uint64_t)),
+ (uint32_t)uBuf.au64[i], sizeof(uint64_t));
+ }
+ }
+ }
+ else
+ {
+ uint32_t i = cbBuf / sizeof(uint32_t) - 1;
+ while (i-- > 0)
+ if ( uBuf.au32[i] <= LNX_MAX_KALLSYMS_SYMBOLS
+ && uBuf.au32[i] >= LNX_MIN_KALLSYMS_SYMBOLS)
+ {
+ uint8_t *pb = (uint8_t *)&uBuf.au32[i + 1];
+ if ( pb[0] <= LNX_MAX_KALLSYMS_ENC_LENGTH
+ && pb[0] >= LNX_MIN_KALLSYMS_ENC_LENGTH)
+ {
+ /* Check for relative base addressing. */
+ if (i >= 1 && LNX32_VALID_ADDRESS(uBuf.au32[i - 1]))
+ {
+ RTGCUINTPTR uKrnlRelBase = uBuf.au32[i - 1];
+ if ( (i <= 1 || LNX32_VALID_ADDRESS(uKrnlRelBase + uBuf.au32[i - 2]))
+ && (i <= 2 || LNX32_VALID_ADDRESS(uKrnlRelBase + uBuf.au32[i - 3])))
+ {
+ Log(("dbgDiggerLinuxFindStartOfNamesAndSymbolCount: relative base %RGv (at %RGv)\n",
+ uKrnlRelBase, CurAddr.FlatPtr + (i - 1) * sizeof(uint32_t)));
+ pThis->fRelKrnlAddr = true;
+ pThis->uKernelRelativeBase = uKrnlRelBase;
+ return dbgDiggerLinuxFoundStartOfNames(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, (i + 1) * sizeof(uint32_t)),
+ uBuf.au32[i], sizeof(uint32_t));
+ }
+ }
+
+ if ( (i <= 0 || LNX32_VALID_ADDRESS(uBuf.au32[i - 1]))
+ && (i <= 1 || LNX32_VALID_ADDRESS(uBuf.au32[i - 2]))
+ && (i <= 2 || LNX32_VALID_ADDRESS(uBuf.au32[i - 3])))
+ return dbgDiggerLinuxFoundStartOfNames(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, (i + 1) * sizeof(uint32_t)),
+ uBuf.au32[i], sizeof(uint32_t));
+ }
+ }
+ }
+
+ /*
+ * Advance
+ */
+ if (RT_UNLIKELY(cbLeft <= sizeof(uBuf)))
+ {
+ Log(("dbgDiggerLinuxFindStartOfNamesAndSymbolCount: failed (pHitAddr=%RGv)\n", pHitAddr->FlatPtr));
+ return VERR_NOT_FOUND;
+ }
+ cbLeft -= sizeof(uBuf);
+ pVMM->pfnDBGFR3AddrSub(&CurAddr, sizeof(uBuf));
+ cbBuf = sizeof(uBuf);
+ }
+}
+
+
+/**
+ * Worker for dbgDiggerLinuxFindEndNames that records the findings.
+ *
+ * @returns VINF_SUCCESS
+ * @param pThis The linux digger data to update.
+ * @param pVMM The VMM function table.
+ * @param pAddrMarkers The address of the marker (kallsyms_markers).
+ * @param cbMarkerEntry The size of a marker entry (32-bit or 64-bit).
+ */
+static int dbgDiggerLinuxFoundMarkers(PDBGDIGGERLINUX pThis, PCVMMR3VTABLE pVMM,
+ PCDBGFADDRESS pAddrMarkers, uint32_t cbMarkerEntry)
+{
+ pThis->cbKernelNames = pAddrMarkers->FlatPtr - pThis->AddrKernelNames.FlatPtr;
+ pThis->AddrKernelNameMarkers = *pAddrMarkers;
+ pThis->cKernelNameMarkers = RT_ALIGN_32(pThis->cKernelSymbols, 256) / 256;
+ pThis->AddrKernelTokenTable = *pAddrMarkers;
+ pVMM->pfnDBGFR3AddrAdd(&pThis->AddrKernelTokenTable, pThis->cKernelNameMarkers * cbMarkerEntry);
+
+ Log(("dbgDiggerLinuxFoundMarkers: AddrKernelNames=%RGv cbKernelNames=%#x\n"
+ "dbgDiggerLinuxFoundMarkers: AddrKernelNameMarkers=%RGv cKernelNameMarkers=%#x\n"
+ "dbgDiggerLinuxFoundMarkers: AddrKernelTokenTable=%RGv\n",
+ pThis->AddrKernelNames.FlatPtr, pThis->cbKernelNames,
+ pThis->AddrKernelNameMarkers.FlatPtr, pThis->cKernelNameMarkers,
+ pThis->AddrKernelTokenTable.FlatPtr));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Tries to find the end of kallsyms_names and thereby the start of
+ * kallsyms_markers and kallsyms_token_table.
+ *
+ * The kallsyms_names size is stored in pThis->cbKernelNames, the addresses of
+ * the two other symbols in pThis->AddrKernelNameMarkers and
+ * pThis->AddrKernelTokenTable. The number of marker entries is stored in
+ * pThis->cKernelNameMarkers.
+ *
+ * @returns VBox status code, success indicating that all three variables have
+ * been found and taken down.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ * @param pHitAddr An address we think is inside kallsyms_names.
+ */
+static int dbgDiggerLinuxFindEndOfNamesAndMore(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis, PCDBGFADDRESS pHitAddr)
+{
+ /*
+ * Search forward in chunks.
+ */
+ union
+ {
+ uint8_t ab[0x1000];
+ uint32_t au32[0x1000 / sizeof(uint32_t)];
+ uint64_t au64[0x1000 / sizeof(uint64_t)];
+ } uBuf;
+ bool fPendingZeroHit = false;
+ uint32_t cbLeft = LNX_MAX_KALLSYMS_NAMES_SIZE + sizeof(uBuf);
+ uint32_t offBuf = pHitAddr->FlatPtr & (sizeof(uBuf) - 1);
+ DBGFADDRESS CurAddr = *pHitAddr;
+ pVMM->pfnDBGFR3AddrSub(&CurAddr, offBuf);
+ for (;;)
+ {
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &CurAddr, &uBuf, sizeof(uBuf));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * The kallsyms_names table is followed by kallsyms_markers we assume,
+ * using sizeof(unsigned long) alignment like the preceeding symbols.
+ *
+ * The kallsyms_markers table has entried sizeof(unsigned long) and
+ * contains offsets into kallsyms_names. The kallsyms_markers used to
+ * index kallsyms_names and reduce seek time when looking up the name
+ * of an address/symbol. Each entry in kallsyms_markers covers 256
+ * symbol names.
+ *
+ * Because of this, the first entry is always zero and all the entries
+ * are ascending. It also follows that the size of the table can be
+ * calculated from kallsyms_num_syms.
+ *
+ * Note! We could also have walked kallsyms_names by skipping
+ * kallsyms_num_syms names, but this is faster and we will
+ * validate the encoded names later.
+ *
+ * git commit 80ffbaa5b1bd98e80e3239a3b8cfda2da433009a (which became 4.20+) makes kallsyms_markers
+ * and kallsyms_num_syms uint32_t, even on 64bit systems. Take that into account.
+ */
+ if ( pThis->f64Bit
+ && pThis->uKrnlVer < LNX_MK_VER(4, 20, 0))
+ {
+ if ( RT_UNLIKELY(fPendingZeroHit)
+ && uBuf.au64[0] >= (LNX_MIN_KALLSYMS_ENC_LENGTH + 1) * 256
+ && uBuf.au64[0] <= (LNX_MAX_KALLSYMS_ENC_LENGTH + 1) * 256)
+ return dbgDiggerLinuxFoundMarkers(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrSub(&CurAddr, sizeof(uint64_t)), sizeof(uint64_t));
+
+ uint32_t const cEntries = sizeof(uBuf) / sizeof(uint64_t);
+ for (uint32_t i = offBuf / sizeof(uint64_t); i < cEntries; i++)
+ if (uBuf.au64[i] == 0)
+ {
+ if (RT_UNLIKELY(i + 1 >= cEntries))
+ {
+ fPendingZeroHit = true;
+ break;
+ }
+ if ( uBuf.au64[i + 1] >= (LNX_MIN_KALLSYMS_ENC_LENGTH + 1) * 256
+ && uBuf.au64[i + 1] <= (LNX_MAX_KALLSYMS_ENC_LENGTH + 1) * 256)
+ return dbgDiggerLinuxFoundMarkers(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, i * sizeof(uint64_t)), sizeof(uint64_t));
+ }
+ }
+ else
+ {
+ if ( RT_UNLIKELY(fPendingZeroHit)
+ && uBuf.au32[0] >= (LNX_MIN_KALLSYMS_ENC_LENGTH + 1) * 256
+ && uBuf.au32[0] <= (LNX_MAX_KALLSYMS_ENC_LENGTH + 1) * 256)
+ return dbgDiggerLinuxFoundMarkers(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrSub(&CurAddr, sizeof(uint32_t)), sizeof(uint32_t));
+
+ uint32_t const cEntries = sizeof(uBuf) / sizeof(uint32_t);
+ for (uint32_t i = offBuf / sizeof(uint32_t); i < cEntries; i++)
+ if (uBuf.au32[i] == 0)
+ {
+ if (RT_UNLIKELY(i + 1 >= cEntries))
+ {
+ fPendingZeroHit = true;
+ break;
+ }
+ if ( uBuf.au32[i + 1] >= (LNX_MIN_KALLSYMS_ENC_LENGTH + 1) * 256
+ && uBuf.au32[i + 1] <= (LNX_MAX_KALLSYMS_ENC_LENGTH + 1) * 256)
+ return dbgDiggerLinuxFoundMarkers(pThis, pVMM,
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, i * sizeof(uint32_t)), sizeof(uint32_t));
+ }
+ }
+
+ /*
+ * Advance
+ */
+ if (RT_UNLIKELY(cbLeft <= sizeof(uBuf)))
+ {
+ Log(("dbgDiggerLinuxFindEndOfNamesAndMore: failed (pHitAddr=%RGv)\n", pHitAddr->FlatPtr));
+ return VERR_NOT_FOUND;
+ }
+ cbLeft -= sizeof(uBuf);
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, sizeof(uBuf));
+ offBuf = 0;
+ }
+}
+
+
+/**
+ * Locates the kallsyms_token_index table.
+ *
+ * Storing the address in pThis->AddrKernelTokenIndex and the size of the token
+ * table in pThis->cbKernelTokenTable.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ */
+static int dbgDiggerLinuxFindTokenIndex(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis)
+{
+ /*
+ * The kallsyms_token_table is very much like a string table. Due to the
+ * nature of the compression algorithm it is reasonably short (one example
+ * here is 853 bytes), so we'll not be reading it in chunks but in full.
+ * To be on the safe side, we read 8KB, ASSUMING we won't run into unmapped
+ * memory or any other nasty stuff...
+ */
+ union
+ {
+ uint8_t ab[0x2000];
+ uint16_t au16[0x2000 / sizeof(uint16_t)];
+ } uBuf;
+ DBGFADDRESS CurAddr = pThis->AddrKernelTokenTable;
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &CurAddr, &uBuf, sizeof(uBuf));
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * We've got two choices here, either walk the string table or look for
+ * the next structure, kallsyms_token_index.
+ *
+ * The token index is a table of 256 uint16_t entries (index by bytes
+ * from kallsyms_names) that gives offsets in kallsyms_token_table. It
+ * starts with a zero entry and the following entries are sorted in
+ * ascending order. The range of the entries are reasonably small since
+ * kallsyms_token_table is small.
+ *
+ * The alignment seems to be sizeof(unsigned long), just like
+ * kallsyms_token_table.
+ *
+ * So, we start by looking for a zero 16-bit entry.
+ */
+ uint32_t cIncr = (pThis->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t)) / sizeof(uint16_t);
+
+ for (uint32_t i = 0; i < sizeof(uBuf) / sizeof(uint16_t) - 16; i += cIncr)
+ if ( uBuf.au16[i] == 0
+ && uBuf.au16[i + 1] > 0
+ && uBuf.au16[i + 1] <= LNX_MAX_KALLSYMS_TOKEN_LEN
+ && (uint16_t)(uBuf.au16[i + 2] - uBuf.au16[i + 1] - 1U) <= (uint16_t)LNX_MAX_KALLSYMS_TOKEN_LEN
+ && (uint16_t)(uBuf.au16[i + 3] - uBuf.au16[i + 2] - 1U) <= (uint16_t)LNX_MAX_KALLSYMS_TOKEN_LEN
+ && (uint16_t)(uBuf.au16[i + 4] - uBuf.au16[i + 3] - 1U) <= (uint16_t)LNX_MAX_KALLSYMS_TOKEN_LEN
+ && (uint16_t)(uBuf.au16[i + 5] - uBuf.au16[i + 4] - 1U) <= (uint16_t)LNX_MAX_KALLSYMS_TOKEN_LEN
+ && (uint16_t)(uBuf.au16[i + 6] - uBuf.au16[i + 5] - 1U) <= (uint16_t)LNX_MAX_KALLSYMS_TOKEN_LEN
+ )
+ {
+ pThis->AddrKernelTokenIndex = CurAddr;
+ pVMM->pfnDBGFR3AddrAdd(&pThis->AddrKernelTokenIndex, i * sizeof(uint16_t));
+ pThis->cbKernelTokenTable = i * sizeof(uint16_t);
+ return VINF_SUCCESS;
+ }
+
+ Log(("dbgDiggerLinuxFindTokenIndex: Failed (%RGv..%RGv)\n", CurAddr.FlatPtr, CurAddr.FlatPtr + (RTGCUINTPTR)sizeof(uBuf)));
+ return VERR_NOT_FOUND;
+}
+
+
+/**
+ * Loads the kernel symbols from the given kallsyms offset table decoding the symbol names
+ * (worker common for dbgDiggerLinuxLoadKernelSymbolsAbsolute() and dbgDiggerLinuxLoadKernelSymbolsRelative()).
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ * @param uKernelStart Flat kernel start address.
+ * @param cbKernel Size of the kernel in bytes.
+ * @param pauSymOff Pointer to the array of symbol offsets in the kallsyms table
+ * relative to the start of the kernel.
+ */
+static int dbgDiggerLinuxLoadKernelSymbolsWorker(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis, RTGCUINTPTR uKernelStart,
+ RTGCUINTPTR cbKernel, RTGCUINTPTR *pauSymOff)
+{
+ uint8_t *pbNames = (uint8_t *)RTMemAllocZ(pThis->cbKernelNames);
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &pThis->AddrKernelNames, pbNames, pThis->cbKernelNames);
+ if (RT_SUCCESS(rc))
+ {
+ char *pszzTokens = (char *)RTMemAllocZ(pThis->cbKernelTokenTable);
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &pThis->AddrKernelTokenTable, pszzTokens, pThis->cbKernelTokenTable);
+ if (RT_SUCCESS(rc))
+ {
+ uint16_t *paoffTokens = (uint16_t *)RTMemAllocZ(256 * sizeof(uint16_t));
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &pThis->AddrKernelTokenIndex, paoffTokens, 256 * sizeof(uint16_t));
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Create a module for the kernel.
+ */
+ RTDBGMOD hMod;
+ rc = RTDbgModCreate(&hMod, "vmlinux", cbKernel, 0 /*fFlags*/);
+ if (RT_SUCCESS(rc))
+ {
+ rc = RTDbgModSetTag(hMod, DIG_LNX_MOD_TAG); AssertRC(rc);
+ rc = VINF_SUCCESS;
+
+ /*
+ * Enumerate the symbols.
+ */
+ uint32_t offName = 0;
+ uint32_t cLeft = pThis->cKernelSymbols;
+ while (cLeft-- > 0 && RT_SUCCESS(rc))
+ {
+ /* Decode the symbol name first. */
+ if (RT_LIKELY(offName < pThis->cbKernelNames))
+ {
+ uint8_t cbName = pbNames[offName++];
+ if (RT_LIKELY(offName + cbName <= pThis->cbKernelNames))
+ {
+ char szSymbol[4096];
+ uint32_t offSymbol = 0;
+ while (cbName-- > 0)
+ {
+ uint8_t bEnc = pbNames[offName++];
+ uint16_t offToken = paoffTokens[bEnc];
+ if (RT_LIKELY(offToken < pThis->cbKernelTokenTable))
+ {
+ const char *pszToken = &pszzTokens[offToken];
+ char ch;
+ while ((ch = *pszToken++) != '\0')
+ if (offSymbol < sizeof(szSymbol) - 1)
+ szSymbol[offSymbol++] = ch;
+ }
+ else
+ {
+ rc = VERR_INVALID_UTF8_ENCODING;
+ break;
+ }
+ }
+ szSymbol[offSymbol < sizeof(szSymbol) ? offSymbol : sizeof(szSymbol) - 1] = '\0';
+
+ /* The offset. */
+ RTGCUINTPTR uSymOff = *pauSymOff;
+ pauSymOff++;
+
+ /* Add it without the type char. */
+ if (uSymOff <= cbKernel)
+ {
+ rc = RTDbgModSymbolAdd(hMod, &szSymbol[1], RTDBGSEGIDX_RVA, uSymOff,
+ 0 /*cb*/, 0 /*fFlags*/, NULL);
+ if (RT_FAILURE(rc))
+ {
+ if ( rc == VERR_DBG_SYMBOL_NAME_OUT_OF_RANGE
+ || rc == VERR_DBG_INVALID_RVA
+ || rc == VERR_DBG_ADDRESS_CONFLICT
+ || rc == VERR_DBG_DUPLICATE_SYMBOL)
+ {
+ Log2(("dbgDiggerLinuxLoadKernelSymbols: RTDbgModSymbolAdd(,%s,) failed %Rrc (ignored)\n", szSymbol, rc));
+ rc = VINF_SUCCESS;
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: RTDbgModSymbolAdd(,%s,) failed %Rrc\n", szSymbol, rc));
+ }
+ }
+ }
+ else
+ {
+ rc = VERR_END_OF_STRING;
+ Log(("dbgDiggerLinuxLoadKernelSymbols: offName=%#x cLeft=%#x cbName=%#x cbKernelNames=%#x\n",
+ offName, cLeft, cbName, pThis->cbKernelNames));
+ }
+ }
+ else
+ {
+ rc = VERR_END_OF_STRING;
+ Log(("dbgDiggerLinuxLoadKernelSymbols: offName=%#x cLeft=%#x cbKernelNames=%#x\n",
+ offName, cLeft, pThis->cbKernelNames));
+ }
+ }
+
+ /*
+ * Link the module into the address space.
+ */
+ if (RT_SUCCESS(rc))
+ {
+ RTDBGAS hAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL);
+ if (hAs != NIL_RTDBGAS)
+ rc = RTDbgAsModuleLink(hAs, hMod, uKernelStart, RTDBGASLINK_FLAGS_REPLACE);
+ else
+ rc = VERR_INTERNAL_ERROR;
+ RTDbgAsRelease(hAs);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: Failed: %Rrc\n", rc));
+ RTDbgModRelease(hMod);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: RTDbgModCreate failed: %Rrc\n", rc));
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: Reading token index at %RGv failed: %Rrc\n",
+ pThis->AddrKernelTokenIndex.FlatPtr, rc));
+ RTMemFree(paoffTokens);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: Reading token table at %RGv failed: %Rrc\n",
+ pThis->AddrKernelTokenTable.FlatPtr, rc));
+ RTMemFree(pszzTokens);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbols: Reading encoded names at %RGv failed: %Rrc\n",
+ pThis->AddrKernelNames.FlatPtr, rc));
+ RTMemFree(pbNames);
+
+ return rc;
+}
+
+/**
+ * Loads the kernel symbols from the kallsyms table if it contains absolute addresses
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ */
+static int dbgDiggerLinuxLoadKernelSymbolsAbsolute(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis)
+{
+ /*
+ * Allocate memory for temporary table copies, reading the tables as we go.
+ */
+ uint32_t const cbGuestAddr = pThis->f64Bit ? sizeof(uint64_t) : sizeof(uint32_t);
+ void *pvAddresses = RTMemAllocZ(pThis->cKernelSymbols * cbGuestAddr);
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &pThis->AddrKernelAddresses,
+ pvAddresses, pThis->cKernelSymbols * cbGuestAddr);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Figure out the kernel start and end and convert the absolute addresses to relative offsets.
+ */
+ RTGCUINTPTR uKernelStart = pThis->AddrKernelAddresses.FlatPtr;
+ RTGCUINTPTR uKernelEnd = pThis->AddrKernelTokenIndex.FlatPtr + 256 * sizeof(uint16_t);
+ RTGCUINTPTR *pauSymOff = (RTGCUINTPTR *)RTMemTmpAllocZ(pThis->cKernelSymbols * sizeof(RTGCUINTPTR));
+ uint32_t i;
+ if (cbGuestAddr == sizeof(uint64_t))
+ {
+ uint64_t *pauAddrs = (uint64_t *)pvAddresses;
+ for (i = 0; i < pThis->cKernelSymbols; i++)
+ if ( pauAddrs[i] < uKernelStart
+ && LNX64_VALID_ADDRESS(pauAddrs[i])
+ && uKernelStart - pauAddrs[i] < LNX_MAX_KERNEL_SIZE)
+ uKernelStart = pauAddrs[i];
+
+ for (i = pThis->cKernelSymbols - 1; i > 0; i--)
+ if ( pauAddrs[i] > uKernelEnd
+ && LNX64_VALID_ADDRESS(pauAddrs[i])
+ && pauAddrs[i] - uKernelEnd < LNX_MAX_KERNEL_SIZE)
+ uKernelEnd = pauAddrs[i];
+
+ for (i = 0; i < pThis->cKernelSymbols; i++)
+ pauSymOff[i] = pauAddrs[i] - uKernelStart;
+ }
+ else
+ {
+ uint32_t *pauAddrs = (uint32_t *)pvAddresses;
+ for (i = 0; i < pThis->cKernelSymbols; i++)
+ if ( pauAddrs[i] < uKernelStart
+ && LNX32_VALID_ADDRESS(pauAddrs[i])
+ && uKernelStart - pauAddrs[i] < LNX_MAX_KERNEL_SIZE)
+ uKernelStart = pauAddrs[i];
+
+ for (i = pThis->cKernelSymbols - 1; i > 0; i--)
+ if ( pauAddrs[i] > uKernelEnd
+ && LNX32_VALID_ADDRESS(pauAddrs[i])
+ && pauAddrs[i] - uKernelEnd < LNX_MAX_KERNEL_SIZE)
+ uKernelEnd = pauAddrs[i];
+
+ for (i = 0; i < pThis->cKernelSymbols; i++)
+ pauSymOff[i] = pauAddrs[i] - uKernelStart;
+ }
+
+ RTGCUINTPTR cbKernel = uKernelEnd - uKernelStart;
+ pThis->cbKernel = (uint32_t)cbKernel;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &pThis->AddrKernelBase, uKernelStart);
+ Log(("dbgDiggerLinuxLoadKernelSymbolsAbsolute: uKernelStart=%RGv cbKernel=%#x\n", uKernelStart, cbKernel));
+
+ rc = dbgDiggerLinuxLoadKernelSymbolsWorker(pUVM, pVMM, pThis, uKernelStart, cbKernel, pauSymOff);
+ if (RT_FAILURE(rc))
+ Log(("dbgDiggerLinuxLoadKernelSymbolsAbsolute: Loading symbols from given offset table failed: %Rrc\n", rc));
+ RTMemTmpFree(pauSymOff);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbolsAbsolute: Reading symbol addresses at %RGv failed: %Rrc\n",
+ pThis->AddrKernelAddresses.FlatPtr, rc));
+ RTMemFree(pvAddresses);
+
+ return rc;
+}
+
+
+/**
+ * Loads the kernel symbols from the kallsyms table if it contains absolute addresses
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ */
+static int dbgDiggerLinuxLoadKernelSymbolsRelative(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis)
+{
+ /*
+ * Allocate memory for temporary table copies, reading the tables as we go.
+ */
+ int32_t *pai32Offsets = (int32_t *)RTMemAllocZ(pThis->cKernelSymbols * sizeof(int32_t));
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &pThis->AddrKernelAddresses,
+ pai32Offsets, pThis->cKernelSymbols * sizeof(int32_t));
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Figure out the kernel start and end and convert the absolute addresses to relative offsets.
+ */
+ RTGCUINTPTR uKernelStart = pThis->AddrKernelAddresses.FlatPtr;
+ RTGCUINTPTR uKernelEnd = pThis->AddrKernelTokenIndex.FlatPtr + 256 * sizeof(uint16_t);
+ RTGCUINTPTR *pauSymOff = (RTGCUINTPTR *)RTMemTmpAllocZ(pThis->cKernelSymbols * sizeof(RTGCUINTPTR));
+ uint32_t i;
+
+ for (i = 0; i < pThis->cKernelSymbols; i++)
+ {
+ RTGCUINTPTR uSymAddr = dbgDiggerLinuxConvOffsetToAddr(pThis, pai32Offsets[i]);
+
+ if ( uSymAddr < uKernelStart
+ && (pThis->f64Bit ? LNX64_VALID_ADDRESS(uSymAddr) : LNX32_VALID_ADDRESS(uSymAddr))
+ && uKernelStart - uSymAddr < LNX_MAX_KERNEL_SIZE)
+ uKernelStart = uSymAddr;
+ }
+
+ for (i = pThis->cKernelSymbols - 1; i > 0; i--)
+ {
+ RTGCUINTPTR uSymAddr = dbgDiggerLinuxConvOffsetToAddr(pThis, pai32Offsets[i]);
+
+ if ( uSymAddr > uKernelEnd
+ && (pThis->f64Bit ? LNX64_VALID_ADDRESS(uSymAddr) : LNX32_VALID_ADDRESS(uSymAddr))
+ && uSymAddr - uKernelEnd < LNX_MAX_KERNEL_SIZE)
+ uKernelEnd = uSymAddr;
+
+ /* Store the offset from the derived kernel start address. */
+ pauSymOff[i] = uSymAddr - uKernelStart;
+ }
+
+ RTGCUINTPTR cbKernel = uKernelEnd - uKernelStart;
+ pThis->cbKernel = (uint32_t)cbKernel;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &pThis->AddrKernelBase, uKernelStart);
+ Log(("dbgDiggerLinuxLoadKernelSymbolsRelative: uKernelStart=%RGv cbKernel=%#x\n", uKernelStart, cbKernel));
+
+ rc = dbgDiggerLinuxLoadKernelSymbolsWorker(pUVM, pVMM, pThis, uKernelStart, cbKernel, pauSymOff);
+ if (RT_FAILURE(rc))
+ Log(("dbgDiggerLinuxLoadKernelSymbolsRelative: Loading symbols from given offset table failed: %Rrc\n", rc));
+ RTMemTmpFree(pauSymOff);
+ }
+ else
+ Log(("dbgDiggerLinuxLoadKernelSymbolsRelative: Reading symbol addresses at %RGv failed: %Rrc\n",
+ pThis->AddrKernelAddresses.FlatPtr, rc));
+ RTMemFree(pai32Offsets);
+
+ return rc;
+}
+
+
+/**
+ * Loads the kernel symbols.
+ *
+ * @returns VBox status code.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pThis The Linux digger data.
+ */
+static int dbgDiggerLinuxLoadKernelSymbols(PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGDIGGERLINUX pThis)
+{
+ /*
+ * First the kernel itself.
+ */
+ if (pThis->fRelKrnlAddr)
+ return dbgDiggerLinuxLoadKernelSymbolsRelative(pUVM, pVMM, pThis);
+ return dbgDiggerLinuxLoadKernelSymbolsAbsolute(pUVM, pVMM, pThis);
+}
+
+
+/*
+ * The module structure changed it was easier to produce different code for
+ * each version of the structure. The C preprocessor rules!
+ */
+#define LNX_TEMPLATE_HEADER "DBGPlugInLinuxModuleCodeTmpl.cpp.h"
+
+#define LNX_BIT_SUFFIX _amd64
+#define LNX_PTR_T uint64_t
+#define LNX_64BIT 1
+#include "DBGPlugInLinuxModuleVerTmpl.cpp.h"
+
+#define LNX_BIT_SUFFIX _x86
+#define LNX_PTR_T uint32_t
+#define LNX_64BIT 0
+#include "DBGPlugInLinuxModuleVerTmpl.cpp.h"
+
+#undef LNX_TEMPLATE_HEADER
+
+static const struct
+{
+ uint32_t uVersion;
+ bool f64Bit;
+ uint64_t (*pfnProcessModule)(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM, PDBGFADDRESS pAddrModule);
+} g_aModVersions[] =
+{
+#define LNX_TEMPLATE_HEADER "DBGPlugInLinuxModuleTableEntryTmpl.cpp.h"
+
+#define LNX_BIT_SUFFIX _amd64
+#define LNX_64BIT 1
+#include "DBGPlugInLinuxModuleVerTmpl.cpp.h"
+
+#define LNX_BIT_SUFFIX _x86
+#define LNX_64BIT 0
+#include "DBGPlugInLinuxModuleVerTmpl.cpp.h"
+
+#undef LNX_TEMPLATE_HEADER
+};
+
+
+/**
+ * Tries to find and process the module list.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ */
+static int dbgDiggerLinuxLoadModules(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM)
+{
+ /*
+ * Locate the list head.
+ */
+ RTDBGAS hAs = pVMM->pfnDBGFR3AsResolveAndRetain(pUVM, DBGF_AS_KERNEL);
+ RTDBGSYMBOL SymInfo;
+ int rc = RTDbgAsSymbolByName(hAs, "vmlinux!modules", &SymInfo, NULL);
+ RTDbgAsRelease(hAs);
+ if (RT_FAILURE(rc))
+ return VERR_NOT_FOUND;
+
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("dbgDiggerLinuxLoadModules: Failed to locate the module list (%Rrc).\n", rc));
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Read the list anchor.
+ */
+ union
+ {
+ uint32_t volatile u32Pair[2];
+ uint64_t u64Pair[2];
+ } uListAnchor;
+ DBGFADDRESS Addr;
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, SymInfo.Value),
+ &uListAnchor, pThis->f64Bit ? sizeof(uListAnchor.u64Pair) : sizeof(uListAnchor.u32Pair));
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("dbgDiggerLinuxLoadModules: Error reading list anchor at %RX64: %Rrc\n", SymInfo.Value, rc));
+ return VERR_NOT_FOUND;
+ }
+ if (!pThis->f64Bit)
+ {
+ uListAnchor.u64Pair[1] = uListAnchor.u32Pair[1];
+ ASMCompilerBarrier();
+ uListAnchor.u64Pair[0] = uListAnchor.u32Pair[0];
+ }
+
+ if (pThis->uKrnlVer == 0)
+ {
+ LogRel(("dbgDiggerLinuxLoadModules: No valid kernel version given: %#x\n", pThis->uKrnlVer));
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Find the g_aModVersion entry that fits the best.
+ * ASSUMES strict descending order by bitcount and version.
+ */
+ Assert(g_aModVersions[0].f64Bit == true);
+ unsigned i = 0;
+ if (!pThis->f64Bit)
+ while (i < RT_ELEMENTS(g_aModVersions) && g_aModVersions[i].f64Bit)
+ i++;
+ while ( i < RT_ELEMENTS(g_aModVersions)
+ && g_aModVersions[i].f64Bit == pThis->f64Bit
+ && pThis->uKrnlVer < g_aModVersions[i].uVersion)
+ i++;
+ if (i >= RT_ELEMENTS(g_aModVersions))
+ {
+ LogRel(("dbgDiggerLinuxLoadModules: Failed to find anything matching version: %u.%u.%u\n",
+ pThis->uKrnlVerMaj, pThis->uKrnlVerMin, pThis->uKrnlVerBld));
+ return VERR_NOT_FOUND;
+ }
+
+ /*
+ * Walk the list.
+ */
+ uint64_t uModAddr = uListAnchor.u64Pair[0];
+ for (size_t iModule = 0; iModule < 4096 && uModAddr != SymInfo.Value && uModAddr != 0; iModule++)
+ uModAddr = g_aModVersions[i].pfnProcessModule(pThis, pUVM, pVMM, pVMM->pfnDBGFR3AddrFromFlat(pUVM, &Addr, uModAddr));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if there is a likely kallsyms_names fragment at pHitAddr.
+ *
+ * @returns true if it's a likely fragment, false if not.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pHitAddr The address where paNeedle was found.
+ * @param pabNeedle The fragment we've been searching for.
+ * @param cbNeedle The length of the fragment.
+ */
+static bool dbgDiggerLinuxIsLikelyNameFragment(PUVM pUVM, PCVMMR3VTABLE pVMM, PCDBGFADDRESS pHitAddr,
+ uint8_t const *pabNeedle, uint8_t cbNeedle)
+{
+ /*
+ * Examples of lead and tail bytes of our choosen needle in a randomly
+ * picked kernel:
+ * k o b j
+ * 22 6b 6f 62 6a aa
+ * fc 6b 6f 62 6a aa
+ * 82 6b 6f 62 6a 5f - ascii trail byte (_).
+ * ee 6b 6f 62 6a aa
+ * fc 6b 6f 62 6a 5f - ascii trail byte (_).
+ * 0a 74 6b 6f 62 6a 5f ea - ascii lead (t) and trail (_) bytes.
+ * 0b 54 6b 6f 62 6a aa - ascii lead byte (T).
+ * ... omitting 29 samples similar to the last two ...
+ * d8 6b 6f 62 6a aa
+ * d8 6b 6f 62 6a aa
+ * d8 6b 6f 62 6a aa
+ * d8 6b 6f 62 6a aa
+ * f9 5f 6b 6f 62 6a 5f 94 - ascii lead and trail bytes (_)
+ * f9 5f 6b 6f 62 6a 0c - ascii lead byte (_).
+ * fd 6b 6f 62 6a 0f
+ * ... enough.
+ */
+ uint8_t abBuf[32];
+ DBGFADDRESS ReadAddr = *pHitAddr;
+ pVMM->pfnDBGFR3AddrSub(&ReadAddr, 2);
+ int rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, &ReadAddr, abBuf, 2 + cbNeedle + 2);
+ if (RT_SUCCESS(rc))
+ {
+ if (memcmp(&abBuf[2], pabNeedle, cbNeedle) == 0) /* paranoia */
+ {
+ uint8_t const bLead = abBuf[1] == '_' || abBuf[1] == 'T' || abBuf[1] == 't' ? abBuf[0] : abBuf[1];
+ uint8_t const offTail = 2 + cbNeedle;
+ uint8_t const bTail = abBuf[offTail] == '_' ? abBuf[offTail] : abBuf[offTail + 1];
+ if ( bLead >= 1 && (bLead < 0x20 || bLead >= 0x80)
+ && bTail >= 1 && (bTail < 0x20 || bTail >= 0x80))
+ return true;
+ Log(("dbgDiggerLinuxIsLikelyNameFragment: failed at %RGv: bLead=%#x bTail=%#x (offTail=%#x)\n",
+ pHitAddr->FlatPtr, bLead, bTail, offTail));
+ }
+ else
+ Log(("dbgDiggerLinuxIsLikelyNameFragment: failed at %RGv: Needle changed!\n", pHitAddr->FlatPtr));
+ }
+ else
+ Log(("dbgDiggerLinuxIsLikelyNameFragment: failed at %RGv: %Rrc\n", pHitAddr->FlatPtr, rc));
+
+ return false;
+}
+
+/**
+ * Tries to find and load the kernel symbol table with the given needle.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pabNeedle The needle to use for searching.
+ * @param cbNeedle Size of the needle in bytes.
+ */
+static int dbgDiggerLinuxFindSymbolTableFromNeedle(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM,
+ uint8_t const *pabNeedle, uint8_t cbNeedle)
+{
+ /*
+ * Go looking for the kallsyms table. If it's there, it will be somewhere
+ * after the linux_banner symbol, so use it for starting the search.
+ */
+ int rc = VINF_SUCCESS;
+ DBGFADDRESS CurAddr = pThis->AddrLinuxBanner;
+ uint32_t cbLeft = LNX_MAX_KERNEL_SIZE;
+ while (cbLeft > 4096)
+ {
+ DBGFADDRESS HitAddr;
+ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &CurAddr, cbLeft, 1 /*uAlign*/,
+ pabNeedle, cbNeedle, &HitAddr);
+ if (RT_FAILURE(rc))
+ break;
+ if (dbgDiggerLinuxIsLikelyNameFragment(pUVM, pVMM, &HitAddr, pabNeedle, cbNeedle))
+ {
+ /* There will be another hit near by. */
+ pVMM->pfnDBGFR3AddrAdd(&HitAddr, 1);
+ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &HitAddr, LNX_MAX_KALLSYMS_NAMES_SIZE, 1 /*uAlign*/,
+ pabNeedle, cbNeedle, &HitAddr);
+ if ( RT_SUCCESS(rc)
+ && dbgDiggerLinuxIsLikelyNameFragment(pUVM, pVMM, &HitAddr, pabNeedle, cbNeedle))
+ {
+ /*
+ * We've got a very likely candidate for a location inside kallsyms_names.
+ * Try find the start of it, that is to say, try find kallsyms_num_syms.
+ * kallsyms_num_syms is aligned on sizeof(unsigned long) boundrary
+ */
+ rc = dbgDiggerLinuxFindStartOfNamesAndSymbolCount(pUVM, pVMM, pThis, &HitAddr);
+ if (RT_SUCCESS(rc))
+ rc = dbgDiggerLinuxFindEndOfNamesAndMore(pUVM, pVMM, pThis, &HitAddr);
+ if (RT_SUCCESS(rc))
+ rc = dbgDiggerLinuxFindTokenIndex(pUVM, pVMM, pThis);
+ if (RT_SUCCESS(rc))
+ rc = dbgDiggerLinuxLoadKernelSymbols(pUVM, pVMM, pThis);
+ if (RT_SUCCESS(rc))
+ {
+ rc = dbgDiggerLinuxLoadModules(pThis, pUVM, pVMM);
+ break;
+ }
+ }
+ }
+
+ /*
+ * Advance.
+ */
+ RTGCUINTPTR cbDistance = HitAddr.FlatPtr - CurAddr.FlatPtr + cbNeedle;
+ if (RT_UNLIKELY(cbDistance >= cbLeft))
+ {
+ Log(("dbgDiggerLinuxInit: Failed to find kallsyms\n"));
+ break;
+ }
+ cbLeft -= cbDistance;
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, cbDistance);
+ }
+
+ return rc;
+}
+
+/**
+ * Skips whitespace and comments in the given config returning the pointer
+ * to the first non whitespace character.
+ *
+ * @returns Pointer to the first non whitespace character or NULL if the end
+ * of the string was reached.
+ * @param pszCfg The config string.
+ */
+static const char *dbgDiggerLinuxCfgSkipWhitespace(const char *pszCfg)
+{
+ do
+ {
+ while ( *pszCfg != '\0'
+ && ( RT_C_IS_SPACE(*pszCfg)
+ || *pszCfg == '\n'))
+ pszCfg++;
+
+ /* Do we have a comment? Skip it. */
+ if (*pszCfg == '#')
+ {
+ while ( *pszCfg != '\n'
+ && *pszCfg != '\0')
+ pszCfg++;
+ }
+ } while ( *pszCfg != '\0'
+ && ( RT_C_IS_SPACE(*pszCfg)
+ || *pszCfg == '\n'
+ || *pszCfg == '#'));
+
+ return pszCfg;
+}
+
+/**
+ * Parses an identifier at the given position.
+ *
+ * @returns VBox status code.
+ * @param pszCfg The config data.
+ * @param ppszCfgNext Where to store the pointer to the data following the identifier.
+ * @param ppszIde Where to store the pointer to the identifier on success.
+ * Free with RTStrFree().
+ */
+static int dbgDiggerLinuxCfgParseIde(const char *pszCfg, const char **ppszCfgNext, char **ppszIde)
+{
+ int rc = VINF_SUCCESS;
+ size_t cchIde = 0;
+
+ while ( *pszCfg != '\0'
+ && ( RT_C_IS_ALNUM(*pszCfg)
+ || *pszCfg == '_'))
+ {
+ cchIde++;
+ pszCfg++;
+ }
+
+ if (cchIde)
+ {
+ *ppszIde = RTStrDupN(pszCfg - cchIde, cchIde);
+ if (!*ppszIde)
+ rc = VERR_NO_STR_MEMORY;
+ }
+
+ *ppszCfgNext = pszCfg;
+ return rc;
+}
+
+/**
+ * Parses a value for a config item.
+ *
+ * @returns VBox status code.
+ * @param pszCfg The config data.
+ * @param ppszCfgNext Where to store the pointer to the data following the identifier.
+ * @param ppCfgItem Where to store the created config item on success.
+ */
+static int dbgDiggerLinuxCfgParseVal(const char *pszCfg, const char **ppszCfgNext,
+ PDBGDIGGERLINUXCFGITEM *ppCfgItem)
+{
+ int rc = VINF_SUCCESS;
+ PDBGDIGGERLINUXCFGITEM pCfgItem = NULL;
+
+ if (RT_C_IS_DIGIT(*pszCfg) || *pszCfg == '-')
+ {
+ /* Parse the number. */
+ int64_t i64Num;
+ rc = RTStrToInt64Ex(pszCfg, (char **)ppszCfgNext, 0, &i64Num);
+ if ( RT_SUCCESS(rc)
+ || rc == VWRN_TRAILING_CHARS
+ || rc == VWRN_TRAILING_SPACES)
+ {
+ pCfgItem = (PDBGDIGGERLINUXCFGITEM)RTMemAllocZ(sizeof(DBGDIGGERLINUXCFGITEM));
+ if (pCfgItem)
+ {
+ pCfgItem->enmType = DBGDIGGERLINUXCFGITEMTYPE_NUMBER;
+ pCfgItem->u.i64Num = i64Num;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+ }
+ else if (*pszCfg == '\"')
+ {
+ /* Parse a string. */
+ const char *pszCfgCur = pszCfg + 1;
+ while ( *pszCfgCur != '\0'
+ && *pszCfgCur != '\"')
+ pszCfgCur++;
+
+ if (*pszCfgCur == '\"')
+ {
+ pCfgItem = (PDBGDIGGERLINUXCFGITEM)RTMemAllocZ(RT_UOFFSETOF_DYN(DBGDIGGERLINUXCFGITEM,
+ u.aszString[pszCfgCur - pszCfg + 1]));
+ if (pCfgItem)
+ {
+ pCfgItem->enmType = DBGDIGGERLINUXCFGITEMTYPE_STRING;
+ RTStrCopyEx(&pCfgItem->u.aszString[0], pszCfgCur - pszCfg + 1, pszCfg, pszCfgCur - pszCfg);
+ *ppszCfgNext = pszCfgCur + 1;
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ }
+ else
+ rc = VERR_INVALID_STATE;
+ }
+ else if ( *pszCfg == 'y'
+ || *pszCfg == 'm')
+ {
+ /* Included or module. */
+ pCfgItem = (PDBGDIGGERLINUXCFGITEM)RTMemAllocZ(sizeof(DBGDIGGERLINUXCFGITEM));
+ if (pCfgItem)
+ {
+ pCfgItem->enmType = DBGDIGGERLINUXCFGITEMTYPE_FLAG;
+ pCfgItem->u.fModule = *pszCfg == 'm';
+ }
+ else
+ rc = VERR_NO_MEMORY;
+ pszCfg++;
+ *ppszCfgNext = pszCfg;
+ }
+ else
+ rc = VERR_INVALID_STATE;
+
+ if (RT_SUCCESS(rc))
+ *ppCfgItem = pCfgItem;
+ else if (pCfgItem)
+ RTMemFree(pCfgItem);
+
+ return rc;
+}
+
+/**
+ * Parses the given kernel config and creates the config database.
+ *
+ * @returns VBox status code
+ * @param pThis The Linux digger data.
+ * @param pszCfg The config string.
+ */
+static int dbgDiggerLinuxCfgParse(PDBGDIGGERLINUX pThis, const char *pszCfg)
+{
+ int rc = VINF_SUCCESS;
+
+ /*
+ * The config is a text file with the following elements:
+ * # starts a comment which goes till the end of the line
+ * <Ide>=<val> where <Ide> is an identifier consisting of
+ * alphanumerical characters (including _)
+ * <val> denotes the value for the identifier and can have the following
+ * formats:
+ * (-)[0-9]* for numbers
+ * "..." for a string value
+ * m when a feature is enabled as a module
+ * y when a feature is enabled
+ * Newlines are used as a separator between values and mark the end
+ * of a comment
+ */
+ const char *pszCfgCur = pszCfg;
+ while ( RT_SUCCESS(rc)
+ && *pszCfgCur != '\0')
+ {
+ /* Start skipping the whitespace. */
+ pszCfgCur = dbgDiggerLinuxCfgSkipWhitespace(pszCfgCur);
+ if ( pszCfgCur
+ && *pszCfgCur != '\0')
+ {
+ char *pszIde = NULL;
+ /* Must be an identifier, parse it. */
+ rc = dbgDiggerLinuxCfgParseIde(pszCfgCur, &pszCfgCur, &pszIde);
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Skip whitespace again (shouldn't be required because = follows immediately
+ * in the observed configs).
+ */
+ pszCfgCur = dbgDiggerLinuxCfgSkipWhitespace(pszCfgCur);
+ if ( pszCfgCur
+ && *pszCfgCur == '=')
+ {
+ pszCfgCur++;
+ pszCfgCur = dbgDiggerLinuxCfgSkipWhitespace(pszCfgCur);
+ if ( pszCfgCur
+ && *pszCfgCur != '\0')
+ {
+ /* Get the value. */
+ PDBGDIGGERLINUXCFGITEM pCfgItem = NULL;
+ rc = dbgDiggerLinuxCfgParseVal(pszCfgCur, &pszCfgCur, &pCfgItem);
+ if (RT_SUCCESS(rc))
+ {
+ pCfgItem->Core.pszString = pszIde;
+ bool fRc = RTStrSpaceInsert(&pThis->hCfgDb, &pCfgItem->Core);
+ if (!fRc)
+ {
+ RTStrFree(pszIde);
+ RTMemFree(pCfgItem);
+ rc = VERR_INVALID_STATE;
+ }
+ }
+ }
+ else
+ rc = VERR_EOF;
+ }
+ else
+ rc = VERR_INVALID_STATE;
+ }
+
+ if (RT_FAILURE(rc))
+ RTStrFree(pszIde);
+ }
+ else
+ break; /* Reached the end of the config. */
+ }
+
+ if (RT_FAILURE(rc))
+ dbgDiggerLinuxCfgDbDestroy(pThis);
+
+ return rc;
+}
+
+/**
+ * Decompresses the given config and validates the UTF-8 encoding.
+ *
+ * @returns VBox status code.
+ * @param pbCfgComp The compressed config.
+ * @param cbCfgComp Size of the compressed config.
+ * @param ppszCfg Where to store the pointer to the decompressed config
+ * on success.
+ */
+static int dbgDiggerLinuxCfgDecompress(const uint8_t *pbCfgComp, size_t cbCfgComp, char **ppszCfg)
+{
+ int rc = VINF_SUCCESS;
+ RTVFSIOSTREAM hVfsIos = NIL_RTVFSIOSTREAM;
+
+ rc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pbCfgComp, cbCfgComp, &hVfsIos);
+ if (RT_SUCCESS(rc))
+ {
+ RTVFSIOSTREAM hVfsIosDecomp = NIL_RTVFSIOSTREAM;
+ rc = RTZipGzipDecompressIoStream(hVfsIos, RTZIPGZIPDECOMP_F_ALLOW_ZLIB_HDR, &hVfsIosDecomp);
+ if (RT_SUCCESS(rc))
+ {
+ char *pszCfg = NULL;
+ size_t cchCfg = 0;
+ size_t cbRead = 0;
+
+ do
+ {
+ uint8_t abBuf[_64K];
+ rc = RTVfsIoStrmRead(hVfsIosDecomp, abBuf, sizeof(abBuf), true /*fBlocking*/, &cbRead);
+ if (rc == VINF_EOF && cbRead == 0)
+ rc = VINF_SUCCESS;
+ if ( RT_SUCCESS(rc)
+ && cbRead > 0)
+ {
+ /* Append data. */
+ char *pszCfgNew = pszCfg;
+ rc = RTStrRealloc(&pszCfgNew, cchCfg + cbRead + 1);
+ if (RT_SUCCESS(rc))
+ {
+ pszCfg = pszCfgNew;
+ memcpy(pszCfg + cchCfg, &abBuf[0], cbRead);
+ cchCfg += cbRead;
+ pszCfg[cchCfg] = '\0'; /* Enforce string termination. */
+ }
+ }
+ } while (RT_SUCCESS(rc) && cbRead > 0);
+
+ if (RT_SUCCESS(rc))
+ *ppszCfg = pszCfg;
+ else if (RT_FAILURE(rc) && pszCfg)
+ RTStrFree(pszCfg);
+
+ RTVfsIoStrmRelease(hVfsIosDecomp);
+ }
+ RTVfsIoStrmRelease(hVfsIos);
+ }
+
+ return rc;
+}
+
+/**
+ * Reads and decodes the compressed kernel config.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param pAddrStart The start address of the compressed config.
+ * @param cbCfgComp The size of the compressed config.
+ */
+static int dbgDiggerLinuxCfgDecode(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM,
+ PCDBGFADDRESS pAddrStart, size_t cbCfgComp)
+{
+ int rc = VINF_SUCCESS;
+ uint8_t *pbCfgComp = (uint8_t *)RTMemTmpAlloc(cbCfgComp);
+ if (!pbCfgComp)
+ return VERR_NO_MEMORY;
+
+ rc = pVMM->pfnDBGFR3MemRead(pUVM, 0 /*idCpu*/, pAddrStart, pbCfgComp, cbCfgComp);
+ if (RT_SUCCESS(rc))
+ {
+ char *pszCfg = NULL;
+ rc = dbgDiggerLinuxCfgDecompress(pbCfgComp, cbCfgComp, &pszCfg);
+ if (RT_SUCCESS(rc))
+ {
+ if (RTStrIsValidEncoding(pszCfg))
+ rc = dbgDiggerLinuxCfgParse(pThis, pszCfg);
+ else
+ rc = VERR_INVALID_UTF8_ENCODING;
+ RTStrFree(pszCfg);
+ }
+ }
+
+ RTMemFree(pbCfgComp);
+ return rc;
+}
+
+/**
+ * Tries to find the compressed kernel config in the kernel address space
+ * and sets up the config database.
+ *
+ * @returns VBox status code.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ */
+static int dbgDiggerLinuxCfgFind(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM)
+{
+ /*
+ * Go looking for the IKCFG_ST string which indicates the start
+ * of the compressed config file.
+ */
+ static const uint8_t s_abCfgNeedleStart[] = "IKCFG_ST";
+ static const uint8_t s_abCfgNeedleEnd[] = "IKCFG_ED";
+ int rc = VINF_SUCCESS;
+ DBGFADDRESS CurAddr = pThis->AddrLinuxBanner;
+ uint32_t cbLeft = LNX_MAX_KERNEL_SIZE;
+ while (cbLeft > 4096)
+ {
+ DBGFADDRESS HitAddrStart;
+ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /*idCpu*/, &CurAddr, cbLeft, 1 /*uAlign*/,
+ s_abCfgNeedleStart, sizeof(s_abCfgNeedleStart) - 1, &HitAddrStart);
+ if (RT_FAILURE(rc))
+ break;
+
+ /* Check for the end marker which shouldn't be that far away. */
+ pVMM->pfnDBGFR3AddrAdd(&HitAddrStart, sizeof(s_abCfgNeedleStart) - 1);
+ DBGFADDRESS HitAddrEnd;
+ rc = pVMM->pfnDBGFR3MemScan(pUVM, 0 /* idCpu */, &HitAddrStart, LNX_MAX_COMPRESSED_CFG_SIZE,
+ 1 /* uAlign */, s_abCfgNeedleEnd, sizeof(s_abCfgNeedleEnd) - 1, &HitAddrEnd);
+ if (RT_SUCCESS(rc))
+ {
+ /* Allocate a buffer to hold the compressed data between the markers and fetch it. */
+ RTGCUINTPTR cbCfg = HitAddrEnd.FlatPtr - HitAddrStart.FlatPtr;
+ Assert(cbCfg == (size_t)cbCfg);
+ rc = dbgDiggerLinuxCfgDecode(pThis, pUVM, pVMM, &HitAddrStart, cbCfg);
+ if (RT_SUCCESS(rc))
+ break;
+ }
+
+ /*
+ * Advance.
+ */
+ RTGCUINTPTR cbDistance = HitAddrStart.FlatPtr - CurAddr.FlatPtr + sizeof(s_abCfgNeedleStart) - 1;
+ if (RT_UNLIKELY(cbDistance >= cbLeft))
+ {
+ LogFunc(("Failed to find compressed kernel config\n"));
+ break;
+ }
+ cbLeft -= cbDistance;
+ pVMM->pfnDBGFR3AddrAdd(&CurAddr, cbDistance);
+ }
+
+ return rc;
+}
+
+/**
+ * Probes for a Linux kernel starting at the given address.
+ *
+ * @returns Flag whether something which looks like a valid Linux kernel was found.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ * @param uAddrStart The address to start scanning at.
+ * @param cbScan How much to scan.
+ */
+static bool dbgDiggerLinuxProbeWithAddr(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM,
+ RTGCUINTPTR uAddrStart, size_t cbScan)
+{
+ /*
+ * Look for "Linux version " at the start of the rodata segment.
+ * Hope that this comes before any message buffer or other similar string.
+ */
+ DBGFADDRESS KernelAddr;
+ pVMM->pfnDBGFR3AddrFromFlat(pUVM, &KernelAddr, uAddrStart);
+ DBGFADDRESS HitAddr;
+ int rc = pVMM->pfnDBGFR3MemScan(pUVM, 0, &KernelAddr, cbScan, 1,
+ g_abLinuxVersion, sizeof(g_abLinuxVersion) - 1, &HitAddr);
+ if (RT_SUCCESS(rc))
+ {
+ char szTmp[128];
+ char const *pszX = &szTmp[sizeof(g_abLinuxVersion) - 1];
+ rc = pVMM->pfnDBGFR3MemReadString(pUVM, 0, &HitAddr, szTmp, sizeof(szTmp));
+ if ( RT_SUCCESS(rc)
+ && ( ( pszX[0] == '2' /* 2.x.y with x in {0..6} */
+ && pszX[1] == '.'
+ && pszX[2] >= '0'
+ && pszX[2] <= '6')
+ || ( pszX[0] >= '3' /* 3.x, 4.x, ... 9.x */
+ && pszX[0] <= '9'
+ && pszX[1] == '.'
+ && pszX[2] >= '0'
+ && pszX[2] <= '9')
+ )
+ )
+ {
+ pThis->AddrKernelBase = KernelAddr;
+ pThis->AddrLinuxBanner = HitAddr;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * Probes for a Linux kernel which has KASLR enabled.
+ *
+ * @returns Flag whether a possible candidate location was found.
+ * @param pThis The Linux digger data.
+ * @param pUVM The user mode VM handle.
+ * @param pVMM The VMM function table.
+ */
+static bool dbgDiggerLinuxProbeKaslr(PDBGDIGGERLINUX pThis, PUVM pUVM, PCVMMR3VTABLE pVMM)
+{
+ /**
+ * With KASLR the kernel is loaded at a different address at each boot making detection
+ * more difficult for us.
+ *
+ * The randomization is done in arch/x86/boot/compressed/kaslr.c:choose_random_location() (as of Nov 2017).
+ * At the end of the method a random offset is chosen using find_random_virt_addr() which is added to the
+ * kernel map start in the caller (the start of the kernel depends on the bit size, see LNX32_KERNEL_ADDRESS_START
+ * and LNX64_KERNEL_ADDRESS_START for 32bit and 64bit kernels respectively).
+ * The lowest offset possible is LOAD_PHYSICAL_ADDR which is defined in arch/x86/include/asm/boot.h
+ * using CONFIG_PHYSICAL_START aligned to CONFIG_PHYSICAL_ALIGN.
+ * The default CONFIG_PHYSICAL_START and CONFIG_PHYSICAL_ALIGN are both 0x1000000 no matter whether a 32bit
+ * or a 64bit kernel is used. So the lowest offset to the kernel start address is 0x1000000.
+ * The find_random_virt_addr() the number of possible slots where the kernel can be placed based on the image size
+ * is calculated using the following formula:
+ * cSlots = ((KERNEL_IMAGE_SIZE - 0x1000000 (minimum) - image_size) / 0x1000000 (CONFIG_PHYSICAL_ALIGN)) + 1
+ *
+ * KERNEL_IMAGE_SIZE is 1GB for 64bit kernels and 512MB for 32bit kernels, so the maximum number of slots (resulting
+ * in the largest possible offset) can be achieved when image_size (which contains the real size of the kernel image
+ * which is unknown for us) goes to 0 and a 1GB KERNEL_IMAGE_SIZE is assumed. With that the biggest cSlots which can be
+ * achieved is 64. The chosen random offset is taken from a random long integer using kaslr_get_random_long() modulo the
+ * number of slots which selects a slot between 0 and 63. The final offset is calculated using:
+ * offAddr = random_addr * 0x1000000 (CONFIG_PHYSICAL_ALIGN) + 0x1000000 (minimum)
+ *
+ * So the highest offset the kernel can start is 0x40000000 which is 1GB (plus the maximum kernel size we defined).
+ */
+ if (dbgDiggerLinuxProbeWithAddr(pThis, pUVM, pVMM, LNX64_KERNEL_ADDRESS_START, _1G + LNX_MAX_KERNEL_SIZE))
+ return true;
+
+ /*
+ * 32bit variant, makes sure we don't exceed the 4GB address space or DBGFR3MemScan() returns VERR_DBGF_MEM_NOT_FOUND immediately
+ * without searching the remainder of the address space.
+ *
+ * The default split is 3GB userspace and 1GB kernel, so we just search the entire upper 1GB kernel space.
+ */
+ if (dbgDiggerLinuxProbeWithAddr(pThis, pUVM, pVMM, LNX32_KERNEL_ADDRESS_START, _4G - LNX32_KERNEL_ADDRESS_START))
+ return true;
+
+ return false;
+}
+
+/**
+ * @copydoc DBGFOSREG::pfnInit
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxInit(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ Assert(!pThis->fValid);
+
+ char szVersion[256] = "Linux version 4.19.0";
+ int rc = pVMM->pfnDBGFR3MemReadString(pUVM, 0, &pThis->AddrLinuxBanner, &szVersion[0], sizeof(szVersion));
+ if (RT_SUCCESS(rc))
+ {
+ /*
+ * Get a numerical version number.
+ */
+ const char *pszVersion = szVersion;
+ while (*pszVersion && !RT_C_IS_DIGIT(*pszVersion))
+ pszVersion++;
+
+ size_t offVersion = 0;
+ uint32_t uMajor = 0;
+ while (pszVersion[offVersion] && RT_C_IS_DIGIT(pszVersion[offVersion]))
+ uMajor = uMajor * 10 + pszVersion[offVersion++] - '0';
+
+ if (pszVersion[offVersion] == '.')
+ offVersion++;
+
+ uint32_t uMinor = 0;
+ while (pszVersion[offVersion] && RT_C_IS_DIGIT(pszVersion[offVersion]))
+ uMinor = uMinor * 10 + pszVersion[offVersion++] - '0';
+
+ if (pszVersion[offVersion] == '.')
+ offVersion++;
+
+ uint32_t uBuild = 0;
+ while (pszVersion[offVersion] && RT_C_IS_DIGIT(pszVersion[offVersion]))
+ uBuild = uBuild * 10 + pszVersion[offVersion++] - '0';
+
+ pThis->uKrnlVer = LNX_MK_VER(uMajor, uMinor, uBuild);
+ pThis->uKrnlVerMaj = uMajor;
+ pThis->uKrnlVerMin = uMinor;
+ pThis->uKrnlVerBld = uBuild;
+ if (pThis->uKrnlVer == 0)
+ LogRel(("dbgDiggerLinuxInit: Failed to parse version string: %s\n", pszVersion));
+ }
+
+ /*
+ * Assume 64-bit kernels all live way beyond 32-bit address space.
+ */
+ pThis->f64Bit = pThis->AddrLinuxBanner.FlatPtr > UINT32_MAX;
+ pThis->fRelKrnlAddr = false;
+
+ pThis->hCfgDb = NULL;
+
+ /*
+ * Try to find the compressed kernel config and parse it before we try
+ * to get the symbol table, the config database is required to select
+ * the method to use.
+ */
+ rc = dbgDiggerLinuxCfgFind(pThis, pUVM, pVMM);
+ if (RT_FAILURE(rc))
+ LogFlowFunc(("Failed to find kernel config (%Rrc), no config database available\n", rc));
+
+ static const uint8_t s_abNeedle[] = "kobj";
+ rc = dbgDiggerLinuxFindSymbolTableFromNeedle(pThis, pUVM, pVMM, s_abNeedle, sizeof(s_abNeedle) - 1);
+ if (RT_FAILURE(rc))
+ {
+ /* Try alternate needle (seen on older x86 Linux kernels). */
+ static const uint8_t s_abNeedleAlt[] = "kobjec";
+ rc = dbgDiggerLinuxFindSymbolTableFromNeedle(pThis, pUVM, pVMM, s_abNeedleAlt, sizeof(s_abNeedleAlt) - 1);
+ if (RT_FAILURE(rc))
+ {
+ static const uint8_t s_abNeedleOSuseX86[] = "nmi"; /* OpenSuSe 10.2 x86 */
+ rc = dbgDiggerLinuxFindSymbolTableFromNeedle(pThis, pUVM, pVMM, s_abNeedleOSuseX86, sizeof(s_abNeedleOSuseX86) - 1);
+ }
+ }
+
+ pThis->fValid = true;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnProbe
+ */
+static DECLCALLBACK(bool) dbgDiggerLinuxProbe(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+
+ for (unsigned i = 0; i < RT_ELEMENTS(g_au64LnxKernelAddresses); i++)
+ {
+ if (dbgDiggerLinuxProbeWithAddr(pThis, pUVM, pVMM, g_au64LnxKernelAddresses[i], LNX_MAX_KERNEL_SIZE))
+ return true;
+ }
+
+ /* Maybe the kernel uses KASLR. */
+ if (dbgDiggerLinuxProbeKaslr(pThis, pUVM, pVMM))
+ return true;
+
+ return false;
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnDestruct
+ */
+static DECLCALLBACK(void) dbgDiggerLinuxDestruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ RT_NOREF(pUVM, pVMM, pvData);
+}
+
+
+/**
+ * @copydoc DBGFOSREG::pfnConstruct
+ */
+static DECLCALLBACK(int) dbgDiggerLinuxConstruct(PUVM pUVM, PCVMMR3VTABLE pVMM, void *pvData)
+{
+ RT_NOREF(pUVM, pVMM);
+ PDBGDIGGERLINUX pThis = (PDBGDIGGERLINUX)pvData;
+ pThis->IDmesg.u32Magic = DBGFOSIDMESG_MAGIC;
+ pThis->IDmesg.pfnQueryKernelLog = dbgDiggerLinuxIDmsg_QueryKernelLog;
+ pThis->IDmesg.u32EndMagic = DBGFOSIDMESG_MAGIC;
+
+ return VINF_SUCCESS;
+}
+
+
+const DBGFOSREG g_DBGDiggerLinux =
+{
+ /* .u32Magic = */ DBGFOSREG_MAGIC,
+ /* .fFlags = */ 0,
+ /* .cbData = */ sizeof(DBGDIGGERLINUX),
+ /* .szName = */ "Linux",
+ /* .pfnConstruct = */ dbgDiggerLinuxConstruct,
+ /* .pfnDestruct = */ dbgDiggerLinuxDestruct,
+ /* .pfnProbe = */ dbgDiggerLinuxProbe,
+ /* .pfnInit = */ dbgDiggerLinuxInit,
+ /* .pfnRefresh = */ dbgDiggerLinuxRefresh,
+ /* .pfnTerm = */ dbgDiggerLinuxTerm,
+ /* .pfnQueryVersion = */ dbgDiggerLinuxQueryVersion,
+ /* .pfnQueryInterface = */ dbgDiggerLinuxQueryInterface,
+ /* .pfnStackUnwindAssist = */ dbgDiggerLinuxStackUnwindAssist,
+ /* .u32EndMagic = */ DBGFOSREG_MAGIC
+};
+