summaryrefslogtreecommitdiffstats
path: root/src/VBox/Devices/Bus/DevIommuIntel.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 16:49:04 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 16:49:04 +0000
commit16f504a9dca3fe3b70568f67b7d41241ae485288 (patch)
treec60f36ada0496ba928b7161059ba5ab1ab224f9d /src/VBox/Devices/Bus/DevIommuIntel.cpp
parentInitial commit. (diff)
downloadvirtualbox-upstream.tar.xz
virtualbox-upstream.zip
Adding upstream version 7.0.6-dfsg.upstream/7.0.6-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/Devices/Bus/DevIommuIntel.cpp')
-rw-r--r--src/VBox/Devices/Bus/DevIommuIntel.cpp4459
1 files changed, 4459 insertions, 0 deletions
diff --git a/src/VBox/Devices/Bus/DevIommuIntel.cpp b/src/VBox/Devices/Bus/DevIommuIntel.cpp
new file mode 100644
index 00000000..cc338f3c
--- /dev/null
+++ b/src/VBox/Devices/Bus/DevIommuIntel.cpp
@@ -0,0 +1,4459 @@
+/* $Id: DevIommuIntel.cpp $ */
+/** @file
+ * IOMMU - Input/Output Memory Management Unit - Intel implementation.
+ */
+
+/*
+ * Copyright (C) 2021-2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_DEV_IOMMU
+#include "VBoxDD.h"
+#include "DevIommuIntel.h"
+
+#include <VBox/iommu-intel.h>
+#include <iprt/mem.h>
+#include <iprt/string.h>
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/** Gets the low uint32_t of a uint64_t or something equivalent.
+ *
+ * This is suitable for casting constants outside code (since RT_LO_U32 can't be
+ * used as it asserts for correctness when compiling on certain compilers). */
+#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
+
+/** Gets the high uint32_t of a uint64_t or something equivalent.
+ *
+ * This is suitable for casting constants outside code (since RT_HI_U32 can't be
+ * used as it asserts for correctness when compiling on certain compilers). */
+#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
+
+/** Asserts MMIO access' offset and size are valid or returns appropriate error
+ * code suitable for returning from MMIO access handlers. */
+#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
+ do { \
+ AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
+ AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
+ } while (0)
+
+/** Checks if the MMIO offset is valid. */
+#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
+ || (a_off) - (uint16_t)DMAR_MMIO_GROUP_1_OFF_FIRST < (uint16_t)DMAR_MMIO_GROUP_1_SIZE)
+
+/** Acquires the DMAR lock but returns with the given busy error code on failure. */
+#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
+ do { \
+ int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)); \
+ if (RT_LIKELY(rcLock == VINF_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return rcLock; \
+ } while (0)
+
+/** Acquires the DMAR lock (can fail under extraordinary circumstance in ring-0). */
+#define DMAR_LOCK(a_pDevIns, a_pThisCC) \
+ do { \
+ int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
+ PDM_CRITSECT_RELEASE_ASSERT_RC_DEV((a_pDevIns), NULL, rcLock); \
+ } while (0)
+
+/** Release the DMAR lock. */
+#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
+
+/** Asserts that the calling thread owns the DMAR lock. */
+#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
+ do { \
+ Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
+ RT_NOREF1(a_pThisCC); \
+ } while (0)
+
+/** Asserts that the calling thread does not own the DMAR lock. */
+#define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
+ do { \
+ Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
+ RT_NOREF1(a_pThisCC); \
+ } while (0)
+
+/** The number of fault recording registers our implementation supports.
+ * Normal guest operation shouldn't trigger faults anyway, so we only support the
+ * minimum number of registers (which is 1).
+ *
+ * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
+#define DMAR_FRCD_REG_COUNT UINT32_C(1)
+
+/** Number of register groups (used in saved states). */
+#define DMAR_MMIO_GROUP_COUNT 2
+/** Offset of first register in group 0. */
+#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
+/** Offset of last register in group 0 (inclusive). */
+#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
+/** Last valid offset in group 0 (exclusive). */
+#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
+/** Size of the group 0 (in bytes). */
+#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
+/** Number of implementation-defined MMIO register offsets - IVA_REG and
+ * FRCD_LO_REG (used in saved state). IOTLB_REG and FRCD_HI_REG are derived from
+ * IVA_REG and FRCD_LO_REG respectively */
+#define DMAR_MMIO_OFF_IMPL_COUNT 2
+/** Implementation-specific MMIO offset of IVA_REG (used in saved state). */
+#define DMAR_MMIO_OFF_IVA_REG 0xe50
+/** Implementation-specific MMIO offset of IOTLB_REG. */
+#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
+/** Implementation-specific MMIO offset of FRCD_LO_REG (used in saved state). */
+#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
+/** Implementation-specific MMIO offset of FRCD_HI_REG. */
+#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
+AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
+AssertCompile(DMAR_MMIO_OFF_IOTLB_REG == DMAR_MMIO_OFF_IVA_REG + 8);
+AssertCompile(DMAR_MMIO_OFF_FRCD_HI_REG == DMAR_MMIO_OFF_FRCD_LO_REG + 8);
+
+/** Offset of first register in group 1. */
+#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
+/** Offset of last register in group 1 (inclusive). */
+#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
+/** Last valid offset in group 1 (exclusive). */
+#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
+/** Size of the group 1 (in bytes). */
+#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
+
+/** DMAR implementation's major version number (exposed to software).
+ * We report 6 as the major version since we support queued-invalidations as
+ * software may make assumptions based on that.
+ *
+ * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
+#define DMAR_VER_MAJOR 6
+/** DMAR implementation's minor version number (exposed to software). */
+#define DMAR_VER_MINOR 0
+
+/** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
+ * 7=Reserved). */
+#define DMAR_ND 6
+
+/** @name DMAR_PERM_XXX: DMA request permissions.
+ * The order of R, W, X bits is important as it corresponds to those bits in
+ * page-table entries.
+ *
+ * @{ */
+/** DMA request permission: Read. */
+#define DMAR_PERM_READ RT_BIT(0)
+/** DMA request permission: Write. */
+#define DMAR_PERM_WRITE RT_BIT(1)
+/** DMA request permission: Execute (ER). */
+#define DMAR_PERM_EXE RT_BIT(2)
+/** DMA request permission: Supervisor privilege (PR). */
+#define DMAR_PERM_PRIV RT_BIT(3)
+/** DMA request permissions: All. */
+#define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
+/** @} */
+
+/** Release log prefix string. */
+#define DMAR_LOG_PFX "Intel-IOMMU"
+/** The current saved state version. */
+#define DMAR_SAVED_STATE_VERSION 1
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * DMAR error diagnostics.
+ * Sorted alphabetically so it's easier to add and locate items, no other reason.
+ *
+ * @note Members of this enum are used as array indices, so no gaps in enum
+ * values are not allowed. Update g_apszDmarDiagDesc when you modify
+ * fields in this enum.
+ */
+typedef enum
+{
+ /* No error, this must be zero! */
+ kDmarDiag_None = 0,
+
+ /* Address Translation Faults. */
+ kDmarDiag_At_Lm_CtxEntry_Not_Present,
+ kDmarDiag_At_Lm_CtxEntry_Read_Failed,
+ kDmarDiag_At_Lm_CtxEntry_Rsvd,
+ kDmarDiag_At_Lm_Pt_At_Block,
+ kDmarDiag_At_Lm_Pt_Aw_Invalid,
+ kDmarDiag_At_Lm_RootEntry_Not_Present,
+ kDmarDiag_At_Lm_RootEntry_Read_Failed,
+ kDmarDiag_At_Lm_RootEntry_Rsvd,
+ kDmarDiag_At_Lm_Tt_Invalid,
+ kDmarDiag_At_Lm_Ut_At_Block,
+ kDmarDiag_At_Lm_Ut_Aw_Invalid,
+ kDmarDiag_At_Rta_Adms_Not_Supported,
+ kDmarDiag_At_Rta_Rsvd,
+ kDmarDiag_At_Rta_Smts_Not_Supported,
+ kDmarDiag_At_Xm_AddrIn_Invalid,
+ kDmarDiag_At_Xm_AddrOut_Invalid,
+ kDmarDiag_At_Xm_Perm_Read_Denied,
+ kDmarDiag_At_Xm_Perm_Write_Denied,
+ kDmarDiag_At_Xm_Pte_Not_Present,
+ kDmarDiag_At_Xm_Pte_Rsvd,
+ kDmarDiag_At_Xm_Pte_Sllps_Invalid,
+ kDmarDiag_At_Xm_Read_Pte_Failed,
+ kDmarDiag_At_Xm_Slpptr_Read_Failed,
+
+ /* CCMD_REG faults. */
+ kDmarDiag_CcmdReg_Not_Supported,
+ kDmarDiag_CcmdReg_Qi_Enabled,
+ kDmarDiag_CcmdReg_Ttm_Invalid,
+
+ /* IQA_REG faults. */
+ kDmarDiag_IqaReg_Dsc_Fetch_Error,
+ kDmarDiag_IqaReg_Dw_128_Invalid,
+ kDmarDiag_IqaReg_Dw_256_Invalid,
+
+ /* Invalidation Queue Error Info. */
+ kDmarDiag_Iqei_Dsc_Type_Invalid,
+ kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
+ kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
+ kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
+ kDmarDiag_Iqei_Ttm_Rsvd,
+
+ /* IQT_REG faults. */
+ kDmarDiag_IqtReg_Qt_Invalid,
+ kDmarDiag_IqtReg_Qt_Not_Aligned,
+
+ /* Interrupt Remapping Faults. */
+ kDmarDiag_Ir_Cfi_Blocked,
+ kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
+ kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
+ kDmarDiag_Ir_Rfi_Irte_Not_Present,
+ kDmarDiag_Ir_Rfi_Irte_Read_Failed,
+ kDmarDiag_Ir_Rfi_Irte_Rsvd,
+ kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
+ kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
+ kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
+ kDmarDiag_Ir_Rfi_Rsvd,
+
+ /* Member for determining array index limit. */
+ kDmarDiag_End,
+
+ /* Usual 32-bit type size hack. */
+ kDmarDiag_32Bit_Hack = 0x7fffffff
+} DMARDIAG;
+AssertCompileSize(DMARDIAG, 4);
+
+#ifdef IN_RING3
+/** DMAR diagnostic enum description expansion.
+ * The below construct ensures typos in the input to this macro are caught
+ * during compile time. */
+# define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
+
+/** DMAR diagnostics description for members in DMARDIAG. */
+static const char *const g_apszDmarDiagDesc[] =
+{
+ DMARDIAG_DESC(None ),
+
+ /* Address Translation Faults. */
+ DMARDIAG_DESC(At_Lm_CtxEntry_Not_Present ),
+ DMARDIAG_DESC(At_Lm_CtxEntry_Read_Failed ),
+ DMARDIAG_DESC(At_Lm_CtxEntry_Rsvd ),
+ DMARDIAG_DESC(At_Lm_Pt_At_Block ),
+ DMARDIAG_DESC(At_Lm_Pt_Aw_Invalid ),
+ DMARDIAG_DESC(At_Lm_RootEntry_Not_Present),
+ DMARDIAG_DESC(At_Lm_RootEntry_Read_Failed),
+ DMARDIAG_DESC(At_Lm_RootEntry_Rsvd ),
+ DMARDIAG_DESC(At_Lm_Tt_Invalid ),
+ DMARDIAG_DESC(At_Lm_Ut_At_Block ),
+ DMARDIAG_DESC(At_Lm_Ut_Aw_Invalid ),
+ DMARDIAG_DESC(At_Rta_Adms_Not_Supported ),
+ DMARDIAG_DESC(At_Rta_Rsvd ),
+ DMARDIAG_DESC(At_Rta_Smts_Not_Supported ),
+ DMARDIAG_DESC(At_Xm_AddrIn_Invalid ),
+ DMARDIAG_DESC(At_Xm_AddrOut_Invalid ),
+ DMARDIAG_DESC(At_Xm_Perm_Read_Denied ),
+ DMARDIAG_DESC(At_Xm_Perm_Write_Denied ),
+ DMARDIAG_DESC(At_Xm_Pte_Not_Present ),
+ DMARDIAG_DESC(At_Xm_Pte_Rsvd ),
+ DMARDIAG_DESC(At_Xm_Pte_Sllps_Invalid ),
+ DMARDIAG_DESC(At_Xm_Read_Pte_Failed ),
+ DMARDIAG_DESC(At_Xm_Slpptr_Read_Failed ),
+
+ /* CCMD_REG faults. */
+ DMARDIAG_DESC(CcmdReg_Not_Supported ),
+ DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
+ DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
+
+ /* IQA_REG faults. */
+ DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
+ DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
+ DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
+
+ /* Invalidation Queue Error Info. */
+ DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
+ DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd ),
+ DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd ),
+ DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
+ DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
+
+ /* IQT_REG faults. */
+ DMARDIAG_DESC(IqtReg_Qt_Invalid ),
+ DMARDIAG_DESC(IqtReg_Qt_Not_Aligned ),
+
+ /* Interrupt remapping faults. */
+ DMARDIAG_DESC(Ir_Cfi_Blocked ),
+ DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
+ DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
+ DMARDIAG_DESC(Ir_Rfi_Rsvd ),
+ /* kDmarDiag_End */
+};
+AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
+# undef DMARDIAG_DESC
+#endif /* IN_RING3 */
+
+/**
+ * The shared DMAR device state.
+ */
+typedef struct DMAR
+{
+ /** IOMMU device index. */
+ uint32_t idxIommu;
+ /** Padding. */
+ uint32_t u32Padding0;
+
+ /** Registers (group 0). */
+ uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
+ /** Registers (group 1). */
+ uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
+
+ /** @name Lazily activated registers.
+ * These are the active values for lazily activated registers. Software is free to
+ * modify the actual register values while remapping/translation is enabled but they
+ * take effect only when explicitly signaled by software, hence we need to hold the
+ * active values separately.
+ * @{ */
+ /** Currently active IRTA_REG. */
+ uint64_t uIrtaReg;
+ /** Currently active RTADDR_REG. */
+ uint64_t uRtaddrReg;
+ /** @} */
+
+ /** @name Register copies for a tiny bit faster and more convenient access.
+ * @{ */
+ /** Copy of VER_REG. */
+ uint8_t uVerReg;
+ /** Alignment. */
+ uint8_t abPadding0[7];
+ /** Copy of CAP_REG. */
+ uint64_t fCapReg;
+ /** Copy of ECAP_REG. */
+ uint64_t fExtCapReg;
+ /** @} */
+
+ /** Host-address width (HAW) base address mask. */
+ uint64_t fHawBaseMask;
+ /** Maximum guest-address width (MGAW) invalid address mask. */
+ uint64_t fMgawInvMask;
+ /** Context-entry qword-1 valid mask. */
+ uint64_t fCtxEntryQw1ValidMask;
+ /** Maximum supported paging level (3, 4 or 5). */
+ uint8_t cMaxPagingLevel;
+ /** DMA request valid permissions mask. */
+ uint8_t fPermValidMask;
+ /** Alignment. */
+ uint8_t abPadding1[6];
+
+ /** The event semaphore the invalidation-queue thread waits on. */
+ SUPSEMEVENT hEvtInvQueue;
+ /** Error diagnostic. */
+ DMARDIAG enmDiag;
+ /** Padding. */
+ uint32_t uPadding0;
+ /** The MMIO handle. */
+ IOMMMIOHANDLE hMmio;
+
+#ifdef VBOX_WITH_STATISTICS
+ STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
+ STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
+ STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
+ STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
+
+ STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
+ STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
+ STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
+ STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
+
+ STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
+ STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
+ STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
+ STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
+
+ STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
+ STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
+ STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
+ STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
+
+ STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
+ STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
+ STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
+ STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
+ STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
+ STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
+ STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
+ STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
+#endif
+} DMAR;
+/** Pointer to the DMAR device state. */
+typedef DMAR *PDMAR;
+/** Pointer to the const DMAR device state. */
+typedef DMAR const *PCDMAR;
+AssertCompileMemberAlignment(DMAR, abRegs0, 8);
+AssertCompileMemberAlignment(DMAR, abRegs1, 8);
+
+/**
+ * The ring-3 DMAR device state.
+ */
+typedef struct DMARR3
+{
+ /** Device instance. */
+ PPDMDEVINSR3 pDevInsR3;
+ /** The IOMMU helper. */
+ R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
+ /** The invalidation-queue thread. */
+ R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
+} DMARR3;
+/** Pointer to the ring-3 DMAR device state. */
+typedef DMARR3 *PDMARR3;
+/** Pointer to the const ring-3 DMAR device state. */
+typedef DMARR3 const *PCDMARR3;
+
+/**
+ * The ring-0 DMAR device state.
+ */
+typedef struct DMARR0
+{
+ /** Device instance. */
+ PPDMDEVINSR0 pDevInsR0;
+ /** The IOMMU helper. */
+ R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
+} DMARR0;
+/** Pointer to the ring-0 IOMMU device state. */
+typedef DMARR0 *PDMARR0;
+/** Pointer to the const ring-0 IOMMU device state. */
+typedef DMARR0 const *PCDMARR0;
+
+/**
+ * The raw-mode DMAR device state.
+ */
+typedef struct DMARRC
+{
+ /** Device instance. */
+ PPDMDEVINSRC pDevInsRC;
+ /** The IOMMU helper. */
+ RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
+} DMARRC;
+/** Pointer to the raw-mode DMAR device state. */
+typedef DMARRC *PDMARRC;
+/** Pointer to the const raw-mode DMAR device state. */
+typedef DMARRC const *PCIDMARRC;
+
+/** The DMAR device state for the current context. */
+typedef CTX_SUFF(DMAR) DMARCC;
+/** Pointer to the DMAR device state for the current context. */
+typedef CTX_SUFF(PDMAR) PDMARCC;
+/** Pointer to the const DMAR device state for the current context. */
+typedef CTX_SUFF(PDMAR) const PCDMARCC;
+
+/**
+ * DMAR originated events that generate interrupts.
+ */
+typedef enum DMAREVENTTYPE
+{
+ /** Invalidation completion event. */
+ DMAREVENTTYPE_INV_COMPLETE = 0,
+ /** Fault event. */
+ DMAREVENTTYPE_FAULT
+} DMAREVENTTYPE;
+
+/**
+ * I/O Page.
+ */
+typedef struct DMARIOPAGE
+{
+ /** The base DMA address of a page. */
+ RTGCPHYS GCPhysBase;
+ /** The page shift. */
+ uint8_t cShift;
+ /** The permissions of this page (DMAR_PERM_XXX). */
+ uint8_t fPerm;
+} DMARIOPAGE;
+/** Pointer to an I/O page. */
+typedef DMARIOPAGE *PDMARIOPAGE;
+/** Pointer to a const I/O address range. */
+typedef DMARIOPAGE const *PCDMARIOPAGE;
+
+/**
+ * I/O Address Range.
+ */
+typedef struct DMARIOADDRRANGE
+{
+ /** The starting DMA address of this range. */
+ uint64_t uAddr;
+ /** The size of the range (in bytes). */
+ size_t cb;
+ /** The permissions of this range (DMAR_PERM_XXX). */
+ uint8_t fPerm;
+} DMARIOADDRRANGE;
+/** Pointer to an I/O address range. */
+typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
+/** Pointer to a const I/O address range. */
+typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
+
+/**
+ * DMA Memory Request (Input).
+ */
+typedef struct DMARMEMREQIN
+{
+ /** The address range being accessed. */
+ DMARIOADDRRANGE AddrRange;
+ /** The source device ID (bus, device, function). */
+ uint16_t idDevice;
+ /** The PASID if present (can be NIL_PCIPASID). */
+ PCIPASID Pasid;
+ /* The address translation type. */
+ PCIADDRTYPE enmAddrType;
+ /** The request type. */
+ VTDREQTYPE enmReqType;
+} DMARMEMREQIN;
+/** Pointer to a DMA memory request input. */
+typedef DMARMEMREQIN *PDMARMEMREQIN;
+/** Pointer to a const DMA memory input. */
+typedef DMARMEMREQIN const *PCDMARMEMREQIN;
+
+/**
+ * DMA Memory Request (Output).
+ */
+typedef struct DMARMEMREQOUT
+{
+ /** The address range of the translated region. */
+ DMARIOADDRRANGE AddrRange;
+ /** The domain ID of the translated region. */
+ uint16_t idDomain;
+} DMARMEMREQOUT;
+/** Pointer to a DMA memory request output. */
+typedef DMARMEMREQOUT *PDMARMEMREQOUT;
+/** Pointer to a const DMA memory request output. */
+typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
+
+/**
+ * DMA Memory Request (Auxiliary Info).
+ * These get updated and used as part of the translation process.
+ */
+typedef struct DMARMEMREQAUX
+{
+ /** The table translation mode (VTD_TTM_XXX). */
+ uint8_t fTtm;
+ /** The fault processing disabled (FPD) bit. */
+ uint8_t fFpd;
+ /** The paging level of the translation. */
+ uint8_t cPagingLevel;
+ uint8_t abPadding[5];
+ /** The address of the first-level page-table. */
+ uint64_t GCPhysFlPt;
+ /** The address of second-level page-table. */
+ uint64_t GCPhysSlPt;
+} DMARMEMREQAUX;
+/** Pointer to a DMA memory request output. */
+typedef DMARMEMREQAUX *PDMARMEMREQAUX;
+/** Pointer to a const DMA memory request output. */
+typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
+
+/**
+ * DMA Memory Request Remapping Information.
+ */
+typedef struct DMARMEMREQREMAP
+{
+ /** The DMA memory request input. */
+ DMARMEMREQIN In;
+ /** DMA memory request auxiliary information. */
+ DMARMEMREQAUX Aux;
+ /** The DMA memory request output. */
+ DMARMEMREQOUT Out;
+} DMARMEMREQREMAP;
+/** Pointer to a DMA remap info. */
+typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
+/** Pointer to a const DMA remap info. */
+typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
+
+/**
+ * Callback function to lookup a DMA address.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param pMemReqIn The DMA memory request input.
+ * @param pMemReqAux The DMA memory request auxiliary info.
+ * @param pIoPageOut Where to store the output of the lookup.
+ */
+typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
+ PDMARIOPAGE pIoPageOut));
+/** Pointer to a DMA address-lookup function. */
+typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP;
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/**
+ * Read-write masks for DMAR registers (group 0).
+ */
+static uint32_t const g_au32RwMasks0[] =
+{
+ /* Offset Register Low High */
+ /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
+ /* 0x004 Reserved */ 0,
+ /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
+ /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
+ /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
+ /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
+ /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
+ /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
+ /* 0x030 Reserved */ 0,
+ /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
+ /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
+ /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
+ /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
+ /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
+ /* 0x048 Reserved */ 0, 0,
+ /* 0x050 Reserved */ 0, 0,
+ /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
+ /* 0x060 Reserved */ 0,
+ /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
+ /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
+ /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
+ /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
+ /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
+ /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
+ /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
+ /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
+ /* 0x098 Reserved */ 0,
+ /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
+ /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
+ /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
+ /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
+ /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
+ /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
+ /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
+ /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
+ /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
+ /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
+ /* 0x0d8 Reserved */ 0,
+ /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
+ /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
+ /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
+ /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
+ /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
+ /* 0x0f0 Reserved */ 0, 0,
+ /* 0x0f8 Reserved */ 0, 0,
+ /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
+ /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
+ /* 0x110 Reserved */ 0, 0,
+ /* 0x118 Reserved */ 0, 0,
+ /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
+ /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
+ /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
+ /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
+ /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
+ /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
+ /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
+ /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
+ /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
+ /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
+ /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
+ /* 0x178 Reserved */ 0, 0,
+ /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
+ /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
+ /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
+ /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
+ /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
+ /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
+ /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
+ /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
+ /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
+ /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
+ /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
+ /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
+ /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
+ /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
+ /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
+ /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
+ /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
+ /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
+ /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
+ /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
+};
+AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
+
+/**
+ * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
+ */
+static uint32_t const g_au32Rw1cMasks0[] =
+{
+ /* Offset Register Low High */
+ /* 0x000 VER_REG */ 0,
+ /* 0x004 Reserved */ 0,
+ /* 0x008 CAP_REG */ 0, 0,
+ /* 0x010 ECAP_REG */ 0, 0,
+ /* 0x018 GCMD_REG */ 0,
+ /* 0x01c GSTS_REG */ 0,
+ /* 0x020 RTADDR_REG */ 0, 0,
+ /* 0x028 CCMD_REG */ 0, 0,
+ /* 0x030 Reserved */ 0,
+ /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
+ /* 0x038 FECTL_REG */ 0,
+ /* 0x03c FEDATA_REG */ 0,
+ /* 0x040 FEADDR_REG */ 0,
+ /* 0x044 FEUADDR_REG */ 0,
+ /* 0x048 Reserved */ 0, 0,
+ /* 0x050 Reserved */ 0, 0,
+ /* 0x058 AFLOG_REG */ 0, 0,
+ /* 0x060 Reserved */ 0,
+ /* 0x064 PMEN_REG */ 0,
+ /* 0x068 PLMBASE_REG */ 0,
+ /* 0x06c PLMLIMIT_REG */ 0,
+ /* 0x070 PHMBASE_REG */ 0, 0,
+ /* 0x078 PHMLIMIT_REG */ 0, 0,
+ /* 0x080 IQH_REG */ 0, 0,
+ /* 0x088 IQT_REG */ 0, 0,
+ /* 0x090 IQA_REG */ 0, 0,
+ /* 0x098 Reserved */ 0,
+ /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
+ /* 0x0a0 IECTL_REG */ 0,
+ /* 0x0a4 IEDATA_REG */ 0,
+ /* 0x0a8 IEADDR_REG */ 0,
+ /* 0x0ac IEUADDR_REG */ 0,
+ /* 0x0b0 IQERCD_REG */ 0, 0,
+ /* 0x0b8 IRTA_REG */ 0, 0,
+ /* 0x0c0 PQH_REG */ 0, 0,
+ /* 0x0c8 PQT_REG */ 0, 0,
+ /* 0x0d0 PQA_REG */ 0, 0,
+ /* 0x0d8 Reserved */ 0,
+ /* 0x0dc PRS_REG */ 0,
+ /* 0x0e0 PECTL_REG */ 0,
+ /* 0x0e4 PEDATA_REG */ 0,
+ /* 0x0e8 PEADDR_REG */ 0,
+ /* 0x0ec PEUADDR_REG */ 0,
+ /* 0x0f0 Reserved */ 0, 0,
+ /* 0x0f8 Reserved */ 0, 0,
+ /* 0x100 MTRRCAP_REG */ 0, 0,
+ /* 0x108 MTRRDEF_REG */ 0, 0,
+ /* 0x110 Reserved */ 0, 0,
+ /* 0x118 Reserved */ 0, 0,
+ /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
+ /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
+ /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
+ /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
+ /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
+ /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
+ /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
+ /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
+ /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
+ /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
+ /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
+ /* 0x178 Reserved */ 0, 0,
+ /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
+ /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
+ /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
+ /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
+ /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
+ /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
+ /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
+ /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
+ /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
+ /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
+ /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
+ /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
+ /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
+ /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
+ /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
+ /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
+ /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
+ /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
+ /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
+ /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
+};
+AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
+
+/**
+ * Read-write masks for DMAR registers (group 1).
+ */
+static uint32_t const g_au32RwMasks1[] =
+{
+ /* Offset Register Low High */
+ /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
+ /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
+ /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
+ /* 0xe18 VCMDRSVD_REG */ 0, 0,
+ /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
+ /* 0xe28 VCRSPRSVD_REG */ 0, 0,
+ /* 0xe30 Reserved */ 0, 0,
+ /* 0xe38 Reserved */ 0, 0,
+ /* 0xe40 Reserved */ 0, 0,
+ /* 0xe48 Reserved */ 0, 0,
+ /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
+ /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
+ /* 0xe60 Reserved */ 0, 0,
+ /* 0xe68 Reserved */ 0, 0,
+ /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
+ /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
+};
+AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
+AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
+
+/**
+ * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
+ */
+static uint32_t const g_au32Rw1cMasks1[] =
+{
+ /* Offset Register Low High */
+ /* 0xe00 VCCAP_REG */ 0, 0,
+ /* 0xe08 VCMD_EO_REG */ 0, 0,
+ /* 0xe10 VCMD_REG */ 0, 0,
+ /* 0xe18 VCMDRSVD_REG */ 0, 0,
+ /* 0xe20 VCRSP_REG */ 0, 0,
+ /* 0xe28 VCRSPRSVD_REG */ 0, 0,
+ /* 0xe30 Reserved */ 0, 0,
+ /* 0xe38 Reserved */ 0, 0,
+ /* 0xe40 Reserved */ 0, 0,
+ /* 0xe48 Reserved */ 0, 0,
+ /* 0xe50 IVA_REG */ 0, 0,
+ /* 0xe58 IOTLB_REG */ 0, 0,
+ /* 0xe60 Reserved */ 0, 0,
+ /* 0xe68 Reserved */ 0, 0,
+ /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
+ /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
+};
+AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
+
+/** Array of RW masks for each register group. */
+static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
+
+/** Array of RW1C masks for each register group. */
+static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
+
+/* Masks arrays must be identical in size (even bounds checking code assumes this). */
+AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
+
+#ifdef IN_RING3
+/** Array of valid domain-ID bits. */
+static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
+AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
+#endif
+
+
+#ifndef VBOX_DEVICE_STRUCT_TESTCASE
+#ifdef IN_RING3
+/**
+ * Returns the supported adjusted guest-address width (SAGAW) given the maximum
+ * guest address width (MGAW).
+ *
+ * @returns The CAP_REG.SAGAW value.
+ * @param uMgaw The CAP_REG.MGAW value.
+ */
+static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
+{
+ /*
+ * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
+ * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
+ * are always OR'ed in below.
+ *
+ * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
+ * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
+ *
+ * See Intel VT-d spec. 10.4.2 "Capability Register".
+ */
+ ++uMgaw;
+ uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
+ : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
+ : uMgaw >= 39 ? RT_BIT(1)
+ : 0;
+ return fSagaw;
+}
+
+
+/**
+ * Returns the maximum supported paging level given the supported adjusted
+ * guest-address width (SAGAW) field.
+ *
+ * @returns The highest paging level supported, 0 if invalid.
+ * @param fSagaw The CAP_REG.SAGAW value.
+ */
+static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
+{
+ uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
+ : fSagaw & RT_BIT(2) ? 4
+ : fSagaw & RT_BIT(1) ? 3
+ : 0;
+ return cMaxPagingLevel;
+}
+
+
+/**
+ * Returns table translation mode's descriptive name.
+ *
+ * @returns The descriptive name.
+ * @param uTtm The RTADDR_REG.TTM value.
+ */
+static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
+{
+ Assert(!(uTtm & 3));
+ static const char* s_apszTtmNames[] =
+ {
+ "Legacy Mode",
+ "Scalable Mode",
+ "Reserved",
+ "Abort-DMA Mode"
+ };
+ return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
+}
+#endif /* IN_RING3 */
+
+
+/**
+ * Returns whether the interrupt remapping (IR) fault is qualified or not.
+ *
+ * @returns @c true if qualified, @c false otherwise.
+ * @param enmIrFault The interrupt remapping fault condition.
+ */
+static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
+{
+ switch (enmIrFault)
+ {
+ case VTDIRFAULT_IRTE_NOT_PRESENT:
+ case VTDIRFAULT_IRTE_PRESENT_RSVD:
+ case VTDIRFAULT_IRTE_PRESENT_INVALID:
+ case VTDIRFAULT_PID_READ_FAILED:
+ case VTDIRFAULT_PID_RSVD:
+ return true;
+ default:
+ return false;
+ }
+}
+
+
+/**
+ * Gets the index of the group the register belongs to given its MMIO offset.
+ *
+ * @returns The group index.
+ * @param offReg The MMIO offset of the register.
+ * @param cbReg The size of the access being made (for bounds checking on
+ * debug builds).
+ */
+DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
+{
+ uint16_t const offLast = offReg + cbReg - 1;
+ AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
+ AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
+ return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
+}
+
+
+/**
+ * Gets the group the register belongs to given its MMIO offset.
+ *
+ * @returns Pointer to the first element of the register group.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param cbReg The size of the access being made (for bounds checking on
+ * debug builds).
+ * @param pIdxGroup Where to store the index of the register group the register
+ * belongs to.
+ */
+DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
+{
+ *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
+ uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
+ return apbRegs[*pIdxGroup];
+}
+
+
+/**
+ * Const/read-only version of dmarRegGetGroup.
+ *
+ * @copydoc dmarRegGetGroup
+ */
+DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
+{
+ *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
+ uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
+ return apbRegs[*pIdxGroup];
+}
+
+
+/**
+ * Writes a 32-bit register with the exactly the supplied value.
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param uReg The 32-bit value to write.
+ */
+static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
+{
+ uint8_t idxGroup;
+ uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
+ NOREF(idxGroup);
+ *(uint32_t *)(pabRegs + offReg) = uReg;
+}
+
+
+/**
+ * Writes a 64-bit register with the exactly the supplied value.
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param uReg The 64-bit value to write.
+ */
+static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
+{
+ uint8_t idxGroup;
+ uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
+ NOREF(idxGroup);
+ *(uint64_t *)(pabRegs + offReg) = uReg;
+}
+
+
+/**
+ * Reads a 32-bit register with exactly the value it contains.
+ *
+ * @returns The raw register value.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ */
+static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
+{
+ uint8_t idxGroup;
+ uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
+ NOREF(idxGroup);
+ return *(uint32_t *)(pabRegs + offReg);
+}
+
+
+/**
+ * Reads a 64-bit register with exactly the value it contains.
+ *
+ * @returns The raw register value.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ */
+static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
+{
+ uint8_t idxGroup;
+ uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
+ NOREF(idxGroup);
+ return *(uint64_t *)(pabRegs + offReg);
+}
+
+
+/**
+ * Reads a 32-bit register with exactly the value it contains along with their
+ * corresponding masks
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param puReg Where to store the raw 32-bit register value.
+ * @param pfRwMask Where to store the RW mask corresponding to this register.
+ * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
+ */
+static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
+{
+ uint8_t idxGroup;
+ uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
+ Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
+ uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
+ uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
+ *puReg = *(uint32_t *)(pabRegs + offReg);
+ *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
+ *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
+}
+
+
+/**
+ * Reads a 64-bit register with exactly the value it contains along with their
+ * corresponding masks.
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param puReg Where to store the raw 64-bit register value.
+ * @param pfRwMask Where to store the RW mask corresponding to this register.
+ * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
+ */
+static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
+{
+ uint8_t idxGroup;
+ uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
+ Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
+ uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
+ uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
+ *puReg = *(uint64_t *)(pabRegs + offReg);
+ *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
+ *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
+}
+
+
+/**
+ * Writes a 32-bit register as it would be when written by software.
+ * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
+ *
+ * @returns The value that's actually written to the register.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param uReg The 32-bit value to write.
+ * @param puPrev Where to store the register value prior to writing.
+ */
+static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
+{
+ /* Read current value from the 32-bit register. */
+ uint32_t uCurReg;
+ uint32_t fRwMask;
+ uint32_t fRw1cMask;
+ dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
+ *puPrev = uCurReg;
+
+ uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
+ uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
+ uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
+ uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
+
+ /* Write new value to the 32-bit register. */
+ dmarRegWriteRaw32(pThis, offReg, uNewReg);
+ return uNewReg;
+}
+
+
+/**
+ * Writes a 64-bit register as it would be when written by software.
+ * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
+ *
+ * @returns The value that's actually written to the register.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param uReg The 64-bit value to write.
+ * @param puPrev Where to store the register value prior to writing.
+ */
+static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
+{
+ /* Read current value from the 64-bit register. */
+ uint64_t uCurReg;
+ uint64_t fRwMask;
+ uint64_t fRw1cMask;
+ dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
+ *puPrev = uCurReg;
+
+ uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
+ uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
+ uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
+ uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
+
+ /* Write new value to the 64-bit register. */
+ dmarRegWriteRaw64(pThis, offReg, uNewReg);
+ return uNewReg;
+}
+
+
+/**
+ * Reads a 32-bit register as it would be when read by software.
+ *
+ * @returns The register value.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ */
+static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
+{
+ return dmarRegReadRaw32(pThis, offReg);
+}
+
+
+/**
+ * Reads a 64-bit register as it would be when read by software.
+ *
+ * @returns The register value.
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ */
+static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
+{
+ return dmarRegReadRaw64(pThis, offReg);
+}
+
+
+/**
+ * Modifies a 32-bit register.
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param fAndMask The AND mask (applied first).
+ * @param fOrMask The OR mask.
+ * @remarks This does NOT apply RO or RW1C masks while modifying the
+ * register.
+ */
+static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
+{
+ uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
+ uReg = (uReg & fAndMask) | fOrMask;
+ dmarRegWriteRaw32(pThis, offReg, uReg);
+}
+
+
+/**
+ * Modifies a 64-bit register.
+ *
+ * @param pThis The shared DMAR device state.
+ * @param offReg The MMIO offset of the register.
+ * @param fAndMask The AND mask (applied first).
+ * @param fOrMask The OR mask.
+ * @remarks This does NOT apply RO or RW1C masks while modifying the
+ * register.
+ */
+static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
+{
+ uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
+ uReg = (uReg & fAndMask) | fOrMask;
+ dmarRegWriteRaw64(pThis, offReg, uReg);
+}
+
+
+/**
+ * Checks if the invalidation-queue is empty.
+ *
+ * Extended version which optionally returns the current queue head and tail
+ * offsets.
+ *
+ * @returns @c true if empty, @c false otherwise.
+ * @param pThis The shared DMAR device state.
+ * @param poffQh Where to store the queue head offset. Optional, can be NULL.
+ * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
+ */
+static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
+{
+ /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
+ uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
+ uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
+
+ /* Don't bother masking QT, QH since other bits are RsvdZ. */
+ Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
+ Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
+ if (poffQh)
+ *poffQh = uIqhReg;
+ if (poffQt)
+ *poffQt = uIqtReg;
+ return uIqtReg == uIqhReg;
+}
+
+
+/**
+ * Checks if the invalidation-queue is empty.
+ *
+ * @returns @c true if empty, @c false otherwise.
+ * @param pThis The shared DMAR device state.
+ */
+static bool dmarInvQueueIsEmpty(PCDMAR pThis)
+{
+ return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
+}
+
+
+/**
+ * Checks if the invalidation-queue is capable of processing requests.
+ *
+ * @returns @c true if the invalidation-queue can process requests, @c false
+ * otherwise.
+ * @param pThis The shared DMAR device state.
+ */
+static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
+{
+ /* Check if queued-invalidation is enabled. */
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
+ {
+ /* Check if there are no invalidation-queue or timeout errors. */
+ uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
+ if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ * Wakes up the invalidation-queue thread if there are requests to be processed.
+ *
+ * @param pDevIns The IOMMU device instance.
+ */
+static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ LogFlowFunc(("\n"));
+
+ DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
+
+ if ( dmarInvQueueCanProcessRequests(pThis)
+ && !dmarInvQueueIsEmpty(pThis))
+ {
+ Log4Func(("Signaling the invalidation-queue thread\n"));
+ PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
+ }
+}
+
+
+/**
+ * Raises an event on behalf of the DMAR.
+ *
+ * These are events that are generated by the DMAR itself (like faults and
+ * invalidation completion notifications).
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param enmEventType The DMAR event type.
+ *
+ * @remarks The DMAR lock must be held while calling this function.
+ */
+static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
+{
+ uint16_t offCtlReg;
+ uint32_t fIntrMaskedMask;
+ uint32_t fIntrPendingMask;
+ uint16_t offMsiAddrLoReg;
+ uint16_t offMsiAddrHiReg;
+ uint16_t offMsiDataReg;
+ switch (enmEventType)
+ {
+ case DMAREVENTTYPE_INV_COMPLETE:
+ {
+ offCtlReg = VTD_MMIO_OFF_IECTL_REG;
+ fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
+ fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
+ offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
+ offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
+ offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
+ break;
+ }
+
+ case DMAREVENTTYPE_FAULT:
+ {
+ offCtlReg = VTD_MMIO_OFF_FECTL_REG;
+ fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
+ fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
+ offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
+ offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
+ offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
+ break;
+ }
+
+ default:
+ {
+ /* Shouldn't ever happen. */
+ AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
+ }
+ }
+
+ /* Check if software has masked the interrupt. */
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
+ if (!(uCtlReg & fIntrMaskedMask))
+ {
+ /*
+ * Interrupt is unmasked, raise it.
+ * Interrupts generated by the DMAR have trigger mode and level as 0.
+ * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
+ */
+ MSIMSG Msi;
+ Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
+ Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
+ Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
+ Assert(Msi.Data.n.u1Level == 0);
+ Assert(Msi.Data.n.u1TriggerMode == 0);
+
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
+
+ /* Clear interrupt pending bit. */
+ uCtlReg &= ~fIntrPendingMask;
+ dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
+ }
+ else
+ {
+ /* Interrupt is masked, set the interrupt pending bit. */
+ uCtlReg |= fIntrPendingMask;
+ dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
+ }
+}
+
+
+/**
+ * Raises an interrupt in response to a fault event.
+ *
+ * @param pDevIns The IOMMU device instance.
+ *
+ * @remarks This assumes the caller has already set the required status bits in the
+ * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
+ */
+static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
+{
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
+
+#ifdef VBOX_STRICT
+ {
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+ uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
+ uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
+ /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
+ /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
+ | VTD_BF_FSTS_REG_IQE_MASK;
+ Assert(uFstsReg & fFaultMask);
+ }
+#endif
+ dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
+}
+
+
+#ifdef IN_RING3
+/**
+ * Raises an interrupt in response to an invalidation (complete) event.
+ *
+ * @param pDevIns The IOMMU device instance.
+ */
+static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
+
+ uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
+ if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
+ {
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
+ dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
+ }
+}
+#endif /* IN_RING3 */
+
+
+/**
+ * Checks if a primary fault can be recorded.
+ *
+ * @returns @c true if the fault can be recorded, @c false otherwise.
+ * @param pDevIns The IOMMU device instance.
+ * @param pThis The shared DMAR device state.
+ *
+ * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
+ * NOT call it unless there is a fault condition!
+ */
+static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
+{
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
+
+ uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
+ if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
+ return false;
+
+ /*
+ * If we add more FRCD registers, we'll have to loop through them here.
+ * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
+ * nor do we need to increment FRI.
+ *
+ * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
+ */
+ AssertCompile(DMAR_FRCD_REG_COUNT == 1);
+ uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
+ if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
+ {
+ uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
+ dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
+ return false;
+ }
+
+ return true;
+}
+
+
+/**
+ * Records a primary fault.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param uFrcdHi The FRCD_HI_REG value for this fault.
+ * @param uFrcdLo The FRCD_LO_REG value for this fault.
+ */
+static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+
+ DMAR_LOCK(pDevIns, pThisCC);
+
+ /* We don't support advance fault logging. */
+ Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
+
+ if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
+ {
+ /* Update the fault recording registers with the fault information. */
+ dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
+ dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
+
+ /* Set the Pending Primary Fault (PPF) field in the status register. */
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
+
+ /* Raise interrupt if necessary. */
+ dmarFaultEventRaiseInterrupt(pDevIns);
+ }
+
+ DMAR_UNLOCK(pDevIns, pThisCC);
+}
+
+
+/**
+ * Records an interrupt request fault.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param enmDiag The diagnostic reason.
+ * @param idDevice The device ID (bus, device, function).
+ * @param idxIntr The interrupt index.
+ * @param pIrte The IRTE that caused this fault. Can be NULL if the fault is
+ * not qualified.
+ */
+static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint16_t idDevice, uint16_t idxIntr, PCVTD_IRTE_T pIrte)
+{
+ /*
+ * Update the diagnostic reason (even if software wants to supress faults).
+ */
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ pThis->enmDiag = enmDiag;
+
+ /*
+ * Figure out the fault reason to report to software from our diagnostic code.
+ * The case labels below are sorted alphabetically for convenience.
+ */
+ VTDIRFAULT enmIrFault;
+ switch (enmDiag)
+ {
+ case kDmarDiag_Ir_Cfi_Blocked: enmIrFault = VTDIRFAULT_CFI_BLOCKED; break;
+ case kDmarDiag_Ir_Rfi_Intr_Index_Invalid: enmIrFault = VTDIRFAULT_INTR_INDEX_INVALID; break;
+ case kDmarDiag_Ir_Rfi_Irte_Mode_Invalid: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
+ case kDmarDiag_Ir_Rfi_Irte_Not_Present: enmIrFault = VTDIRFAULT_IRTE_NOT_PRESENT; break;
+ case kDmarDiag_Ir_Rfi_Irte_Read_Failed: enmIrFault = VTDIRFAULT_IRTE_READ_FAILED; break;
+ case kDmarDiag_Ir_Rfi_Irte_Rsvd:
+ case kDmarDiag_Ir_Rfi_Irte_Svt_Bus:
+ case kDmarDiag_Ir_Rfi_Irte_Svt_Masked:
+ case kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
+ case kDmarDiag_Ir_Rfi_Rsvd: enmIrFault = VTDIRFAULT_REMAPPABLE_INTR_RSVD; break;
+
+ /* Shouldn't ever happen. */
+ default:
+ {
+ AssertLogRelMsgFailedReturnVoid(("%s: Invalid interrupt remapping fault diagnostic code %#x\n", DMAR_LOG_PFX,
+ enmDiag));
+ }
+ }
+
+ /*
+ * Qualified faults are those that can be suppressed by software using the FPD bit
+ * in the interrupt-remapping table entry.
+ */
+ bool fFpd;
+ bool const fQualifiedFault = vtdIrFaultIsQualified(enmIrFault);
+ if (fQualifiedFault)
+ {
+ AssertReturnVoid(pIrte);
+ fFpd = RT_BOOL(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK);
+ }
+ else
+ fFpd = false;
+
+ if (!fFpd)
+ {
+ /* Construct and record the error. */
+ uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
+ uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
+ dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
+ }
+}
+
+
+/**
+ * Records an address translation fault.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param enmDiag The diagnostic reason.
+ * @param pMemReqIn The DMA memory request input.
+ * @param pMemReqAux The DMA memory request auxiliary info.
+ */
+static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux)
+{
+ /*
+ * Update the diagnostic reason (even if software wants to supress faults).
+ */
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ pThis->enmDiag = enmDiag;
+
+ /*
+ * Qualified faults are those that can be suppressed by software using the FPD bit
+ * in the context entry, scalable-mode context entry etc.
+ */
+ if (!pMemReqAux->fFpd)
+ {
+ /*
+ * Figure out the fault reason to report to software from our diagnostic code.
+ * The case labels below are sorted alphabetically for convenience.
+ */
+ VTDATFAULT enmAtFault;
+ bool const fLm = pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE;
+ switch (enmDiag)
+ {
+ /* LM (Legacy Mode) faults. */
+ case kDmarDiag_At_Lm_CtxEntry_Not_Present: enmAtFault = VTDATFAULT_LCT_2; break;
+ case kDmarDiag_At_Lm_CtxEntry_Read_Failed: enmAtFault = VTDATFAULT_LCT_1; break;
+ case kDmarDiag_At_Lm_CtxEntry_Rsvd: enmAtFault = VTDATFAULT_LCT_3; break;
+ case kDmarDiag_At_Lm_Pt_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
+ case kDmarDiag_At_Lm_Pt_Aw_Invalid: enmAtFault = VTDATFAULT_LGN_1_3; break;
+ case kDmarDiag_At_Lm_RootEntry_Not_Present: enmAtFault = VTDATFAULT_LRT_2; break;
+ case kDmarDiag_At_Lm_RootEntry_Read_Failed: enmAtFault = VTDATFAULT_LRT_1; break;
+ case kDmarDiag_At_Lm_RootEntry_Rsvd: enmAtFault = VTDATFAULT_LRT_3; break;
+ case kDmarDiag_At_Lm_Tt_Invalid: enmAtFault = VTDATFAULT_LCT_4_2; break;
+ case kDmarDiag_At_Lm_Ut_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
+ case kDmarDiag_At_Lm_Ut_Aw_Invalid: enmAtFault = VTDATFAULT_LCT_4_1; break;
+
+ /* RTA (Root Table Address) faults. */
+ case kDmarDiag_At_Rta_Adms_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_1; break;
+ case kDmarDiag_At_Rta_Rsvd: enmAtFault = VTDATFAULT_RTA_1_2; break;
+ case kDmarDiag_At_Rta_Smts_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_3; break;
+
+ /* XM (Legacy mode or Scalable Mode) faults. */
+ case kDmarDiag_At_Xm_AddrIn_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_1_1 : VTDATFAULT_SGN_5; break;
+ case kDmarDiag_At_Xm_AddrOut_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_4 : VTDATFAULT_SGN_8; break;
+ case kDmarDiag_At_Xm_Perm_Read_Denied: enmAtFault = fLm ? VTDATFAULT_LGN_3 : VTDATFAULT_SGN_7; break;
+ case kDmarDiag_At_Xm_Perm_Write_Denied: enmAtFault = fLm ? VTDATFAULT_LGN_2 : VTDATFAULT_SGN_6; break;
+ case kDmarDiag_At_Xm_Pte_Not_Present:
+ case kDmarDiag_At_Xm_Pte_Rsvd: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_2; break;
+ case kDmarDiag_At_Xm_Pte_Sllps_Invalid: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_3; break;
+ case kDmarDiag_At_Xm_Read_Pte_Failed: enmAtFault = fLm ? VTDATFAULT_LSL_1 : VTDATFAULT_SSL_1; break;
+ case kDmarDiag_At_Xm_Slpptr_Read_Failed: enmAtFault = fLm ? VTDATFAULT_LCT_4_3 : VTDATFAULT_SSL_4; break;
+
+ /* Shouldn't ever happen. */
+ default:
+ {
+ AssertLogRelMsgFailedReturnVoid(("%s: Invalid address translation fault diagnostic code %#x\n",
+ DMAR_LOG_PFX, enmDiag));
+ }
+ }
+
+ /* Construct and record the error. */
+ uint16_t const idDevice = pMemReqIn->idDevice;
+ uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
+ uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
+ uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
+ uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
+ bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
+ uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
+ PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
+
+ uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
+ | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
+ uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
+ dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
+ }
+}
+
+
+/**
+ * Records an IQE fault.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param enmIqei The IQE information.
+ * @param enmDiag The diagnostic reason.
+ */
+static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+
+ DMAR_LOCK(pDevIns, pThisCC);
+
+ /* Update the diagnostic reason. */
+ pThis->enmDiag = enmDiag;
+
+ /* Set the error bit. */
+ uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
+
+ /* Set the error information. */
+ uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
+ dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
+
+ dmarFaultEventRaiseInterrupt(pDevIns);
+
+ DMAR_UNLOCK(pDevIns, pThisCC);
+}
+
+
+/**
+ * Handles writes to GCMD_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uGcmdReg The value written to GCMD_REG.
+ */
+static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ uint32_t const fChanged = uGstsReg ^ uGcmdReg;
+ uint64_t const fExtCapReg = pThis->fExtCapReg;
+
+ /* Queued-invalidation. */
+ if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
+ && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
+ {
+ if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
+ {
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
+ dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
+ }
+ else
+ {
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
+ dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
+ }
+ }
+
+ if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
+ {
+ /* Set Interrupt Remapping Table Pointer (SIRTP). */
+ if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
+ {
+ /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
+ * supported. */
+ pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
+ }
+
+ /* Interrupt remapping. */
+ if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
+ {
+ if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
+ else
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
+ }
+
+ /* Compatibility format interrupts. */
+ if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
+ {
+ if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
+ else
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
+ }
+ }
+
+ /* Set Root Table Pointer (SRTP). */
+ if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
+ {
+ /** @todo Perform global invalidation of all remapping translation caches when
+ * ESRTPS is supported. */
+ pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
+ }
+
+ /* Translation (DMA remapping). */
+ if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
+ {
+ if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
+ else
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to CCMD_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param offReg The MMIO register offset.
+ * @param cbReg The size of the MMIO access (in bytes).
+ * @param uCcmdReg The value written to CCMD_REG.
+ */
+static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
+{
+ /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
+ if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
+ {
+ /* Check if we need to invalidate the context-context. */
+ bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
+ if (fIcc)
+ {
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
+ if (uMajorVersion < 6)
+ {
+ /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
+ {
+ /* Verify table translation mode is legacy. */
+ uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
+ if (fTtm == VTD_TTM_LEGACY_MODE)
+ {
+ /** @todo Invalidate. */
+ return VINF_SUCCESS;
+ }
+ pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
+ }
+ else
+ pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
+ }
+ else
+ pThis->enmDiag = kDmarDiag_CcmdReg_Not_Supported;
+ dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to FECTL_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uFectlReg The value written to FECTL_REG.
+ */
+static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
+{
+ /*
+ * If software unmasks the interrupt when the interrupt is pending, we must raise
+ * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
+ */
+ if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
+ && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
+ dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to FSTS_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uFstsReg The value written to FSTS_REG.
+ * @param uPrev The value in FSTS_REG prior to writing it.
+ */
+static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
+{
+ /*
+ * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
+ * the interrupt pending (IP) bit must be cleared.
+ *
+ * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
+ */
+ uint32_t const fChanged = uPrev ^ uFstsReg;
+ if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
+ | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
+ {
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to IQT_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param offReg The MMIO register offset.
+ * @param uIqtReg The value written to IQT_REG.
+ */
+static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
+{
+ /* We only care about the low 32-bits, high 32-bits are reserved. */
+ Assert(offReg == VTD_MMIO_OFF_IQT_REG);
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+
+ /* Paranoia. */
+ Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
+
+ uint32_t const offQt = uIqtReg;
+ uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
+ uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
+
+ /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
+ if ( fDw != VTD_IQA_REG_DW_256_BIT
+ || !(offQt & RT_BIT(4)))
+ dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
+ else
+ {
+ /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
+ dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
+ dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Not_Aligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to IQA_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param offReg The MMIO register offset.
+ * @param uIqaReg The value written to IQA_REG.
+ */
+static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
+{
+ /* At present, we only care about the low 32-bits, high 32-bits are data. */
+ Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
+
+ /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
+ * returns true? The Intel VT-d spec. doesn't state anywhere that it
+ * cannot happen or that it's ignored when it does happen. */
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
+ if (fDw == VTD_IQA_REG_DW_256_BIT)
+ {
+ bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
+ if (fSupports256BitDw)
+ { /* likely */ }
+ else
+ dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
+ }
+ /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to ICS_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uIcsReg The value written to ICS_REG.
+ */
+static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
+{
+ /*
+ * If the IP field is set when software services the interrupt condition,
+ * (by clearing the IWC field), the IP field must be cleared.
+ */
+ if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
+ {
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to IECTL_REG.
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uIectlReg The value written to IECTL_REG.
+ */
+static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
+{
+ /*
+ * If software unmasks the interrupt when the interrupt is pending, we must raise
+ * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
+ */
+ if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
+ && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
+ dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles writes to FRCD_REG (High 64-bits).
+ *
+ * @returns Strict VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param offReg The MMIO register offset.
+ * @param cbReg The size of the MMIO access (in bytes).
+ * @param uFrcdHiReg The value written to FRCD_REG.
+ * @param uPrev The value in FRCD_REG prior to writing it.
+ */
+static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
+{
+ /* We only care about responding to high 32-bits, low 32-bits are read-only. */
+ if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
+ {
+ /*
+ * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
+ * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
+ * has only 1 FRCD register.
+ *
+ * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
+ */
+ AssertCompile(DMAR_FRCD_REG_COUNT == 1);
+ uint64_t const fChanged = uPrev ^ uFrcdHiReg;
+ if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
+ {
+ Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
+ dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Performs a PCI target abort for a DMA remapping (DR) operation.
+ *
+ * @param pDevIns The IOMMU device instance.
+ */
+static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
+{
+ /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
+ * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
+ * who knows. */
+ PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
+ uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
+ PDMPciDevSetStatus(pPciDev, u16Status);
+}
+
+
+/**
+ * Checks whether the address width (AW) is supported by our hardware
+ * implementation for legacy mode address translation.
+ *
+ * @returns @c true if it's supported, @c false otherwise.
+ * @param pThis The shared DMAR device state.
+ * @param pCtxEntry The context entry.
+ * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
+ */
+static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
+{
+ uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
+ uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
+ uint8_t const fAwMask = RT_BIT(fAw);
+ uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
+ Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
+
+ uint8_t const cPagingLevel = fAw + 2;
+ if (pcPagingLevel)
+ *pcPagingLevel = cPagingLevel;
+
+ /* With pass-through, the address width must be the largest AGAW supported by hardware. */
+ if (fTt == VTD_TT_UNTRANSLATED_PT)
+ {
+ Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
+ return cPagingLevel == pThis->cMaxPagingLevel;
+ }
+
+ /* The address width must be any of the ones supported by hardware. */
+ if (fAw < 4)
+ return (fSagaw & fAwMask) != 0;
+
+ return false;
+}
+
+
+/**
+ * Reads a root entry from guest memory.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uRtaddrReg The current RTADDR_REG value.
+ * @param idxRootEntry The index of the root entry to read.
+ * @param pRootEntry Where to store the read root entry.
+ */
+static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
+{
+ size_t const cbRootEntry = sizeof(*pRootEntry);
+ RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
+ return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
+}
+
+
+/**
+ * Reads a context entry from guest memory.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param GCPhysCtxTable The physical address of the context table.
+ * @param idxCtxEntry The index of the context entry to read.
+ * @param pCtxEntry Where to store the read context entry.
+ */
+static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
+{
+ /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
+ size_t const cbCtxEntry = sizeof(*pCtxEntry);
+ RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
+ return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
+}
+
+
+/**
+ * Validates and updates the output I/O page of a translation.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param GCPhysBase The output address of the translation.
+ * @param cShift The page shift of the translated address.
+ * @param fPerm The permissions granted for the translated region.
+ * @param pMemReqIn The DMA memory request input.
+ * @param pMemReqAux The DMA memory request auxiliary info.
+ * @param pIoPageOut Where to store the output of the translation.
+ */
+static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
+ PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
+{
+ Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
+
+ /* Ensure the output address is not in the interrupt address range. */
+ if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
+ {
+ pIoPageOut->GCPhysBase = GCPhysBase;
+ pIoPageOut->cShift = cShift;
+ pIoPageOut->fPerm = fPerm;
+ return VINF_SUCCESS;
+ }
+
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrOut_Invalid, pMemReqIn, pMemReqAux);
+ return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+}
+
+
+/**
+ * Performs second level translation by walking the I/O page tables.
+ *
+ * This is a DMA address-lookup callback function which performs the translation
+ * (and access control) as part of the lookup.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param pMemReqIn The DMA memory request input.
+ * @param pMemReqAux The DMA memory request auxiliary info.
+ * @param pIoPageOut Where to store the output of the translation.
+ */
+static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
+ PDMARIOPAGE pIoPageOut)
+{
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+
+ /* Sanity. */
+ Assert(pIoPageOut);
+ Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
+ Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
+ || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
+ Assert(!(pMemReqAux->GCPhysSlPt & X86_PAGE_4K_OFFSET_MASK));
+
+ /* Mask of reserved paging entry bits. */
+ static uint64_t const s_auPtEntityInvMasks[] =
+ {
+ ~VTD_SL_PTE_VALID_MASK,
+ ~VTD_SL_PDE_VALID_MASK,
+ ~VTD_SL_PDPE_VALID_MASK,
+ ~VTD_SL_PML4E_VALID_MASK,
+ ~VTD_SL_PML5E_VALID_MASK
+ };
+
+ /* Paranoia. */
+ Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
+ AssertCompile(RT_ELEMENTS(s_auPtEntityInvMasks) == 5);
+
+ /* Second-level translations restricts input address to an implementation-specific MGAW. */
+ uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr;
+ if (!(uAddrIn & pThis->fMgawInvMask))
+ { /* likely */ }
+ else
+ {
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrIn_Invalid, pMemReqIn, pMemReqAux);
+ return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+ }
+
+ /*
+ * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
+ * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
+ */
+ if (pMemReqAux->cPagingLevel > 0)
+ {
+ uint64_t uPtEntity = pMemReqAux->GCPhysSlPt;
+ for (uint8_t idxLevel = pMemReqAux->cPagingLevel - 1; /* not needed: idxLevel >= 0 */; idxLevel--)
+ {
+ /*
+ * Read the paging entry for the current level.
+ */
+ uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (idxLevel * 9);
+ {
+ uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff);
+ uint16_t const offPte = idxPte << 3;
+ RTGCPHYS const GCPhysPtEntity = (uPtEntity & X86_PAGE_4K_BASE_MASK) | offPte;
+ int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else
+ {
+ if ((GCPhysPtEntity & X86_PAGE_BASE_MASK) == pMemReqAux->GCPhysSlPt)
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Slpptr_Read_Failed, pMemReqIn, pMemReqAux);
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Read_Pte_Failed, pMemReqIn, pMemReqAux);
+ break;
+ }
+ }
+
+ /*
+ * Check I/O permissions.
+ * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
+ * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
+ */
+ uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
+ uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
+ Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
+ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK)); /* No Second-level access/dirty support. */
+ if ((fPtPerm & fReqPerm) == fReqPerm)
+ { /* likely */ }
+ else
+ {
+ if ((fPtPerm & (VTD_BF_SL_PTE_R_MASK | VTD_BF_SL_PTE_W_MASK)) == 0)
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Not_Present, pMemReqIn, pMemReqAux);
+ else if ((pMemReqIn->AddrRange.fPerm & DMAR_PERM_READ) != (fPtPerm & VTD_BF_SL_PTE_R_MASK))
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Read_Denied, pMemReqIn, pMemReqAux);
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Write_Denied, pMemReqIn, pMemReqAux);
+ break;
+ }
+
+ /*
+ * Validate reserved bits of the current paging entry.
+ */
+ if (!(uPtEntity & s_auPtEntityInvMasks[(uintptr_t)idxLevel]))
+ { /* likely */ }
+ else
+ {
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Rsvd, pMemReqIn, pMemReqAux);
+ break;
+ }
+
+ /*
+ * Check if this is a 1GB page or a 2MB page.
+ */
+ AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
+ uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
+ if (fLargePage && idxLevel > 0)
+ {
+ Assert(idxLevel == 1 || idxLevel == 2); /* Is guaranteed by the reserved bits check above. */
+ uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
+ if (fSllpsMask & RT_BIT(idxLevel - 1))
+ {
+ /*
+ * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
+ * All other reserved bits are identical to the regular page-size paging entity which we've already
+ * checked above.
+ */
+ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
+
+ RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
+ return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
+ }
+
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Sllps_Invalid, pMemReqIn, pMemReqAux);
+ break;
+ }
+
+ /*
+ * If this is the final PTE, compute the translation address and we're done.
+ */
+ if (idxLevel == 0)
+ {
+ RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
+ return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
+ }
+ }
+ }
+
+ return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+}
+
+
+/**
+ * Looks up the range of addresses for a DMA memory request remapping.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param pfnLookup The DMA address lookup function.
+ * @param pMemReqRemap The DMA memory request remapping info.
+ */
+static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap)
+{
+ AssertPtr(pfnLookup);
+
+ RTGCPHYS GCPhysAddrOut = NIL_RTGCPHYS;
+ DMARMEMREQIN MemReqIn = pMemReqRemap->In;
+ uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr;
+ size_t const cbAddrIn = MemReqIn.AddrRange.cb;
+ uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
+ uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
+ size_t cbRemaining = cbAddrIn;
+ size_t const cbPage = X86_PAGE_4K_SIZE;
+
+ int rc;
+ DMARIOPAGE IoPagePrev;
+ RT_ZERO(IoPagePrev);
+ for (;;)
+ {
+ /* Update the input memory request with the next address in our range that needs translation. */
+ MemReqIn.AddrRange.uAddr = uAddrInBase;
+ MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */
+
+ /* Lookup the physical page corresponding to the DMA virtual address. */
+ DMARIOPAGE IoPage;
+ rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
+ if (RT_SUCCESS(rc))
+ {
+ /* Validate results of the translation. */
+ Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT);
+ Assert(!(IoPage.GCPhysBase & X86_GET_PAGE_OFFSET_MASK(IoPage.cShift)));
+ Assert((IoPage.fPerm & MemReqIn.AddrRange.fPerm) == MemReqIn.AddrRange.fPerm);
+
+ /* Store the translated address and permissions before continuing to access more pages. */
+ if (cbRemaining == cbAddrIn)
+ {
+ uint64_t const offAddrOut = uAddrIn & X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
+ GCPhysAddrOut = IoPage.GCPhysBase | offAddrOut;
+ }
+ /* Check if addresses translated so far result in a physically contiguous region. */
+ /** @todo Ensure permissions are identical as well if we implementing IOTLB caching
+ * that relies on it being so. */
+ else if (IoPagePrev.GCPhysBase + cbPage == IoPage.GCPhysBase)
+ { /* likely */ }
+ else
+ {
+ rc = VERR_OUT_OF_RANGE;
+ break;
+ }
+
+ /* Store the I/O page lookup from the first/previous access. */
+ IoPagePrev = IoPage;
+
+ /* Check if we need to access more pages. */
+ if (cbRemaining > cbPage - offAddrIn)
+ {
+ cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
+ uAddrInBase += cbPage; /* Update address of the next access. */
+ offAddrIn = 0; /* After the first page, remaining pages are accessed from offset 0. */
+ }
+ else
+ {
+ /* Caller (PDM) doesn't expect more data accessed than what was requested. */
+ cbRemaining = 0;
+ break;
+ }
+ }
+ else
+ break;
+ }
+
+ pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddrOut;
+ pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
+ pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
+ return rc;
+}
+
+
+/**
+ * Handles legacy mode DMA address remapping.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uRtaddrReg The current RTADDR_REG value.
+ * @param pMemReqRemap The DMA memory request remapping info.
+ */
+static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
+{
+ PCDMARMEMREQIN pMemReqIn = &pMemReqRemap->In;
+ PDMARMEMREQAUX pMemReqAux = &pMemReqRemap->Aux;
+ PDMARMEMREQOUT pMemReqOut = &pMemReqRemap->Out;
+ Assert(pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
+
+ /* Read the root-entry from guest memory. */
+ uint8_t const idxRootEntry = RT_HI_U8(pMemReqIn->idDevice);
+ VTD_ROOT_ENTRY_T RootEntry;
+ int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
+ if (RT_SUCCESS(rc))
+ {
+ /* Check if the root entry is present (must be done before validating reserved bits). */
+ uint64_t const uRootEntryQword0 = RootEntry.au64[0];
+ uint64_t const uRootEntryQword1 = RootEntry.au64[1];
+ bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
+ if (fRootEntryPresent)
+ {
+ /* Validate reserved bits in the root entry. */
+ if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
+ && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
+ {
+ /* Read the context-entry from guest memory. */
+ RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK;
+ uint8_t const idxCtxEntry = RT_LO_U8(pMemReqIn->idDevice);
+ VTD_CONTEXT_ENTRY_T CtxEntry;
+ rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
+ if (RT_SUCCESS(rc))
+ {
+ uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
+ uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
+
+ /* Note the FPD bit which software can use to supress translation faults from here on in. */
+ pMemReqAux->fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
+
+ /* Check if the context-entry is present (must be done before validating reserved bits). */
+ bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
+ if (fCtxEntryPresent)
+ {
+ /* Validate reserved bits in the context-entry. */
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+ if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
+ && !(uCtxEntryQword1 & ~pThis->fCtxEntryQw1ValidMask))
+ {
+ /* Get the domain ID for this mapping. */
+ pMemReqOut->idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
+
+ /* Validate the translation type (TT). */
+ uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
+ switch (fTt)
+ {
+ case VTD_TT_UNTRANSLATED_SLP:
+ {
+ /*
+ * Untranslated requests are translated using second-level paging structures referenced
+ * through SLPTPTR. Translated requests and Translation Requests are blocked.
+ */
+ if (pMemReqIn->enmAddrType == PCIADDRTYPE_UNTRANSLATED)
+ {
+ /* Validate the address width and get the paging level. */
+ uint8_t cPagingLevel;
+ if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
+ {
+ /*
+ * The second-level page table is located at the physical address specified
+ * in the context entry with which we can finally perform second-level translation.
+ */
+ pMemReqAux->cPagingLevel = cPagingLevel;
+ pMemReqAux->GCPhysSlPt = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
+ rc = dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
+ if (rc == VERR_OUT_OF_RANGE)
+ rc = VINF_SUCCESS;
+ return rc;
+ }
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_Aw_Invalid, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_At_Block, pMemReqIn, pMemReqAux);
+ break;
+ }
+
+ case VTD_TT_UNTRANSLATED_PT:
+ {
+ /*
+ * Untranslated requests are processed as pass-through (PT) if PT is supported.
+ * Translated and translation requests are blocked. If PT isn't supported this TT value
+ * is reserved which I assume raises a fault (hence fallthru below).
+ */
+ if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
+ {
+ if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
+ {
+ if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
+ {
+ PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
+ PCDMARMEMREQIN pIn = &pMemReqRemap->In;
+ pOut->AddrRange.uAddr = pIn->AddrRange.uAddr;
+ pOut->AddrRange.cb = pIn->AddrRange.cb;
+ pOut->AddrRange.fPerm = DMAR_PERM_ALL;
+ return VINF_SUCCESS;
+ }
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_Aw_Invalid, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_At_Block, pMemReqIn, pMemReqAux);
+ break;
+ }
+ RT_FALL_THRU();
+ }
+
+ case VTD_TT_UNTRANSLATED_DEV_TLB:
+ {
+ /*
+ * Untranslated, translated and translation requests are supported but requires
+ * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
+ */
+ Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
+ RT_FALL_THRU();
+ }
+
+ default:
+ {
+ /* Any other TT value is reserved. */
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Tt_Invalid, pMemReqIn, pMemReqAux);
+ break;
+ }
+ }
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Rsvd, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Not_Present, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Read_Failed, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Rsvd, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Not_Present, pMemReqIn, pMemReqAux);
+ }
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Read_Failed, pMemReqIn, pMemReqAux);
+ return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+}
+
+
+/**
+ * Handles remapping of DMA address requests in scalable mode.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uRtaddrReg The current RTADDR_REG value.
+ * @param pMemReqRemap The DMA memory request remapping info.
+ */
+static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
+{
+ RT_NOREF3(pDevIns, uRtaddrReg, pMemReqRemap);
+ return VERR_NOT_IMPLEMENTED;
+}
+
+
+/**
+ * Gets the DMA access permissions and the address-translation request
+ * type given the PDM IOMMU memory access flags.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
+ * @param fBulk Whether this is a bulk memory access (used for
+ * statistics).
+ * @param penmReqType Where to store the address-translation request type.
+ * @param pfReqPerm Where to store the DMA access permissions.
+ */
+static void dmarDrGetPermAndReqType(PPDMDEVINS pDevIns, uint32_t fFlags, bool fBulk, PVTDREQTYPE penmReqType, uint8_t *pfReqPerm)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ if (fFlags & PDMIOMMU_MEM_F_READ)
+ {
+ *penmReqType = VTDREQTYPE_READ;
+ *pfReqPerm = DMAR_PERM_READ;
+#ifdef VBOX_WITH_STATISTICS
+ if (!fBulk)
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
+ else
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkRead));
+#else
+ RT_NOREF2(pThis, fBulk);
+#endif
+ }
+ else
+ {
+ *penmReqType = VTDREQTYPE_WRITE;
+ *pfReqPerm = DMAR_PERM_WRITE;
+#ifdef VBOX_WITH_STATISTICS
+ if (!fBulk)
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
+ else
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkWrite));
+#else
+ RT_NOREF2(pThis, fBulk);
+#endif
+ }
+}
+
+
+/**
+ * Handles DMA remapping based on the table translation mode (TTM).
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uRtaddrReg The current RTADDR_REG value.
+ * @param pMemReqRemap The DMA memory request remapping info.
+ */
+static int dmarDrMemReqRemap(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
+{
+ int rc;
+ switch (pMemReqRemap->Aux.fTtm)
+ {
+ case VTD_TTM_LEGACY_MODE:
+ {
+ rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
+ break;
+ }
+
+ case VTD_TTM_SCALABLE_MODE:
+ {
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+ if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
+ rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
+ else
+ {
+ rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Smts_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
+ }
+ break;
+ }
+
+ case VTD_TTM_ABORT_DMA_MODE:
+ {
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+ if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
+ dmarDrTargetAbort(pDevIns);
+ else
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Adms_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
+ rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+ break;
+ }
+
+ default:
+ {
+ rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
+ dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Rsvd, &pMemReqRemap->In, &pMemReqRemap->Aux);
+ break;
+ }
+ }
+ return rc;
+}
+
+
+/**
+ * Memory access bulk (one or more 4K pages) request from a device.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param idDevice The device ID (bus, device, function).
+ * @param cIovas The number of addresses being accessed.
+ * @param pauIovas The I/O virtual addresses for each page being accessed.
+ * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
+ * @param paGCPhysSpa Where to store the translated physical addresses.
+ *
+ * @thread Any.
+ */
+static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
+ uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
+{
+ /* Validate. */
+ AssertPtr(pDevIns);
+ Assert(cIovas > 0);
+ AssertPtr(pauIovas);
+ AssertPtr(paGCPhysSpa);
+ Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+
+ DMAR_LOCK(pDevIns, pThisCC);
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ uint64_t const uRtaddrReg = pThis->uRtaddrReg;
+ DMAR_UNLOCK(pDevIns, pThisCC);
+
+ if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
+ {
+ VTDREQTYPE enmReqType;
+ uint8_t fReqPerm;
+ dmarDrGetPermAndReqType(pDevIns, fFlags, true /* fBulk */, &enmReqType, &fReqPerm);
+
+ DMARMEMREQREMAP MemReqRemap;
+ RT_ZERO(MemReqRemap);
+ MemReqRemap.In.AddrRange.cb = X86_PAGE_SIZE;
+ MemReqRemap.In.AddrRange.fPerm = fReqPerm;
+ MemReqRemap.In.idDevice = idDevice;
+ MemReqRemap.In.Pasid = NIL_PCIPASID;
+ MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
+ MemReqRemap.In.enmReqType = enmReqType;
+ MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
+ MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
+
+ for (size_t i = 0; i < cIovas; i++)
+ {
+ MemReqRemap.In.AddrRange.uAddr = pauIovas[i] & X86_PAGE_BASE_MASK;
+ int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
+ if (RT_SUCCESS(rc))
+ {
+ paGCPhysSpa[i] = MemReqRemap.Out.AddrRange.uAddr | (pauIovas[i] & X86_PAGE_OFFSET_MASK);
+ Assert(MemReqRemap.Out.AddrRange.cb == MemReqRemap.In.AddrRange.cb);
+ }
+ else
+ {
+ LogFlowFunc(("idDevice=%#x uIova=%#RX64 fPerm=%#x rc=%Rrc\n", idDevice, pauIovas[i], fReqPerm, rc));
+ return rc;
+ }
+ }
+ }
+ else
+ {
+ /* Addresses are forwarded without translation when the translation is disabled. */
+ for (size_t i = 0; i < cIovas; i++)
+ paGCPhysSpa[i] = pauIovas[i];
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Memory access transaction from a device.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param idDevice The device ID (bus, device, function).
+ * @param uIova The I/O virtual address being accessed.
+ * @param cbIova The size of the access.
+ * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
+ * @param pGCPhysSpa Where to store the translated system physical address.
+ * @param pcbContiguous Where to store the number of contiguous bytes translated
+ * and permission-checked.
+ *
+ * @thread Any.
+ */
+static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
+ uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
+{
+ /* Validate. */
+ AssertPtr(pDevIns);
+ AssertPtr(pGCPhysSpa);
+ AssertPtr(pcbContiguous);
+ Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
+ Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+
+ DMAR_LOCK(pDevIns, pThisCC);
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ uint64_t const uRtaddrReg = pThis->uRtaddrReg;
+ DMAR_UNLOCK(pDevIns, pThisCC);
+
+ if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
+ {
+ VTDREQTYPE enmReqType;
+ uint8_t fReqPerm;
+ dmarDrGetPermAndReqType(pDevIns, fFlags, false /* fBulk */, &enmReqType, &fReqPerm);
+
+ DMARMEMREQREMAP MemReqRemap;
+ RT_ZERO(MemReqRemap);
+ MemReqRemap.In.AddrRange.uAddr = uIova;
+ MemReqRemap.In.AddrRange.cb = cbIova;
+ MemReqRemap.In.AddrRange.fPerm = fReqPerm;
+ MemReqRemap.In.idDevice = idDevice;
+ MemReqRemap.In.Pasid = NIL_PCIPASID;
+ MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
+ MemReqRemap.In.enmReqType = enmReqType;
+ MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
+ MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
+
+ int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
+ *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
+ *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
+ return rc;
+ }
+
+ *pGCPhysSpa = uIova;
+ *pcbContiguous = cbIova;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Reads an IRTE from guest memory.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uIrtaReg The IRTA_REG.
+ * @param idxIntr The interrupt index.
+ * @param pIrte Where to store the read IRTE.
+ */
+static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
+{
+ Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
+
+ size_t const cbIrte = sizeof(*pIrte);
+ RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
+ return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
+}
+
+
+/**
+ * Remaps the source MSI to the destination MSI given the IRTE.
+ *
+ * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
+ * IRTA_REG.EIME).
+ * @param pIrte The IRTE used for the remapping.
+ * @param pMsiIn The source MSI (currently unused).
+ * @param pMsiOut Where to store the remapped MSI.
+ */
+static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
+{
+ NOREF(pMsiIn);
+ uint64_t const uIrteQword0 = pIrte->au64[0];
+
+ /*
+ * Let's start with a clean slate and preserve unspecified bits if the need arises.
+ * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
+ * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
+ * it copies it from the source MSI.
+ */
+ RT_ZERO(*pMsiOut);
+ pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
+ pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
+ pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
+ if (fExtIntrMode)
+ {
+ /*
+ * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
+ * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
+ */
+ uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
+ pMsiOut->Addr.n.u8DestId = idDest;
+ pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
+ }
+ else
+ pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
+
+ pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
+ pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
+ pMsiOut->Data.n.u1Level = 1;
+ pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
+}
+
+
+/**
+ * Handles remapping of interrupts in remappable interrupt format.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param uIrtaReg The IRTA_REG.
+ * @param idDevice The device ID (bus, device, function).
+ * @param pMsiIn The source MSI.
+ * @param pMsiOut Where to store the remapped MSI.
+ */
+static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
+{
+ Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
+
+ /* Validate reserved bits in the interrupt request. */
+ AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
+ if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
+ {
+ /* Compute the index into the interrupt remap table. */
+ uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
+ uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
+ uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
+ bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
+ uint16_t const idxIntr = fSubHandleValid
+ ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
+ : uHandle;
+
+ /* Validate the index. */
+ uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
+ if (idxIntr < cEntries)
+ {
+ /** @todo Implement and read IRTE from interrupt-entry cache here. */
+
+ /* Read the interrupt remap table entry (IRTE) at the index. */
+ VTD_IRTE_T Irte;
+ int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
+ if (RT_SUCCESS(rc))
+ {
+ /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
+ uint64_t const uIrteQword0 = Irte.au64[0];
+ uint64_t const uIrteQword1 = Irte.au64[1];
+ bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
+ if (fPresent)
+ {
+ /* Validate reserved bits in the IRTE. */
+ bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
+ uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
+ if ( !(uIrteQword0 & ~fQw0ValidMask)
+ && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
+ {
+ /* Validate requester id (the device ID) as configured in the IRTE. */
+ bool fSrcValid;
+ DMARDIAG enmIrDiag;
+ uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
+ switch (fSvt)
+ {
+ case VTD_IRTE_SVT_NONE:
+ {
+ fSrcValid = true;
+ enmIrDiag = kDmarDiag_None;
+ break;
+ }
+
+ case VTD_IRTE_SVT_VALIDATE_MASK:
+ {
+ static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
+ uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
+ uint16_t const fValidMask = s_afValidMasks[idxMask];
+ uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
+ fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
+ enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
+ break;
+ }
+
+ case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
+ {
+ uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
+ uint8_t const uBusFirst = RT_HI_U8(idSource);
+ uint8_t const uBusLast = RT_LO_U8(idSource);
+ uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
+ fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
+ enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
+ break;
+ }
+
+ default:
+ {
+ fSrcValid = false;
+ enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd;
+ break;
+ }
+ }
+
+ if (fSrcValid)
+ {
+ uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
+ if (!fPostedMode)
+ {
+ dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
+ return VINF_SUCCESS;
+ }
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, idDevice, idxIntr, &Irte);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, enmIrDiag, idDevice, idxIntr, &Irte);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, idDevice, idxIntr, &Irte);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, idDevice, idxIntr, &Irte);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, idDevice, idxIntr, NULL /* pIrte */);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, idDevice, idxIntr, NULL /* pIrte */);
+ }
+ else
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, idDevice, 0 /* idxIntr */, NULL /* pIrte */);
+ return VERR_IOMMU_INTR_REMAP_DENIED;
+}
+
+
+/**
+ * Interrupt remap request from a device.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param idDevice The device ID (bus, device, function).
+ * @param pMsiIn The source MSI.
+ * @param pMsiOut Where to store the remapped MSI.
+ */
+static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
+{
+ /* Validate. */
+ Assert(pDevIns);
+ Assert(pMsiIn);
+ Assert(pMsiOut);
+ RT_NOREF1(idDevice);
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+
+ /* Lock and read all registers required for interrupt remapping up-front. */
+ DMAR_LOCK(pDevIns, pThisCC);
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ uint64_t const uIrtaReg = pThis->uIrtaReg;
+ DMAR_UNLOCK(pDevIns, pThisCC);
+
+ /* Check if interrupt remapping is enabled. */
+ if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
+ {
+ bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
+ if (!fIsRemappable)
+ {
+ /* Handle compatibility format interrupts. */
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
+
+ /* If EIME is enabled or CFIs are disabled, block the interrupt. */
+ if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
+ || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
+ {
+ dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
+ return VERR_IOMMU_INTR_REMAP_DENIED;
+ }
+
+ /* Interrupt isn't subject to remapping, pass-through the interrupt. */
+ *pMsiOut = *pMsiIn;
+ return VINF_SUCCESS;
+ }
+
+ /* Handle remappable format interrupts. */
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
+ return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
+ }
+
+ /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
+ *pMsiOut = *pMsiIn;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNIOMMMIONEWWRITE}
+ */
+static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
+{
+ RT_NOREF1(pvUser);
+ DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
+
+ uint16_t const offReg = off;
+ uint16_t const offLast = offReg + cb - 1;
+ if (DMAR_IS_MMIO_OFF_VALID(offLast))
+ {
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
+
+ uint64_t uPrev = 0;
+ uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
+ : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ switch (off)
+ {
+ case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
+ {
+ rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
+ case VTD_MMIO_OFF_CCMD_REG + 4:
+ {
+ rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
+ {
+ rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
+ break;
+ }
+
+ case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
+ {
+ rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
+ /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
+ {
+ rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
+ /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
+ {
+ rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
+ {
+ rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
+ break;
+ }
+
+ case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
+ {
+ rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
+ break;
+ }
+
+ case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
+ case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
+ {
+ rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
+ break;
+ }
+ }
+
+ DMAR_UNLOCK(pDevIns, pThisCC);
+ LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
+ return rcStrict;
+ }
+
+ return VINF_IOM_MMIO_UNUSED_FF;
+}
+
+
+/**
+ * @callback_method_impl{FNIOMMMIONEWREAD}
+ */
+static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
+{
+ RT_NOREF1(pvUser);
+ DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
+
+ uint16_t const offReg = off;
+ uint16_t const offLast = offReg + cb - 1;
+ if (DMAR_IS_MMIO_OFF_VALID(offLast))
+ {
+ PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
+ DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
+
+ if (cb == 8)
+ {
+ *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
+ LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
+ }
+ else
+ {
+ *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
+ LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
+ }
+
+ DMAR_UNLOCK(pDevIns, pThisCC);
+ return VINF_SUCCESS;
+ }
+
+ return VINF_IOM_MMIO_UNUSED_FF;
+}
+
+
+#ifdef IN_RING3
+/**
+ * Process requests in the invalidation queue.
+ *
+ * @param pDevIns The IOMMU device instance.
+ * @param pvRequests The requests to process.
+ * @param cbRequests The size of all requests (in bytes).
+ * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
+ * VTD_IQA_REG_DW_256_BIT).
+ * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
+ */
+static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
+ uint8_t fTtm)
+{
+#define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
+ do \
+ { \
+ dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
+ return; \
+ } while (0)
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
+
+ DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
+ Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
+
+ /*
+ * The below check is redundant since we check both TTM and DW for each
+ * descriptor type we process. However, the order of errors reported by hardware
+ * may differ hence this is kept commented out but not removed if we need to
+ * change this in the future.
+ *
+ * In our implementation, we would report the descriptor type as invalid,
+ * while on real hardware it may report descriptor width as invalid.
+ * The Intel VT-d spec. is not clear which error takes preceedence.
+ */
+#if 0
+ /*
+ * Verify that 128-bit descriptors are not used when operating in scalable mode.
+ * We don't check this while software writes IQA_REG but defer it until now because
+ * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
+ * -IS- performed when software writes IQA_REG since it only requires checking against
+ * immutable hardware features.
+ */
+ if ( fTtm != VTD_TTM_SCALABLE_MODE
+ || fDw != VTD_IQA_REG_DW_128_BIT)
+ { /* likely */ }
+ else
+ DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
+#endif
+
+ /*
+ * Process requests in FIFO order.
+ */
+ uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
+ for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
+ {
+ uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
+ uint64_t const uQword0 = puDscQwords[0];
+ uint64_t const uQword1 = puDscQwords[1];
+ uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
+ switch (fDscType)
+ {
+ case VTD_INV_WAIT_DSC_TYPE:
+ {
+ /* Validate descriptor type. */
+ if ( fTtm == VTD_TTM_LEGACY_MODE
+ || fDw == VTD_IQA_REG_DW_256_BIT)
+ { /* likely */ }
+ else
+ DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
+
+ /* Validate reserved bits. */
+ uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
+ ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
+ : VTD_INV_WAIT_DSC_0_VALID_MASK;
+ if ( !(uQword0 & ~fValidMask0)
+ && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
+ { /* likely */ }
+ else
+ DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
+
+ if (fDw == VTD_IQA_REG_DW_256_BIT)
+ {
+ if ( !puDscQwords[2]
+ && !puDscQwords[3])
+ { /* likely */ }
+ else
+ DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
+ }
+
+ /* Perform status write (this must be done prior to generating the completion interrupt). */
+ bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
+ if (fSw)
+ {
+ uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
+ RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
+ int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
+ AssertRC(rc);
+ }
+
+ /* Generate invalidation event interrupt. */
+ bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
+ if (fIf)
+ {
+ DMAR_LOCK(pDevIns, pThisR3);
+ dmarR3InvEventRaiseInterrupt(pDevIns);
+ DMAR_UNLOCK(pDevIns, pThisR3);
+ }
+
+ STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
+ break;
+ }
+
+ case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
+ case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
+ case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
+ case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
+ case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
+ case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
+ case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
+ default:
+ {
+ /* Stop processing further requests. */
+ LogFunc(("Invalid descriptor type: %#x\n", fDscType));
+ DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
+ }
+ }
+ }
+#undef DMAR_IQE_FAULT_RECORD_RET
+}
+
+
+/**
+ * The invalidation-queue thread.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param pThread The command thread.
+ */
+static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
+{
+ NOREF(pThread);
+ LogFlowFunc(("\n"));
+
+ if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
+ return VINF_SUCCESS;
+
+ /*
+ * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
+ * This prevents trashing the heap as well as deal with out-of-memory situations
+ * up-front while starting the VM. It also simplifies the code from having to
+ * dynamically grow/shrink the allocation based on how software sizes the queue.
+ * Guests normally don't alter the queue size all the time, but that's not an
+ * assumption we can make.
+ */
+ uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
+ size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
+ void *pvRequests = RTMemAllocZ(cbMaxQs);
+ AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
+
+ while (pThread->enmState == PDMTHREADSTATE_RUNNING)
+ {
+ /*
+ * Sleep until we are woken up.
+ */
+ {
+ int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
+ AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
+ if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
+ break;
+ }
+
+ DMAR_LOCK(pDevIns, pThisR3);
+ if (dmarInvQueueCanProcessRequests(pThis))
+ {
+ uint32_t offQueueHead;
+ uint32_t offQueueTail;
+ bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
+ if (!fIsEmpty)
+ {
+ /*
+ * Get the current queue size, descriptor width, queue base address and the
+ * table translation mode while the lock is still held.
+ */
+ uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
+ uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
+ uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
+ uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
+ uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
+ RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
+
+ /* Paranoia. */
+ Assert(cbQueue <= cbMaxQs);
+ Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
+ Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
+ Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
+ Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
+ Assert(offQueueHead < cbQueue);
+
+ /*
+ * A table translation mode of "reserved" isn't valid for any descriptor type.
+ * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
+ * but if ESRTPS is support, we will perform a global invalidation when software
+ * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
+ * So caching TTM while reading all descriptors should not be a problem.
+ *
+ * Also, validate the queue tail offset as it's mutable by software.
+ */
+ if ( fTtm != VTD_TTM_RSVD
+ && offQueueTail < cbQueue)
+ {
+ /* Don't hold the lock while reading (a potentially large amount of) requests */
+ DMAR_UNLOCK(pDevIns, pThisR3);
+
+ int rc;
+ uint32_t cbRequests;
+ if (offQueueTail > offQueueHead)
+ {
+ /* The requests have not wrapped around, read them in one go. */
+ cbRequests = offQueueTail - offQueueHead;
+ rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
+ }
+ else
+ {
+ /* The requests have wrapped around, read forward and wrapped-around. */
+ uint32_t const cbForward = cbQueue - offQueueHead;
+ rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
+
+ uint32_t const cbWrapped = offQueueTail;
+ if ( RT_SUCCESS(rc)
+ && cbWrapped > 0)
+ {
+ rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
+ (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
+ }
+ cbRequests = cbForward + cbWrapped;
+ }
+
+ /* Re-acquire the lock since we need to update device state. */
+ DMAR_LOCK(pDevIns, pThisR3);
+
+ if (RT_SUCCESS(rc))
+ {
+ /* Indicate to software we've fetched all requests. */
+ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
+
+ /* Don't hold the lock while processing requests. */
+ DMAR_UNLOCK(pDevIns, pThisR3);
+
+ /* Process all requests. */
+ Assert(cbRequests <= cbQueue);
+ dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
+
+ /*
+ * We've processed all requests and the lock shouldn't be held at this point.
+ * Using 'continue' here allows us to skip re-acquiring the lock just to release
+ * it again before going back to the thread loop. It's a bit ugly but it certainly
+ * helps with performance.
+ */
+ DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
+ continue;
+ }
+ dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
+ }
+ else
+ {
+ if (fTtm == VTD_TTM_RSVD)
+ dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
+ else
+ {
+ Assert(offQueueTail >= cbQueue);
+ dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
+ }
+ }
+ }
+ }
+ DMAR_UNLOCK(pDevIns, pThisR3);
+ }
+
+ RTMemFree(pvRequests);
+ pvRequests = NULL;
+
+ LogFlowFunc(("Invalidation-queue thread terminating\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Wakes up the invalidation-queue thread so it can respond to a state
+ * change.
+ *
+ * @returns VBox status code.
+ * @param pDevIns The IOMMU device instance.
+ * @param pThread The invalidation-queue thread.
+ *
+ * @thread EMT.
+ */
+static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
+{
+ RT_NOREF(pThread);
+ LogFlowFunc(("\n"));
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
+}
+
+
+/**
+ * @callback_method_impl{FNDBGFHANDLERDEV}
+ */
+static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
+ bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
+
+ /*
+ * We lock the device to get a consistent register state as it is
+ * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
+ * ones we care about here) into temporaries and release the lock ASAP.
+ *
+ * Order of register being read and outputted is in accordance with the
+ * spec. for no particular reason.
+ * See Intel VT-d spec. 10.4 "Register Descriptions".
+ */
+ DMAR_LOCK(pDevIns, pThisR3);
+
+ DMARDIAG const enmDiag = pThis->enmDiag;
+ uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
+ uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
+ uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
+ uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
+ uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
+ uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
+ uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
+ uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
+ uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
+ uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
+ uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
+ uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
+ uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
+ uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
+ uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
+ uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
+ uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
+ uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
+ uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
+ uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
+ uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
+ uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
+ uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
+ uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
+ uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
+ uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
+ uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
+ uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
+ uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
+ uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
+ uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
+ uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
+ uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
+ uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
+ uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
+ uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
+ uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
+ uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
+
+ DMAR_UNLOCK(pDevIns, pThisR3);
+
+ const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
+ pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
+ pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
+
+ /*
+ * Non-verbose output.
+ */
+ if (!fVerbose)
+ {
+ pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
+ pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
+ pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
+ pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
+ pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
+ pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
+ pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
+ pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
+ pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
+ pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
+ pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
+ pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
+ pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
+ pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
+ pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
+ pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
+ pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
+ pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
+ pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
+ pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
+ pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
+ pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
+ pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
+ pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
+ pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
+ pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
+ pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
+ pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
+ pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
+ pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
+ pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
+ pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
+ pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
+ pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
+ pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
+ pHlp->pfnPrintf(pHlp, "\n");
+ return;
+ }
+
+ /*
+ * Verbose output.
+ */
+ pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
+ {
+ pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
+ pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
+ }
+ pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
+ {
+ uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
+ uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
+ pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
+ pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
+ pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
+ pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
+ pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
+ pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
+ pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
+ pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
+ pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
+ pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
+ pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
+ pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
+ pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
+ pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
+ pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
+ pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
+ pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
+ pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
+ pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
+ pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
+ pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
+ }
+ pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
+ {
+ uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
+ pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
+ pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
+ pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
+ pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
+ pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
+ pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
+ pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
+ pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
+ pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
+ pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
+ pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
+ pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
+ pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
+ pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
+ pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
+ pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
+ pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
+ pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
+ pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
+ pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
+ pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
+ pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
+ pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
+ pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
+ pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
+ pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
+ pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
+ pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
+ pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
+ }
+ pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
+ {
+ uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
+ pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
+ pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
+ pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
+ pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
+ pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
+ pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
+ pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
+ pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
+ pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
+ }
+ pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
+ {
+ uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
+ pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
+ pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
+ pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
+ pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
+ pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
+ pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
+ pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
+ pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
+ pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
+ }
+ pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
+ {
+ uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
+ pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
+ pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
+ }
+ pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
+ pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
+ {
+ pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
+ pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
+ pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
+ pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
+ pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
+ pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
+ pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
+ pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
+ }
+ pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
+ {
+ pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
+ pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
+ }
+ pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
+ pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
+ pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
+ pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
+ pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
+ pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
+ pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
+ pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
+ pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
+ pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
+ pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
+ {
+ uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
+ uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
+ uint8_t const cQueuePages = 1 << fQs;
+ pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
+ pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
+ }
+ pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
+ {
+ pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
+ }
+ pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
+ {
+ pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
+ pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
+ }
+ pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
+ pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
+ pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
+ {
+ pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
+ pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
+ pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
+ }
+ pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
+ {
+ uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
+ uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
+ pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
+ pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
+ pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
+ }
+ pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
+ pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
+ pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
+ pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
+ pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
+ pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
+ pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
+ pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
+ pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
+ pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
+ pHlp->pfnPrintf(pHlp, "\n");
+}
+
+
+/**
+ * Initializes all registers in the DMAR unit.
+ *
+ * @param pDevIns The IOMMU device instance.
+ */
+static void dmarR3RegsInit(PPDMDEVINS pDevIns)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ LogFlowFunc(("\n"));
+
+ /*
+ * Wipe all registers (required on reset).
+ */
+ RT_ZERO(pThis->abRegs0);
+ RT_ZERO(pThis->abRegs1);
+
+ /*
+ * Initialize registers not mutable by software prior to initializing other registers.
+ */
+ /* VER_REG */
+ {
+ pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
+ | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
+ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
+ }
+
+ uint8_t const fFlts = 0; /* First-level translation support. */
+ uint8_t const fSlts = 1; /* Second-level translation support. */
+ uint8_t const fPt = 1; /* Pass-Through support. */
+ uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
+ uint8_t const fNest = 0; /* Nested translation support. */
+
+ /* CAP_REG */
+ {
+ uint8_t cGstPhysAddrBits;
+ uint8_t cGstLinearAddrBits;
+ PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
+
+ uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
+ uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
+ uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
+ uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
+ uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
+ uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
+ : X86_PAGE_2M_SHIFT)
+ - X86_PAGE_4K_SHIFT;
+ uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
+ uint8_t const fPsi = 1; /* Page selective invalidation. */
+ uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
+ uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
+ uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
+ uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
+ uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
+
+ pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
+ | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
+ | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
+ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
+
+ AssertCompile(fNd <= RT_ELEMENTS(g_auNdMask));
+ pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
+ pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits;
+ pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
+ pThis->fCtxEntryQw1ValidMask = VTD_BF_1_CONTEXT_ENTRY_AW_MASK
+ | VTD_BF_1_CONTEXT_ENTRY_IGN_6_3_MASK
+ | RT_BF_MAKE(VTD_BF_1_CONTEXT_ENTRY_DID, g_auNdMask[fNd]);
+ }
+
+ /* ECAP_REG */
+ {
+ uint8_t const fQi = 1; /* Queued-invalidations. */
+ uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
+ uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
+ uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
+ uint8_t const fEim = 1; /* Extended interrupt mode.*/
+ uint8_t const fAdms = 1; /* Abort DMA mode support. */
+ uint8_t const fErs = 0; /* Execute Request (not supported). */
+
+ pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
+ | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
+ dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
+
+ pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
+ if (fErs)
+ pThis->fPermValidMask = DMAR_PERM_EXE;
+ }
+
+ /*
+ * Initialize registers mutable by software.
+ */
+ /* FECTL_REG */
+ {
+ uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
+ dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
+ }
+
+ /* ICETL_REG */
+ {
+ uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
+ dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
+ }
+
+#ifdef VBOX_STRICT
+ Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
+ Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
+#endif
+}
+
+
+/**
+ * @callback_method_impl{FNSSMDEVSAVEEXEC}
+ */
+static DECLCALLBACK(int) dmarR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
+{
+ PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
+ PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
+ LogFlowFunc(("\n"));
+
+ /* First, save software-immutable registers that we validate on state load. */
+ pHlp->pfnSSMPutU32(pSSM, pThis->uVerReg);
+ pHlp->pfnSSMPutU64(pSSM, pThis->fCapReg);
+ pHlp->pfnSSMPutU64(pSSM, pThis->fExtCapReg);
+
+ /* Save MMIO registers. */
+ pHlp->pfnSSMPutU32(pSSM, DMAR_MMIO_GROUP_COUNT);
+ pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs0));
+ pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs0[0], sizeof(pThis->abRegs0));
+ pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs1));
+ pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs1[0], sizeof(pThis->abRegs1));
+
+ /*
+ * Save our implemention-defined MMIO registers offsets.
+ * The register themselves are currently all part of group 1 (saved above).
+ * We save these to ensure they're located where the code expects them while loading state.
+ */
+ pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IMPL_COUNT);
+ AssertCompile(DMAR_MMIO_OFF_IMPL_COUNT == 2);
+ pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_IVA_REG);
+ pHlp->pfnSSMPutU16(pSSM, DMAR_MMIO_OFF_FRCD_LO_REG);
+
+ /* Save lazily activated registers. */
+ pHlp->pfnSSMPutU64(pSSM, pThis->uIrtaReg);
+ pHlp->pfnSSMPutU64(pSSM, pThis->uRtaddrReg);
+
+ /* Save terminator marker and return status. */
+ return pHlp->pfnSSMPutU32(pSSM, UINT32_MAX);
+}
+
+
+/**
+ * @callback_method_impl{FNSSMDEVLOADEXEC}
+ */
+static DECLCALLBACK(int) dmarR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
+ int const rcDataErr = VERR_SSM_UNEXPECTED_DATA;
+ int const rcFmtErr = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
+ LogFlowFunc(("\n"));
+
+ /*
+ * Validate saved-state version.
+ */
+ AssertReturn(uPass == SSM_PASS_FINAL, VERR_WRONG_ORDER);
+ if (uVersion != DMAR_SAVED_STATE_VERSION)
+ {
+ LogRel(("%s: Invalid saved-state version %#x\n", DMAR_LOG_PFX, uVersion));
+ return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
+ }
+
+ /*
+ * Load and validate software-immutable registers.
+ * The features we had exposed to the guest (in the saved state) must be identical
+ * to what is currently emulated.
+ */
+ {
+ /* VER_REG */
+ uint32_t uVerReg = 0;
+ int rc = pHlp->pfnSSMGetU32(pSSM, &uVerReg);
+ AssertRCReturn(rc, rc);
+ AssertLogRelMsgReturn(uVerReg == pThis->uVerReg,
+ ("%s: VER_REG mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, pThis->uVerReg, uVerReg),
+ rcDataErr);
+ /* CAP_REG */
+ uint64_t fCapReg = 0;
+ pHlp->pfnSSMGetU64(pSSM, &fCapReg);
+ AssertLogRelMsgReturn(fCapReg == pThis->fCapReg,
+ ("%s: CAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fCapReg, fCapReg),
+ rcDataErr);
+ /* ECAP_REG */
+ uint64_t fExtCapReg = 0;
+ pHlp->pfnSSMGetU64(pSSM, &fExtCapReg);
+ AssertLogRelMsgReturn(fExtCapReg == pThis->fExtCapReg,
+ ("%s: ECAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fExtCapReg,
+ fExtCapReg), rcDataErr);
+ }
+
+ /*
+ * Load MMIO registers.
+ */
+ {
+ /* Group count. */
+ uint32_t cRegGroups = 0;
+ pHlp->pfnSSMGetU32(pSSM, &cRegGroups);
+ AssertLogRelMsgReturn(cRegGroups == DMAR_MMIO_GROUP_COUNT,
+ ("%s: MMIO group count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_GROUP_COUNT,
+ cRegGroups), rcFmtErr);
+ /* Group 0. */
+ uint32_t cbRegs0 = 0;
+ pHlp->pfnSSMGetU32(pSSM, &cbRegs0);
+ AssertLogRelMsgReturn(cbRegs0 == sizeof(pThis->abRegs0),
+ ("%s: MMIO group 0 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs0),
+ cbRegs0), rcFmtErr);
+ pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs0[0], cbRegs0);
+ /* Group 1. */
+ uint32_t cbRegs1 = 0;
+ pHlp->pfnSSMGetU32(pSSM, &cbRegs1);
+ AssertLogRelMsgReturn(cbRegs1 == sizeof(pThis->abRegs1),
+ ("%s: MMIO group 1 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs1),
+ cbRegs1), rcFmtErr);
+ pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs1[0], cbRegs1);
+ }
+
+ /*
+ * Validate implementation-defined MMIO register offsets.
+ */
+ {
+ /* Offset count. */
+ uint16_t cOffsets = 0;
+ pHlp->pfnSSMGetU16(pSSM, &cOffsets);
+ AssertLogRelMsgReturn(cOffsets == DMAR_MMIO_OFF_IMPL_COUNT,
+ ("%s: MMIO offset count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IMPL_COUNT,
+ cOffsets), rcFmtErr);
+ /* IVA_REG. */
+ uint16_t offReg = 0;
+ pHlp->pfnSSMGetU16(pSSM, &offReg);
+ AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_IVA_REG,
+ ("%s: IVA_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IVA_REG,
+ offReg), rcFmtErr);
+ /* IOTLB_REG. */
+ AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_IOTLB_REG,
+ ("%s: IOTLB_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_IOTLB_REG,
+ offReg), rcFmtErr);
+ /* FRCD_LO_REG. */
+ pHlp->pfnSSMGetU16(pSSM, &offReg);
+ AssertLogRelMsgReturn(offReg == DMAR_MMIO_OFF_FRCD_LO_REG,
+ ("%s: FRCD_LO_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_LO_REG,
+ offReg), rcFmtErr);
+ /* FRCD_HI_REG. */
+ AssertLogRelMsgReturn(offReg + 8 == DMAR_MMIO_OFF_FRCD_HI_REG,
+ ("%s: FRCD_HI_REG offset mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_OFF_FRCD_HI_REG,
+ offReg), rcFmtErr);
+ }
+
+ /*
+ * Load lazily activated registers.
+ */
+ {
+ /* Active IRTA_REG. */
+ pHlp->pfnSSMGetU64(pSSM, &pThis->uIrtaReg);
+ AssertLogRelMsgReturn(!(pThis->uIrtaReg & ~VTD_IRTA_REG_RW_MASK),
+ ("%s: IRTA_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uIrtaReg), rcDataErr);
+ /* Active RTADDR_REG. */
+ pHlp->pfnSSMGetU64(pSSM, &pThis->uRtaddrReg);
+ AssertLogRelMsgReturn(!(pThis->uRtaddrReg & ~VTD_RTADDR_REG_RW_MASK),
+ ("%s: RTADDR_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uRtaddrReg), rcDataErr);
+ }
+
+ /*
+ * Verify terminator marker.
+ */
+ {
+ uint32_t uEndMarker = 0;
+ int const rc = pHlp->pfnSSMGetU32(pSSM, &uEndMarker);
+ AssertRCReturn(rc, rc);
+ AssertLogRelMsgReturn(uEndMarker == UINT32_MAX,
+ ("%s: End marker mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, UINT32_MAX, uEndMarker),
+ rcFmtErr);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNSSMDEVLOADDONE}
+ */
+static DECLCALLBACK(int) dmarR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
+{
+ PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
+ LogFlowFunc(("\n"));
+ RT_NOREF(pSSM);
+ AssertPtrReturn(pThisR3, VERR_INVALID_POINTER);
+
+ DMAR_LOCK(pDevIns, pThisR3);
+ dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
+ DMAR_UNLOCK(pDevIns, pThisR3);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @interface_method_impl{PDMDEVREG,pfnReset}
+ */
+static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
+{
+ PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
+ LogFlowFunc(("\n"));
+
+ DMAR_LOCK(pDevIns, pThisR3);
+ dmarR3RegsInit(pDevIns);
+ DMAR_UNLOCK(pDevIns, pThisR3);
+}
+
+
+/**
+ * @interface_method_impl{PDMDEVREG,pfnDestruct}
+ */
+static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
+{
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
+ LogFlowFunc(("\n"));
+
+ DMAR_LOCK(pDevIns, pThisR3);
+
+ if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
+ {
+ PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
+ pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
+ }
+
+ DMAR_UNLOCK(pDevIns, pThisR3);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @interface_method_impl{PDMDEVREG,pfnConstruct}
+ */
+static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
+{
+ RT_NOREF(pCfg);
+
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
+ pThisR3->pDevInsR3 = pDevIns;
+
+ LogFlowFunc(("iInstance=%d\n", iInstance));
+ NOREF(iInstance);
+
+ /*
+ * Register the IOMMU with PDM.
+ */
+ PDMIOMMUREGR3 IommuReg;
+ RT_ZERO(IommuReg);
+ IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
+ IommuReg.pfnMemAccess = iommuIntelMemAccess;
+ IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
+ IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
+ IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
+ int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
+ if (RT_FAILURE(rc))
+ return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
+ if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
+ return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
+ N_("IOMMU helper version mismatch; got %#x expected %#x"),
+ pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
+ if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
+ return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
+ N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
+ pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
+ AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
+ AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
+ AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
+ AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
+
+ /*
+ * Use PDM's critical section (via helpers) for the IOMMU device.
+ */
+ rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Initialize PCI configuration registers.
+ */
+ PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
+ PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
+
+ /* Header. */
+ PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
+ PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
+ PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
+ PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
+ PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
+ PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
+ PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
+ PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
+
+ /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
+ PDMPciDevSetStatus(pPciDev, 0);
+ PDMPciDevSetCapabilityList(pPciDev, 0);
+ /** @todo VTBAR at 0x180? */
+
+ /*
+ * Register the PCI function with PDM.
+ */
+ rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Register MMIO region.
+ */
+ AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
+ rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
+ IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
+ &pThis->hMmio);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Register saved state handlers.
+ */
+ rc = PDMDevHlpSSMRegisterEx(pDevIns, DMAR_SAVED_STATE_VERSION, sizeof(DMAR), NULL /* pszBefore */,
+ NULL /* pfnLivePrep */, NULL /* pfnLiveExec */, NULL /* pfnLiveVote */,
+ NULL /* pfnSavePrep */, dmarR3SaveExec, NULL /* pfnSaveDone */,
+ NULL /* pfnLoadPrep */, dmarR3LoadExec, dmarR3LoadDone);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Register debugger info items.
+ */
+ rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
+ AssertLogRelRCReturn(rc, rc);
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Statistics.
+ */
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
+
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
+ PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
+#endif
+
+ /*
+ * Initialize registers.
+ */
+ dmarR3RegsInit(pDevIns);
+
+ /*
+ * Create invalidation-queue thread and semaphore.
+ */
+ char szInvQueueThread[32];
+ RT_ZERO(szInvQueueThread);
+ RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
+ rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
+ 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
+ AssertLogRelRCReturn(rc, rc);
+
+ rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
+ AssertLogRelRCReturn(rc, rc);
+
+ /*
+ * Log some of the features exposed to software.
+ */
+ uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
+ uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN);
+ uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
+ uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
+ uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
+ uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
+ LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n",
+ DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel));
+ LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n",
+ DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask,
+ pThis->fMgawInvMask, offFrcd, offIva));
+ return VINF_SUCCESS;
+}
+
+#else
+
+/**
+ * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
+ */
+static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
+{
+ PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
+ PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
+ PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
+ pThisCC->CTX_SUFF(pDevIns) = pDevIns;
+
+ /* We will use PDM's critical section (via helpers) for the IOMMU device. */
+ int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
+ AssertRCReturn(rc, rc);
+
+ /* Set up the MMIO RZ handlers. */
+ rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
+ AssertRCReturn(rc, rc);
+
+ /* Set up the IOMMU RZ callbacks. */
+ PDMIOMMUREGCC IommuReg;
+ RT_ZERO(IommuReg);
+ IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
+ IommuReg.idxIommu = pThis->idxIommu;
+ IommuReg.pfnMemAccess = iommuIntelMemAccess;
+ IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
+ IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
+ IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
+
+ rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
+ AssertRCReturn(rc, rc);
+ AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
+ AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
+ AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
+ AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
+ AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
+ AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
+ AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
+
+ return VINF_SUCCESS;
+}
+
+#endif
+
+
+/**
+ * The device registration structure.
+ */
+PDMDEVREG const g_DeviceIommuIntel =
+{
+ /* .u32Version = */ PDM_DEVREG_VERSION,
+ /* .uReserved0 = */ 0,
+ /* .szName = */ "iommu-intel",
+ /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
+ /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
+ /* .cMaxInstances = */ 1,
+ /* .uSharedVersion = */ 42,
+ /* .cbInstanceShared = */ sizeof(DMAR),
+ /* .cbInstanceCC = */ sizeof(DMARCC),
+ /* .cbInstanceRC = */ sizeof(DMARRC),
+ /* .cMaxPciDevices = */ 1,
+ /* .cMaxMsixVectors = */ 0,
+ /* .pszDescription = */ "IOMMU (Intel)",
+#if defined(IN_RING3)
+ /* .pszRCMod = */ "VBoxDDRC.rc",
+ /* .pszR0Mod = */ "VBoxDDR0.r0",
+ /* .pfnConstruct = */ iommuIntelR3Construct,
+ /* .pfnDestruct = */ iommuIntelR3Destruct,
+ /* .pfnRelocate = */ NULL,
+ /* .pfnMemSetup = */ NULL,
+ /* .pfnPowerOn = */ NULL,
+ /* .pfnReset = */ iommuIntelR3Reset,
+ /* .pfnSuspend = */ NULL,
+ /* .pfnResume = */ NULL,
+ /* .pfnAttach = */ NULL,
+ /* .pfnDetach = */ NULL,
+ /* .pfnQueryInterface = */ NULL,
+ /* .pfnInitComplete = */ NULL,
+ /* .pfnPowerOff = */ NULL,
+ /* .pfnSoftReset = */ NULL,
+ /* .pfnReserved0 = */ NULL,
+ /* .pfnReserved1 = */ NULL,
+ /* .pfnReserved2 = */ NULL,
+ /* .pfnReserved3 = */ NULL,
+ /* .pfnReserved4 = */ NULL,
+ /* .pfnReserved5 = */ NULL,
+ /* .pfnReserved6 = */ NULL,
+ /* .pfnReserved7 = */ NULL,
+#elif defined(IN_RING0)
+ /* .pfnEarlyConstruct = */ NULL,
+ /* .pfnConstruct = */ iommuIntelRZConstruct,
+ /* .pfnDestruct = */ NULL,
+ /* .pfnFinalDestruct = */ NULL,
+ /* .pfnRequest = */ NULL,
+ /* .pfnReserved0 = */ NULL,
+ /* .pfnReserved1 = */ NULL,
+ /* .pfnReserved2 = */ NULL,
+ /* .pfnReserved3 = */ NULL,
+ /* .pfnReserved4 = */ NULL,
+ /* .pfnReserved5 = */ NULL,
+ /* .pfnReserved6 = */ NULL,
+ /* .pfnReserved7 = */ NULL,
+#elif defined(IN_RC)
+ /* .pfnConstruct = */ iommuIntelRZConstruct,
+ /* .pfnReserved0 = */ NULL,
+ /* .pfnReserved1 = */ NULL,
+ /* .pfnReserved2 = */ NULL,
+ /* .pfnReserved3 = */ NULL,
+ /* .pfnReserved4 = */ NULL,
+ /* .pfnReserved5 = */ NULL,
+ /* .pfnReserved6 = */ NULL,
+ /* .pfnReserved7 = */ NULL,
+#else
+# error "Not in IN_RING3, IN_RING0 or IN_RC!"
+#endif
+ /* .u32VersionEnd = */ PDM_DEVREG_VERSION
+};
+
+#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
+