summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR0/HMSVMR0.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR0/HMSVMR0.cpp')
-rw-r--r--src/VBox/VMM/VMMR0/HMSVMR0.cpp9173
1 files changed, 9173 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/HMSVMR0.cpp b/src/VBox/VMM/VMMR0/HMSVMR0.cpp
new file mode 100644
index 00000000..3f4c46f0
--- /dev/null
+++ b/src/VBox/VMM/VMMR0/HMSVMR0.cpp
@@ -0,0 +1,9173 @@
+/* $Id: HMSVMR0.cpp $ */
+/** @file
+ * HM SVM (AMD-V) - Host Context Ring-0.
+ */
+
+/*
+ * Copyright (C) 2013-2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_HM
+#define VMCPU_INCL_CPUM_GST_CTX
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/thread.h>
+
+#include <VBox/vmm/pdmapi.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/iom.h>
+#include <VBox/vmm/tm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/gcm.h>
+#include <VBox/vmm/gim.h>
+#include <VBox/vmm/apic.h>
+#include "HMInternal.h"
+#include <VBox/vmm/vmcc.h>
+#include <VBox/err.h>
+#include "HMSVMR0.h"
+#include "dtrace/VBoxVMM.h"
+
+#ifdef DEBUG_ramshankar
+# define HMSVM_SYNC_FULL_GUEST_STATE
+# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
+# define HMSVM_ALWAYS_TRAP_PF
+# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
+#endif
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+#ifdef VBOX_WITH_STATISTICS
+# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
+ if ((u64ExitCode) == SVM_EXIT_NPF) \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
+ else \
+ STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
+ } while (0)
+
+# define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDebugExitAll); \
+ if ((u64ExitCode) == SVM_EXIT_NPF) \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
+ else \
+ STAM_COUNTER_INC(&pVCpu->hm.s.aStatExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
+ } while (0)
+
+# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll); \
+ if ((u64ExitCode) == SVM_EXIT_NPF) \
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitReasonNpf); \
+ else \
+ STAM_COUNTER_INC(&pVCpu->hm.s.aStatNestedExitReason[(u64ExitCode) & MASK_EXITREASON_STAT]); \
+ } while (0)
+#else
+# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
+# define HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
+# define HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
+#endif /* !VBOX_WITH_STATISTICS */
+
+/** If we decide to use a function table approach this can be useful to
+ * switch to a "static DECLCALLBACK(int)". */
+#define HMSVM_EXIT_DECL static VBOXSTRICTRC
+
+/**
+ * Subset of the guest-CPU state that is kept by SVM R0 code while executing the
+ * guest using hardware-assisted SVM.
+ *
+ * This excludes state like TSC AUX, GPRs (other than RSP, RAX) which are always
+ * are swapped and restored across the world-switch and also registers like
+ * EFER, PAT MSR etc. which cannot be modified by the guest without causing a
+ * \#VMEXIT.
+ */
+#define HMSVM_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
+ | CPUMCTX_EXTRN_RFLAGS \
+ | CPUMCTX_EXTRN_RAX \
+ | CPUMCTX_EXTRN_RSP \
+ | CPUMCTX_EXTRN_SREG_MASK \
+ | CPUMCTX_EXTRN_CR0 \
+ | CPUMCTX_EXTRN_CR2 \
+ | CPUMCTX_EXTRN_CR3 \
+ | CPUMCTX_EXTRN_TABLE_MASK \
+ | CPUMCTX_EXTRN_DR6 \
+ | CPUMCTX_EXTRN_DR7 \
+ | CPUMCTX_EXTRN_KERNEL_GS_BASE \
+ | CPUMCTX_EXTRN_SYSCALL_MSRS \
+ | CPUMCTX_EXTRN_SYSENTER_MSRS \
+ | CPUMCTX_EXTRN_HWVIRT \
+ | CPUMCTX_EXTRN_INHIBIT_INT \
+ | CPUMCTX_EXTRN_HM_SVM_MASK)
+
+/**
+ * Subset of the guest-CPU state that is shared between the guest and host.
+ */
+#define HMSVM_CPUMCTX_SHARED_STATE CPUMCTX_EXTRN_DR_MASK
+
+/** Macro for importing guest state from the VMCB back into CPUMCTX. */
+#define HMSVM_CPUMCTX_IMPORT_STATE(a_pVCpu, a_fWhat) \
+ do { \
+ if ((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fWhat)) \
+ hmR0SvmImportGuestState((a_pVCpu), (a_fWhat)); \
+ } while (0)
+
+/** Assert that the required state bits are fetched. */
+#define HMSVM_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
+ ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
+ (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
+
+/** Assert that preemption is disabled or covered by thread-context hooks. */
+#define HMSVM_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
+ || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+/** Assert that we haven't migrated CPUs when thread-context hooks are not
+ * used. */
+#define HMSVM_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
+ || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
+ ("Illegal migration! Entered on CPU %u Current %u\n", \
+ (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()));
+
+/** Assert that we're not executing a nested-guest. */
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) Assert(!CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
+#else
+# define HMSVM_ASSERT_NOT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
+#endif
+
+/** Assert that we're executing a nested-guest. */
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) Assert(CPUMIsGuestInSvmNestedHwVirtMode((a_pCtx)))
+#else
+# define HMSVM_ASSERT_IN_NESTED_GUEST(a_pCtx) do { NOREF((a_pCtx)); } while (0)
+#endif
+
+/** Macro for checking and returning from the using function for
+ * \#VMEXIT intercepts that maybe caused during delivering of another
+ * event in the guest. */
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
+ do \
+ { \
+ int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
+ if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
+ else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
+ else if ( rc == VINF_EM_RESET \
+ && CPUMIsGuestSvmCtrlInterceptSet((a_pVCpu), &(a_pVCpu)->cpum.GstCtx, SVM_CTRL_INTERCEPT_SHUTDOWN)) \
+ { \
+ HMSVM_CPUMCTX_IMPORT_STATE((a_pVCpu), HMSVM_CPUMCTX_EXTRN_ALL); \
+ return IEMExecSvmVmexit((a_pVCpu), SVM_EXIT_SHUTDOWN, 0, 0); \
+ } \
+ else \
+ return rc; \
+ } while (0)
+#else
+# define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(a_pVCpu, a_pSvmTransient) \
+ do \
+ { \
+ int rc = hmR0SvmCheckExitDueToEventDelivery((a_pVCpu), (a_pSvmTransient)); \
+ if (RT_LIKELY(rc == VINF_SUCCESS)) { /* continue #VMEXIT handling */ } \
+ else if ( rc == VINF_HM_DOUBLE_FAULT) { return VINF_SUCCESS; } \
+ else \
+ return rc; \
+ } while (0)
+#endif
+
+/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
+ * instruction that exited. */
+#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
+ do { \
+ if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
+ (a_rc) = VINF_EM_DBG_STEPPED; \
+ } while (0)
+
+/** Validate segment descriptor granularity bit. */
+#ifdef VBOX_STRICT
+# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) \
+ AssertMsg( !(a_pCtx)->reg.Attr.n.u1Present \
+ || ( (a_pCtx)->reg.Attr.n.u1Granularity \
+ ? ((a_pCtx)->reg.u32Limit & 0xfff) == 0xfff \
+ : (a_pCtx)->reg.u32Limit <= UINT32_C(0xfffff)), \
+ ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", (a_pCtx)->reg.u32Limit, \
+ (a_pCtx)->reg.Attr.u, (a_pCtx)->reg.u64Base))
+#else
+# define HMSVM_ASSERT_SEG_GRANULARITY(a_pCtx, reg) do { } while (0)
+#endif
+
+/**
+ * Exception bitmap mask for all contributory exceptions.
+ *
+ * Page fault is deliberately excluded here as it's conditional as to whether
+ * it's contributory or benign. Page faults are handled separately.
+ */
+#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
+ | RT_BIT(X86_XCPT_DE))
+
+/**
+ * Mandatory/unconditional guest control intercepts.
+ *
+ * SMIs can and do happen in normal operation. We need not intercept them
+ * while executing the guest (or nested-guest).
+ */
+#define HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS ( SVM_CTRL_INTERCEPT_INTR \
+ | SVM_CTRL_INTERCEPT_NMI \
+ | SVM_CTRL_INTERCEPT_INIT \
+ | SVM_CTRL_INTERCEPT_RDPMC \
+ | SVM_CTRL_INTERCEPT_CPUID \
+ | SVM_CTRL_INTERCEPT_RSM \
+ | SVM_CTRL_INTERCEPT_HLT \
+ | SVM_CTRL_INTERCEPT_IOIO_PROT \
+ | SVM_CTRL_INTERCEPT_MSR_PROT \
+ | SVM_CTRL_INTERCEPT_INVLPGA \
+ | SVM_CTRL_INTERCEPT_SHUTDOWN \
+ | SVM_CTRL_INTERCEPT_FERR_FREEZE \
+ | SVM_CTRL_INTERCEPT_VMRUN \
+ | SVM_CTRL_INTERCEPT_SKINIT \
+ | SVM_CTRL_INTERCEPT_WBINVD \
+ | SVM_CTRL_INTERCEPT_MONITOR \
+ | SVM_CTRL_INTERCEPT_MWAIT \
+ | SVM_CTRL_INTERCEPT_CR0_SEL_WRITE \
+ | SVM_CTRL_INTERCEPT_XSETBV)
+
+/** @name VMCB Clean Bits.
+ *
+ * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
+ * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
+ * memory.
+ *
+ * @{ */
+/** All intercepts vectors, TSC offset, PAUSE filter counter. */
+#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
+/** I/O permission bitmap, MSR permission bitmap. */
+#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
+/** ASID. */
+#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
+/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
+V_INTR_VECTOR. */
+#define HMSVM_VMCB_CLEAN_INT_CTRL RT_BIT(3)
+/** Nested Paging: Nested CR3 (nCR3), PAT. */
+#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
+/** Control registers (CR0, CR3, CR4, EFER). */
+#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
+/** Debug registers (DR6, DR7). */
+#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
+/** GDT, IDT limit and base. */
+#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
+/** Segment register: CS, SS, DS, ES limit and base. */
+#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
+/** CR2.*/
+#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
+/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
+#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
+/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
+PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
+#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
+/** Mask of all valid VMCB Clean bits. */
+#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
+ | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
+ | HMSVM_VMCB_CLEAN_ASID \
+ | HMSVM_VMCB_CLEAN_INT_CTRL \
+ | HMSVM_VMCB_CLEAN_NP \
+ | HMSVM_VMCB_CLEAN_CRX_EFER \
+ | HMSVM_VMCB_CLEAN_DRX \
+ | HMSVM_VMCB_CLEAN_DT \
+ | HMSVM_VMCB_CLEAN_SEG \
+ | HMSVM_VMCB_CLEAN_CR2 \
+ | HMSVM_VMCB_CLEAN_LBR \
+ | HMSVM_VMCB_CLEAN_AVIC)
+/** @} */
+
+/**
+ * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
+ */
+typedef enum SVMMSREXITREAD
+{
+ /** Reading this MSR causes a \#VMEXIT. */
+ SVMMSREXIT_INTERCEPT_READ = 0xb,
+ /** Reading this MSR does not cause a \#VMEXIT. */
+ SVMMSREXIT_PASSTHRU_READ
+} SVMMSREXITREAD;
+
+/**
+ * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
+ */
+typedef enum SVMMSREXITWRITE
+{
+ /** Writing to this MSR causes a \#VMEXIT. */
+ SVMMSREXIT_INTERCEPT_WRITE = 0xd,
+ /** Writing to this MSR does not cause a \#VMEXIT. */
+ SVMMSREXIT_PASSTHRU_WRITE
+} SVMMSREXITWRITE;
+
+/**
+ * SVM \#VMEXIT handler.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM-transient structure.
+ */
+typedef VBOXSTRICTRC FNSVMEXITHANDLER(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu);
+static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState);
+
+
+/** @name \#VMEXIT handlers.
+ * @{
+ */
+static FNSVMEXITHANDLER hmR0SvmExitIntr;
+static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
+static FNSVMEXITHANDLER hmR0SvmExitInvd;
+static FNSVMEXITHANDLER hmR0SvmExitCpuid;
+static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
+static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
+static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
+static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
+static FNSVMEXITHANDLER hmR0SvmExitHlt;
+static FNSVMEXITHANDLER hmR0SvmExitMonitor;
+static FNSVMEXITHANDLER hmR0SvmExitMwait;
+static FNSVMEXITHANDLER hmR0SvmExitShutdown;
+static FNSVMEXITHANDLER hmR0SvmExitUnexpected;
+static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
+static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
+static FNSVMEXITHANDLER hmR0SvmExitMsr;
+static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
+static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
+static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
+static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
+static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
+static FNSVMEXITHANDLER hmR0SvmExitVIntr;
+static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
+static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
+static FNSVMEXITHANDLER hmR0SvmExitPause;
+static FNSVMEXITHANDLER hmR0SvmExitFerrFreeze;
+static FNSVMEXITHANDLER hmR0SvmExitIret;
+static FNSVMEXITHANDLER hmR0SvmExitXcptDE;
+static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
+static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
+static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
+static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
+static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
+static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
+static FNSVMEXITHANDLER hmR0SvmExitXcptGP;
+static FNSVMEXITHANDLER hmR0SvmExitXcptGeneric;
+static FNSVMEXITHANDLER hmR0SvmExitSwInt;
+static FNSVMEXITHANDLER hmR0SvmExitTrRead;
+static FNSVMEXITHANDLER hmR0SvmExitTrWrite;
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+static FNSVMEXITHANDLER hmR0SvmExitClgi;
+static FNSVMEXITHANDLER hmR0SvmExitStgi;
+static FNSVMEXITHANDLER hmR0SvmExitVmload;
+static FNSVMEXITHANDLER hmR0SvmExitVmsave;
+static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
+static FNSVMEXITHANDLER hmR0SvmExitVmrun;
+static FNSVMEXITHANDLER hmR0SvmNestedExitXcptDB;
+static FNSVMEXITHANDLER hmR0SvmNestedExitXcptBP;
+#endif
+/** @} */
+
+static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient);
+#endif
+static VBOXSTRICTRC hmR0SvmRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** Ring-0 memory object for the IO bitmap. */
+static RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
+/** Physical address of the IO bitmap. */
+static RTHCPHYS g_HCPhysIOBitmap;
+/** Pointer to the IO bitmap. */
+static R0PTRTYPE(void *) g_pvIOBitmap;
+
+#ifdef VBOX_STRICT
+# define HMSVM_LOG_RBP_RSP RT_BIT_32(0)
+# define HMSVM_LOG_CR_REGS RT_BIT_32(1)
+# define HMSVM_LOG_CS RT_BIT_32(2)
+# define HMSVM_LOG_SS RT_BIT_32(3)
+# define HMSVM_LOG_FS RT_BIT_32(4)
+# define HMSVM_LOG_GS RT_BIT_32(5)
+# define HMSVM_LOG_LBR RT_BIT_32(6)
+# define HMSVM_LOG_ALL ( HMSVM_LOG_RBP_RSP \
+ | HMSVM_LOG_CR_REGS \
+ | HMSVM_LOG_CS \
+ | HMSVM_LOG_SS \
+ | HMSVM_LOG_FS \
+ | HMSVM_LOG_GS \
+ | HMSVM_LOG_LBR)
+
+/**
+ * Dumps virtual CPU state and additional info. to the logger for diagnostics.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ * @param pszPrefix Log prefix.
+ * @param fFlags Log flags, see HMSVM_LOG_XXX.
+ * @param uVerbose The verbosity level, currently unused.
+ */
+static void hmR0SvmLogState(PVMCPUCC pVCpu, PCSVMVMCB pVmcb, const char *pszPrefix, uint32_t fFlags, uint8_t uVerbose)
+{
+ RT_NOREF2(pVCpu, uVerbose);
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
+ Log4(("%s: cs:rip=%04x:%RX64 efl=%#RX64\n", pszPrefix, pCtx->cs.Sel, pCtx->rip, pCtx->rflags.u));
+
+ if (fFlags & HMSVM_LOG_RBP_RSP)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RBP);
+ Log4(("%s: rsp=%#RX64 rbp=%#RX64\n", pszPrefix, pCtx->rsp, pCtx->rbp));
+ }
+
+ if (fFlags & HMSVM_LOG_CR_REGS)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4);
+ Log4(("%s: cr0=%#RX64 cr3=%#RX64 cr4=%#RX64\n", pszPrefix, pCtx->cr0, pCtx->cr3, pCtx->cr4));
+ }
+
+ if (fFlags & HMSVM_LOG_CS)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
+ Log4(("%s: cs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base,
+ pCtx->cs.u32Limit, pCtx->cs.Attr.u));
+ }
+ if (fFlags & HMSVM_LOG_SS)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
+ Log4(("%s: ss={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base,
+ pCtx->ss.u32Limit, pCtx->ss.Attr.u));
+ }
+ if (fFlags & HMSVM_LOG_FS)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
+ Log4(("%s: fs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base,
+ pCtx->fs.u32Limit, pCtx->fs.Attr.u));
+ }
+ if (fFlags & HMSVM_LOG_GS)
+ {
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
+ Log4(("%s: gs={%04x base=%016RX64 limit=%08x flags=%08x}\n", pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base,
+ pCtx->gs.u32Limit, pCtx->gs.Attr.u));
+ }
+
+ PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
+ if (fFlags & HMSVM_LOG_LBR)
+ {
+ Log4(("%s: br_from=%#RX64 br_to=%#RX64 lastxcpt_from=%#RX64 lastxcpt_to=%#RX64\n", pszPrefix, pVmcbGuest->u64BR_FROM,
+ pVmcbGuest->u64BR_TO, pVmcbGuest->u64LASTEXCPFROM, pVmcbGuest->u64LASTEXCPTO));
+ }
+ NOREF(pszPrefix); NOREF(pVmcbGuest); NOREF(pCtx);
+}
+#endif /* VBOX_STRICT */
+
+
+/**
+ * Sets up and activates AMD-V on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVM The cross context VM structure. Can be
+ * NULL after a resume!
+ * @param pvCpuPage Pointer to the global CPU page.
+ * @param HCPhysCpuPage Physical address of the global CPU page.
+ * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
+ * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs (currently
+ * unused).
+ */
+VMMR0DECL(int) SVMR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
+ PCSUPHWVIRTMSRS pHwvirtMsrs)
+{
+ Assert(!fEnabledByHost);
+ Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
+ Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
+ Assert(pvCpuPage); NOREF(pvCpuPage);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ RT_NOREF2(fEnabledByHost, pHwvirtMsrs);
+
+ /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
+ RTCCUINTREG const fEFlags = ASMIntDisableFlags();
+
+ /*
+ * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
+ */
+ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
+ if (u64HostEfer & MSR_K6_EFER_SVME)
+ {
+ /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
+ if ( pVM
+ && pVM->hm.s.svm.fIgnoreInUseError)
+ pHostCpu->fIgnoreAMDVInUseError = true;
+
+ if (!pHostCpu->fIgnoreAMDVInUseError)
+ {
+ ASMSetFlags(fEFlags);
+ return VERR_SVM_IN_USE;
+ }
+ }
+
+ /* Turn on AMD-V in the EFER MSR. */
+ ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
+
+ /* Write the physical page address where the CPU will store the host state while executing the VM. */
+ ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
+
+ /* Restore interrupts. */
+ ASMSetFlags(fEFlags);
+
+ /*
+ * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all
+ * non-zero ASIDs when enabling SVM. AMD doesn't have an SVM instruction to flush all
+ * ASIDs (flushing is done upon VMRUN). Therefore, flag that we need to flush the TLB
+ * entirely with before executing any guest code.
+ */
+ pHostCpu->fFlushAsidBeforeUse = true;
+
+ /*
+ * Ensure each VCPU scheduled on this CPU gets a new ASID on resume. See @bugref{6255}.
+ */
+ ++pHostCpu->cTlbFlushes;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Deactivates AMD-V on the current CPU.
+ *
+ * @returns VBox status code.
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pvCpuPage Pointer to the global CPU page.
+ * @param HCPhysCpuPage Physical address of the global CPU page.
+ */
+VMMR0DECL(int) SVMR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
+{
+ RT_NOREF1(pHostCpu);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ AssertReturn( HCPhysCpuPage
+ && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
+ AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
+
+ /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
+ RTCCUINTREG const fEFlags = ASMIntDisableFlags();
+
+ /* Turn off AMD-V in the EFER MSR. */
+ uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
+ ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
+
+ /* Invalidate host state physical address. */
+ ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
+
+ /* Restore interrupts. */
+ ASMSetFlags(fEFlags);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does global AMD-V initialization (called during module initialization).
+ *
+ * @returns VBox status code.
+ */
+VMMR0DECL(int) SVMR0GlobalInit(void)
+{
+ /*
+ * Allocate 12 KB (3 pages) for the IO bitmap. Since this is non-optional and we always
+ * intercept all IO accesses, it's done once globally here instead of per-VM.
+ */
+ Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
+ int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
+ g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
+
+ /* Set all bits to intercept all IO accesses. */
+ ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does global AMD-V termination (called during module termination).
+ */
+VMMR0DECL(void) SVMR0GlobalTerm(void)
+{
+ if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
+ g_pvIOBitmap = NULL;
+ g_HCPhysIOBitmap = 0;
+ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
+ }
+}
+
+
+/**
+ * Frees any allocated per-VCPU structures for a VM.
+ *
+ * @param pVM The cross context VM structure.
+ */
+DECLINLINE(void) hmR0SvmFreeStructs(PVMCC pVM)
+{
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
+ AssertPtr(pVCpu);
+
+ if (pVCpu->hmr0.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcbHost, false);
+ pVCpu->hmr0.s.svm.HCPhysVmcbHost = 0;
+ pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
+ }
+
+ if (pVCpu->hmr0.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjVmcb, false);
+ pVCpu->hmr0.s.svm.pVmcb = NULL;
+ pVCpu->hmr0.s.svm.HCPhysVmcb = 0;
+ pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
+ }
+
+ if (pVCpu->hmr0.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
+ {
+ RTR0MemObjFree(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, false);
+ pVCpu->hmr0.s.svm.pvMsrBitmap = NULL;
+ pVCpu->hmr0.s.svm.HCPhysMsrBitmap = 0;
+ pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
+ }
+ }
+}
+
+
+/**
+ * Sets pfnVMRun to the best suited variant.
+ *
+ * This must be called whenever anything changes relative to the SVMR0VMRun
+ * variant selection:
+ * - pVCpu->hm.s.fLoadSaveGuestXcr0
+ * - CPUMCTX_WSF_IBPB_ENTRY in pVCpu->cpum.GstCtx.fWorldSwitcher
+ * - CPUMCTX_WSF_IBPB_EXIT in pVCpu->cpum.GstCtx.fWorldSwitcher
+ * - Perhaps: CPUMIsGuestFPUStateActive() (windows only)
+ * - Perhaps: CPUMCTX.fXStateMask (windows only)
+ *
+ * We currently ASSUME that neither CPUMCTX_WSF_IBPB_ENTRY nor
+ * CPUMCTX_WSF_IBPB_EXIT cannot be changed at runtime.
+ */
+static void hmR0SvmUpdateVmRunFunction(PVMCPUCC pVCpu)
+{
+ static const struct CLANGWORKAROUND { PFNHMSVMVMRUN pfn; } s_aHmR0SvmVmRunFunctions[] =
+ {
+ { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_SansIbpbExit },
+ { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_SansIbpbExit },
+ { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_SansIbpbExit },
+ { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_SansIbpbExit },
+ { hmR0SvmVmRun_SansXcr0_SansIbpbEntry_WithIbpbExit },
+ { hmR0SvmVmRun_WithXcr0_SansIbpbEntry_WithIbpbExit },
+ { hmR0SvmVmRun_SansXcr0_WithIbpbEntry_WithIbpbExit },
+ { hmR0SvmVmRun_WithXcr0_WithIbpbEntry_WithIbpbExit },
+ };
+ uintptr_t const idx = (pVCpu->hmr0.s.fLoadSaveGuestXcr0 ? 1 : 0)
+ | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_ENTRY ? 2 : 0)
+ | (pVCpu->hmr0.s.fWorldSwitcher & HM_WSF_IBPB_EXIT ? 4 : 0);
+ PFNHMSVMVMRUN const pfnVMRun = s_aHmR0SvmVmRunFunctions[idx].pfn;
+ if (pVCpu->hmr0.s.svm.pfnVMRun != pfnVMRun)
+ pVCpu->hmr0.s.svm.pfnVMRun = pfnVMRun;
+}
+
+
+/**
+ * Selector FNHMSVMVMRUN implementation.
+ */
+static DECLCALLBACK(int) hmR0SvmVMRunSelector(PVMCC pVM, PVMCPUCC pVCpu, RTHCPHYS HCPhysVMCB)
+{
+ hmR0SvmUpdateVmRunFunction(pVCpu);
+ return pVCpu->hmr0.s.svm.pfnVMRun(pVM, pVCpu, HCPhysVMCB);
+}
+
+
+/**
+ * Does per-VM AMD-V initialization.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) SVMR0InitVM(PVMCC pVM)
+{
+ int rc = VERR_INTERNAL_ERROR_5;
+
+ /*
+ * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
+ */
+ uint32_t u32Family;
+ uint32_t u32Model;
+ uint32_t u32Stepping;
+ if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
+ {
+ Log4Func(("AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
+ pVM->hmr0.s.svm.fAlwaysFlushTLB = true;
+ }
+
+ /*
+ * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
+ pVCpu->hmr0.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
+ pVCpu->hmr0.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
+ pVCpu->hmr0.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
+ }
+
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
+
+ /*
+ * Initialize the hardware-assisted SVM guest-execution handler.
+ * We now use a single handler for both 32-bit and 64-bit guests, see @bugref{6208#c73}.
+ */
+ pVCpu->hmr0.s.svm.pfnVMRun = hmR0SvmVMRunSelector;
+
+ /*
+ * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
+ * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
+ */
+/** @todo Does this need to be below 4G? */
+ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << HOST_PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ void *pvVmcbHost = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcbHost);
+ pVCpu->hmr0.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcbHost, 0 /* iPage */);
+ Assert(pVCpu->hmr0.s.svm.HCPhysVmcbHost < _4G);
+ RT_BZERO(pvVmcbHost, HOST_PAGE_SIZE);
+
+ /*
+ * Allocate one page for the guest-state VMCB.
+ */
+/** @todo Does this need to be below 4G? */
+ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << HOST_PAGE_SHIFT, false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ pVCpu->hmr0.s.svm.pVmcb = (PSVMVMCB)RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjVmcb);
+ pVCpu->hmr0.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjVmcb, 0 /* iPage */);
+ Assert(pVCpu->hmr0.s.svm.HCPhysVmcb < _4G);
+ RT_BZERO(pVCpu->hmr0.s.svm.pVmcb, HOST_PAGE_SIZE);
+
+ /*
+ * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
+ * SVM to not require one.
+ */
+/** @todo Does this need to be below 4G? */
+ rc = RTR0MemObjAllocCont(&pVCpu->hmr0.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT,
+ false /* fExecutable */);
+ if (RT_FAILURE(rc))
+ goto failure_cleanup;
+
+ pVCpu->hmr0.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hmr0.s.svm.hMemObjMsrBitmap);
+ pVCpu->hmr0.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hmr0.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
+ /* Set all bits to intercept all MSR accesses (changed later on). */
+ ASMMemFill32(pVCpu->hmr0.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << HOST_PAGE_SHIFT, UINT32_C(0xffffffff));
+ }
+
+ return VINF_SUCCESS;
+
+failure_cleanup:
+ hmR0SvmFreeStructs(pVM);
+ return rc;
+}
+
+
+/**
+ * Does per-VM AMD-V termination.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) SVMR0TermVM(PVMCC pVM)
+{
+ hmR0SvmFreeStructs(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Returns whether the VMCB Clean Bits feature is supported.
+ *
+ * @returns @c true if supported, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fIsNestedGuest Whether we are currently executing the nested-guest.
+ */
+DECL_FORCE_INLINE(bool) hmR0SvmSupportsVmcbCleanBits(PVMCPUCC pVCpu, bool fIsNestedGuest)
+{
+ PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ bool const fHostVmcbCleanBits = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN);
+ if (!fIsNestedGuest)
+ return fHostVmcbCleanBits;
+ return fHostVmcbCleanBits && pVM->cpum.ro.GuestFeatures.fSvmVmcbClean;
+}
+
+
+/**
+ * Returns whether the decode assists feature is supported.
+ *
+ * @returns @c true if supported, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(bool) hmR0SvmSupportsDecodeAssists(PVMCPUCC pVCpu)
+{
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS)
+ && pVM->cpum.ro.GuestFeatures.fSvmDecodeAssists;
+#endif
+ return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS);
+}
+
+
+/**
+ * Returns whether the NRIP_SAVE feature is supported.
+ *
+ * @returns @c true if supported, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(bool) hmR0SvmSupportsNextRipSave(PVMCPUCC pVCpu)
+{
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ return (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
+ && pVM->cpum.ro.GuestFeatures.fSvmNextRipSave;
+#endif
+ return RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
+}
+
+
+/**
+ * Sets the permission bits for the specified MSR in the MSRPM bitmap.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pbMsrBitmap Pointer to the MSR bitmap.
+ * @param idMsr The MSR for which the permissions are being set.
+ * @param enmRead MSR read permissions.
+ * @param enmWrite MSR write permissions.
+ *
+ * @remarks This function does -not- clear the VMCB clean bits for MSRPM. The
+ * caller needs to take care of this.
+ */
+static void hmR0SvmSetMsrPermission(PVMCPUCC pVCpu, uint8_t *pbMsrBitmap, uint32_t idMsr, SVMMSREXITREAD enmRead,
+ SVMMSREXITWRITE enmWrite)
+{
+ bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx);
+ uint16_t offMsrpm;
+ uint8_t uMsrpmBit;
+ int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
+ AssertRC(rc);
+
+ Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
+ Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+
+ pbMsrBitmap += offMsrpm;
+ if (enmRead == SVMMSREXIT_INTERCEPT_READ)
+ *pbMsrBitmap |= RT_BIT(uMsrpmBit);
+ else
+ {
+ if (!fInNestedGuestMode)
+ *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ else
+ {
+ /* Only clear the bit if the nested-guest is also not intercepting the MSR read.*/
+ if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit)))
+ *pbMsrBitmap &= ~RT_BIT(uMsrpmBit);
+ else
+ Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit));
+ }
+#endif
+ }
+
+ if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
+ *pbMsrBitmap |= RT_BIT(uMsrpmBit + 1);
+ else
+ {
+ if (!fInNestedGuestMode)
+ *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ else
+ {
+ /* Only clear the bit if the nested-guest is also not intercepting the MSR write.*/
+ if (!(pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm] & RT_BIT(uMsrpmBit + 1)))
+ *pbMsrBitmap &= ~RT_BIT(uMsrpmBit + 1);
+ else
+ Assert(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
+ }
+#endif
+ }
+}
+
+
+/**
+ * Sets up AMD-V for the specified VM.
+ * This function is only called once per-VM during initalization.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR0DECL(int) SVMR0SetupVM(PVMCC pVM)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ AssertReturn(pVM, VERR_INVALID_PARAMETER);
+
+ /*
+ * Validate and copy over some parameters.
+ */
+ AssertReturn(pVM->hm.s.svm.fSupported, VERR_INCOMPATIBLE_CONFIG);
+ bool const fNestedPaging = pVM->hm.s.fNestedPagingCfg;
+ AssertReturn(!fNestedPaging || (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING), VERR_INCOMPATIBLE_CONFIG);
+ pVM->hmr0.s.fNestedPaging = fNestedPaging;
+ pVM->hmr0.s.fAllow64BitGuests = pVM->hm.s.fAllow64BitGuestsCfg;
+
+ /*
+ * Determin some configuration parameters.
+ */
+ bool const fPauseFilter = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
+ bool const fPauseFilterThreshold = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
+ bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter;
+
+ bool const fLbrVirt = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT);
+ bool const fUseLbrVirt = fLbrVirt && pVM->hm.s.svm.fLbrVirt; /** @todo IEM implementation etc. */
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ bool const fVirtVmsaveVmload = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD);
+ bool const fUseVirtVmsaveVmload = fVirtVmsaveVmload && pVM->hm.s.svm.fVirtVmsaveVmload && fNestedPaging;
+
+ bool const fVGif = RT_BOOL(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF);
+ bool const fUseVGif = fVGif && pVM->hm.s.svm.fVGif;
+#endif
+
+ PVMCPUCC pVCpu0 = VMCC_GET_CPU_0(pVM);
+ PSVMVMCB pVmcb0 = pVCpu0->hmr0.s.svm.pVmcb;
+ AssertMsgReturn(RT_VALID_PTR(pVmcb0), ("Invalid pVmcb (%p) for vcpu[0]\n", pVmcb0), VERR_SVM_INVALID_PVMCB);
+ PSVMVMCBCTRL pVmcbCtrl0 = &pVmcb0->ctrl;
+
+ /* Always trap #AC for reasons of security. */
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
+
+ /* Always trap #DB for reasons of security. */
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
+
+ /* Trap exceptions unconditionally (debug purposes). */
+#ifdef HMSVM_ALWAYS_TRAP_PF
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_PF);
+#endif
+#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT_32(X86_XCPT_BP)
+ | RT_BIT_32(X86_XCPT_DE)
+ | RT_BIT_32(X86_XCPT_NM)
+ | RT_BIT_32(X86_XCPT_UD)
+ | RT_BIT_32(X86_XCPT_NP)
+ | RT_BIT_32(X86_XCPT_SS)
+ | RT_BIT_32(X86_XCPT_GP)
+ | RT_BIT_32(X86_XCPT_PF)
+ | RT_BIT_32(X86_XCPT_MF)
+ ;
+#endif
+
+ /* Apply the exceptions intercepts needed by the GIM provider. */
+ if (pVCpu0->hm.s.fGIMTrapXcptUD || pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
+
+ /* Apply the exceptions intercepts needed by the GCM fixers. */
+ if (pVCpu0->hm.s.fGCMTrapXcptDE)
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_DE);
+
+ /* The mesa 3d driver hack needs #GP. */
+ if (pVCpu0->hm.s.fTrapXcptGpForLovelyMesaDrv)
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_GP);
+
+ /* Set up unconditional intercepts and conditions. */
+ pVmcbCtrl0->u64InterceptCtrl = HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS
+ | SVM_CTRL_INTERCEPT_VMMCALL
+ | SVM_CTRL_INTERCEPT_VMSAVE
+ | SVM_CTRL_INTERCEPT_VMLOAD
+ | SVM_CTRL_INTERCEPT_CLGI
+ | SVM_CTRL_INTERCEPT_STGI;
+
+#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
+ pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
+#endif
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm)
+ {
+ /* Virtualized VMSAVE/VMLOAD. */
+ if (fUseVirtVmsaveVmload)
+ {
+ pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload = 1;
+ pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_VMSAVE
+ | SVM_CTRL_INTERCEPT_VMLOAD);
+ }
+ else
+ Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
+
+ /* Virtual GIF. */
+ if (fUseVGif)
+ {
+ pVmcbCtrl0->IntCtrl.n.u1VGifEnable = 1;
+ pVmcbCtrl0->u64InterceptCtrl &= ~( SVM_CTRL_INTERCEPT_CLGI
+ | SVM_CTRL_INTERCEPT_STGI);
+ }
+ else
+ Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
+ }
+ else
+#endif
+ {
+ Assert(!pVCpu0->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvm);
+ Assert(!pVmcbCtrl0->LbrVirt.n.u1VirtVmsaveVmload);
+ Assert(!pVmcbCtrl0->IntCtrl.n.u1VGifEnable);
+ }
+
+ /* CR4 writes must always be intercepted for tracking PGM mode changes and
+ AVX (for XCR0 syncing during worlds switching). */
+ pVmcbCtrl0->u16InterceptWrCRx = RT_BIT(4);
+
+ /* Intercept all DRx reads and writes by default. Changed later on. */
+ pVmcbCtrl0->u16InterceptRdDRx = 0xffff;
+ pVmcbCtrl0->u16InterceptWrDRx = 0xffff;
+
+ /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
+ pVmcbCtrl0->IntCtrl.n.u1VIntrMasking = 1;
+
+ /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
+ and we currently deliver both PIC and APIC interrupts alike, see hmR0SvmEvaluatePendingEvent() */
+ pVmcbCtrl0->IntCtrl.n.u1IgnoreTPR = 1;
+
+ /* Set the IO permission bitmap physical addresses. */
+ pVmcbCtrl0->u64IOPMPhysAddr = g_HCPhysIOBitmap;
+
+ /* LBR virtualization. */
+ pVmcbCtrl0->LbrVirt.n.u1LbrVirt = fUseLbrVirt;
+
+ /* The host ASID MBZ, for the guest start with 1. */
+ pVmcbCtrl0->TLBCtrl.n.u32ASID = 1;
+
+ /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
+ pVmcbCtrl0->NestedPagingCtrl.n.u1NestedPaging = fNestedPaging;
+
+ /* Without Nested Paging, we need additionally intercepts. */
+ if (!fNestedPaging)
+ {
+ /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
+ pVmcbCtrl0->u16InterceptRdCRx |= RT_BIT(3);
+ pVmcbCtrl0->u16InterceptWrCRx |= RT_BIT(3);
+
+ /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
+ pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
+ | SVM_CTRL_INTERCEPT_TASK_SWITCH;
+
+ /* Page faults must be intercepted to implement shadow paging. */
+ pVmcbCtrl0->u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
+ }
+
+ /* Workaround for missing OS/2 TLB flush, see ticketref:20625. */
+ if (pVM->hm.s.fMissingOS2TlbFlushWorkaround)
+ pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TR_WRITES;
+
+ /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
+ if (fUsePauseFilter)
+ {
+ Assert(pVM->hm.s.svm.cPauseFilter > 0);
+ pVmcbCtrl0->u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
+ if (fPauseFilterThreshold)
+ pVmcbCtrl0->u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
+ pVmcbCtrl0->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_PAUSE;
+ }
+
+ /*
+ * Setup the MSR permission bitmap.
+ * The following MSRs are saved/restored automatically during the world-switch.
+ * Don't intercept guest read/write accesses to these MSRs.
+ */
+ uint8_t *pbMsrBitmap0 = (uint8_t *)pVCpu0->hmr0.s.svm.pvMsrBitmap;
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ if (!pVCpu0->hm.s.svm.fEmulateLongModeSysEnterExit)
+ {
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ }
+ else
+ {
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_CS, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ hmR0SvmSetMsrPermission(pVCpu0, pbMsrBitmap0, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ }
+ pVmcbCtrl0->u64MSRPMPhysAddr = pVCpu0->hmr0.s.svm.HCPhysMsrBitmap;
+
+ /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
+ Assert(pVmcbCtrl0->u32VmcbCleanBits == 0);
+
+ for (VMCPUID idCpu = 1; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPUCC pVCpuCur = VMCC_GET_CPU(pVM, idCpu);
+ PSVMVMCB pVmcbCur = pVCpuCur->hmr0.s.svm.pVmcb;
+ AssertMsgReturn(RT_VALID_PTR(pVmcbCur), ("Invalid pVmcb (%p) for vcpu[%u]\n", pVmcbCur, idCpu), VERR_SVM_INVALID_PVMCB);
+ PSVMVMCBCTRL pVmcbCtrlCur = &pVmcbCur->ctrl;
+
+ /* Copy the VMCB control area. */
+ memcpy(pVmcbCtrlCur, pVmcbCtrl0, sizeof(*pVmcbCtrlCur));
+
+ /* Copy the MSR bitmap and setup the VCPU-specific host physical address. */
+ uint8_t *pbMsrBitmapCur = (uint8_t *)pVCpuCur->hmr0.s.svm.pvMsrBitmap;
+ memcpy(pbMsrBitmapCur, pbMsrBitmap0, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+ pVmcbCtrlCur->u64MSRPMPhysAddr = pVCpuCur->hmr0.s.svm.HCPhysMsrBitmap;
+
+ /* Initially all VMCB clean bits MBZ indicating that everything should be loaded from the VMCB in memory. */
+ Assert(pVmcbCtrlCur->u32VmcbCleanBits == 0);
+
+ /* Verify our assumption that GIM providers trap #UD uniformly across VCPUs initially. */
+ Assert(pVCpuCur->hm.s.fGIMTrapXcptUD == pVCpu0->hm.s.fGIMTrapXcptUD);
+ /* Same for GCM, #DE trapping should be uniform across VCPUs. */
+ Assert(pVCpuCur->hm.s.fGCMTrapXcptDE == pVCpu0->hm.s.fGCMTrapXcptDE);
+ }
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool fUseVGif=%RTbool fUseVirtVmsaveVmload=%RTbool\n", fUsePauseFilter,
+ fUseLbrVirt, fUseVGif, fUseVirtVmsaveVmload));
+#else
+ LogRel(("HM: fUsePauseFilter=%RTbool fUseLbrVirt=%RTbool\n", fUsePauseFilter, fUseLbrVirt));
+#endif
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets a pointer to the currently active guest (or nested-guest) VMCB.
+ *
+ * @returns Pointer to the current context VMCB.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(PSVMVMCB) hmR0SvmGetCurrentVmcb(PVMCPUCC pVCpu)
+{
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ return &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
+#endif
+ return pVCpu->hmr0.s.svm.pVmcb;
+}
+
+
+/**
+ * Gets a pointer to the nested-guest VMCB cache.
+ *
+ * @returns Pointer to the nested-guest VMCB cache.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(PSVMNESTEDVMCBCACHE) hmR0SvmGetNestedVmcbCache(PVMCPUCC pVCpu)
+{
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ Assert(pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
+ return &pVCpu->hm.s.svm.NstGstVmcbCache;
+#else
+ RT_NOREF(pVCpu);
+ return NULL;
+#endif
+}
+
+
+/**
+ * Invalidates a guest page by guest virtual address.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param GCVirt Guest virtual address of the page to invalidate.
+ */
+VMMR0DECL(int) SVMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
+{
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
+
+ bool const fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH) || pVCpu->CTX_SUFF(pVM)->hmr0.s.svm.fAlwaysFlushTLB;
+
+ /* Skip it if a TLB flush is already pending. */
+ if (!fFlushPending)
+ {
+ Log4Func(("%#RGv\n", GCVirt));
+
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
+
+ SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Flushes the appropriate tagged-TLB entries.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ */
+static void hmR0SvmFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ /*
+ * Force a TLB flush for the first world switch if the current CPU differs from the one
+ * we ran on last. This can happen both for start & resume due to long jumps back to
+ * ring-3.
+ *
+ * We also force a TLB flush every time when executing a nested-guest VCPU as there is no
+ * correlation between it and the physical CPU.
+ *
+ * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while
+ * flushing the TLB, so we cannot reuse the ASIDs without flushing.
+ */
+ bool fNewAsid = false;
+ Assert(pHostCpu->idCpu != NIL_RTCPUID);
+ if ( pVCpu->hmr0.s.idLastCpu != pHostCpu->idCpu
+ || pVCpu->hmr0.s.cTlbFlushes != pHostCpu->cTlbFlushes
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx)
+#endif
+ )
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
+ pVCpu->hmr0.s.fForceTLBFlush = true;
+ fNewAsid = true;
+ }
+
+ /* Set TLB flush state as checked until we return from the world switch. */
+ ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
+
+ /* Check for explicit TLB flushes. */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
+ {
+ pVCpu->hmr0.s.fForceTLBFlush = true;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
+ }
+
+ /*
+ * If the AMD CPU erratum 170, We need to flush the entire TLB for each world switch. Sad.
+ * This Host CPU requirement takes precedence.
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hmr0.s.svm.fAlwaysFlushTLB)
+ {
+ pHostCpu->uCurrentAsid = 1;
+ pVCpu->hmr0.s.uCurrentAsid = 1;
+ pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+ pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+
+ /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+ }
+ else
+ {
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
+ if (pVCpu->hmr0.s.fForceTLBFlush)
+ {
+ /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+
+ if (fNewAsid)
+ {
+ ++pHostCpu->uCurrentAsid;
+
+ bool fHitASIDLimit = false;
+ if (pHostCpu->uCurrentAsid >= g_uHmMaxAsid)
+ {
+ pHostCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
+ pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new ASID. */
+ fHitASIDLimit = true;
+ }
+
+ if ( fHitASIDLimit
+ || pHostCpu->fFlushAsidBeforeUse)
+ {
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+ pHostCpu->fFlushAsidBeforeUse = false;
+ }
+
+ pVCpu->hmr0.s.uCurrentAsid = pHostCpu->uCurrentAsid;
+ pVCpu->hmr0.s.idLastCpu = pHostCpu->idCpu;
+ pVCpu->hmr0.s.cTlbFlushes = pHostCpu->cTlbFlushes;
+ }
+ else
+ {
+ if (g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
+ else
+ pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
+ }
+
+ pVCpu->hmr0.s.fForceTLBFlush = false;
+ }
+ }
+
+ /* Update VMCB with the ASID. */
+ if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hmr0.s.uCurrentAsid)
+ {
+ pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hmr0.s.uCurrentAsid;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
+ }
+
+ AssertMsg(pVCpu->hmr0.s.idLastCpu == pHostCpu->idCpu,
+ ("vcpu idLastCpu=%u hostcpu idCpu=%u\n", pVCpu->hmr0.s.idLastCpu, pHostCpu->idCpu));
+ AssertMsg(pVCpu->hmr0.s.cTlbFlushes == pHostCpu->cTlbFlushes,
+ ("Flush count mismatch for cpu %u (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hmr0.s.cTlbFlushes, pHostCpu->cTlbFlushes));
+ AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < g_uHmMaxAsid,
+ ("cpu%d uCurrentAsid = %x\n", pHostCpu->idCpu, pHostCpu->uCurrentAsid));
+ AssertMsg(pVCpu->hmr0.s.uCurrentAsid >= 1 && pVCpu->hmr0.s.uCurrentAsid < g_uHmMaxAsid,
+ ("cpu%d VM uCurrentAsid = %x\n", pHostCpu->idCpu, pVCpu->hmr0.s.uCurrentAsid));
+
+#ifdef VBOX_WITH_STATISTICS
+ if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
+ else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
+ || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
+ }
+ else
+ {
+ Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
+ }
+#endif
+}
+
+
+/**
+ * Sets an exception intercept in the specified VMCB.
+ *
+ * @param pVmcb Pointer to the VM control block.
+ * @param uXcpt The exception (X86_XCPT_*).
+ */
+DECLINLINE(void) hmR0SvmSetXcptIntercept(PSVMVMCB pVmcb, uint8_t uXcpt)
+{
+ if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt)))
+ {
+ pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(uXcpt);
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+}
+
+
+/**
+ * Clears an exception intercept in the specified VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ * @param uXcpt The exception (X86_XCPT_*).
+ *
+ * @remarks This takes into account if we're executing a nested-guest and only
+ * removes the exception intercept if both the guest -and- nested-guest
+ * are not intercepting it.
+ */
+DECLINLINE(void) hmR0SvmClearXcptIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint8_t uXcpt)
+{
+ Assert(uXcpt != X86_XCPT_DB);
+ Assert(uXcpt != X86_XCPT_AC);
+ Assert(uXcpt != X86_XCPT_GP);
+#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(uXcpt))
+ {
+ bool fRemove = true;
+# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ /* Only remove the intercept if the nested-guest is also not intercepting it! */
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
+ fRemove = !(pVmcbNstGstCache->u32InterceptXcpt & RT_BIT(uXcpt));
+ }
+# else
+ RT_NOREF(pVCpu);
+# endif
+ if (fRemove)
+ {
+ pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(uXcpt);
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+#else
+ RT_NOREF3(pVCpu, pVmcb, uXcpt);
+#endif
+}
+
+
+/**
+ * Sets a control intercept in the specified VMCB.
+ *
+ * @param pVmcb Pointer to the VM control block.
+ * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
+ */
+DECLINLINE(void) hmR0SvmSetCtrlIntercept(PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
+{
+ if (!(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept))
+ {
+ pVmcb->ctrl.u64InterceptCtrl |= fCtrlIntercept;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+}
+
+
+/**
+ * Clears a control intercept in the specified VMCB.
+ *
+ * @returns @c true if the intercept is still set, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ * @param fCtrlIntercept The control intercept (SVM_CTRL_INTERCEPT_*).
+ *
+ * @remarks This takes into account if we're executing a nested-guest and only
+ * removes the control intercept if both the guest -and- nested-guest
+ * are not intercepting it.
+ */
+static bool hmR0SvmClearCtrlIntercept(PVMCPUCC pVCpu, PSVMVMCB pVmcb, uint64_t fCtrlIntercept)
+{
+ if (pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept)
+ {
+ bool fRemove = true;
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ /* Only remove the control intercept if the nested-guest is also not intercepting it! */
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ {
+ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
+ fRemove = !(pVmcbNstGstCache->u64InterceptCtrl & fCtrlIntercept);
+ }
+#else
+ RT_NOREF(pVCpu);
+#endif
+ if (fRemove)
+ {
+ pVmcb->ctrl.u64InterceptCtrl &= ~fCtrlIntercept;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+
+ return RT_BOOL(pVmcb->ctrl.u64InterceptCtrl & fCtrlIntercept);
+}
+
+
+/**
+ * Exports the guest (or nested-guest) CR0 into the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks This assumes we always pre-load the guest FPU.
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestCR0(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint64_t const uGuestCr0 = pCtx->cr0;
+ uint64_t uShadowCr0 = uGuestCr0;
+
+ /* Always enable caching. */
+ uShadowCr0 &= ~(X86_CR0_CD | X86_CR0_NW);
+
+ /* When Nested Paging is not available use shadow page tables and intercept #PFs (latter done in SVMR0SetupVM()). */
+ if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
+ {
+ uShadowCr0 |= X86_CR0_PG /* Use shadow page tables. */
+ | X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
+ }
+
+ /*
+ * Use the #MF style of legacy-FPU error reporting for now. Although AMD-V has MSRs that
+ * lets us isolate the host from it, IEM/REM still needs work to emulate it properly,
+ * see @bugref{7243#c103}.
+ */
+ if (!(uGuestCr0 & X86_CR0_NE))
+ {
+ uShadowCr0 |= X86_CR0_NE;
+ hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_MF);
+ }
+ else
+ hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_MF);
+
+ /*
+ * If the shadow and guest CR0 are identical we can avoid intercepting CR0 reads.
+ *
+ * CR0 writes still needs interception as PGM requires tracking paging mode changes,
+ * see @bugref{6944}.
+ *
+ * We also don't ever want to honor weird things like cache disable from the guest.
+ * However, we can avoid intercepting changes to the TS & MP bits by clearing the CR0
+ * write intercept below and keeping SVM_CTRL_INTERCEPT_CR0_SEL_WRITE instead.
+ */
+ if (uShadowCr0 == uGuestCr0)
+ {
+ if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(0);
+ pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(0);
+ Assert(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_CR0_SEL_WRITE);
+ }
+ else
+ {
+ /* If the nested-hypervisor intercepts CR0 reads/writes, we need to continue intercepting them. */
+ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
+ pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(0))
+ | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(0));
+ pVmcb->ctrl.u16InterceptWrCRx = (pVmcb->ctrl.u16InterceptWrCRx & ~RT_BIT(0))
+ | (pVmcbNstGstCache->u16InterceptWrCRx & RT_BIT(0));
+ }
+ }
+ else
+ {
+ pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(0);
+ pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(0);
+ }
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+
+ Assert(!RT_HI_U32(uShadowCr0));
+ if (pVmcb->guest.u64CR0 != uShadowCr0)
+ {
+ pVmcb->guest.u64CR0 = uShadowCr0;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ }
+}
+
+
+/**
+ * Exports the guest (or nested-guest) CR3 into the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestCR3(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (pVM->hmr0.s.fNestedPaging)
+ {
+ pVmcb->ctrl.u64NestedPagingCR3 = PGMGetHyperCR3(pVCpu);
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
+ pVmcb->guest.u64CR3 = pCtx->cr3;
+ Assert(pVmcb->ctrl.u64NestedPagingCR3);
+ }
+ else
+ pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
+
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+}
+
+
+/**
+ * Exports the guest (or nested-guest) CR4 into the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmExportGuestCR4(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint64_t uShadowCr4 = pCtx->cr4;
+ if (!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
+ {
+ switch (pVCpu->hm.s.enmShadowMode)
+ {
+ case PGMMODE_REAL:
+ case PGMMODE_PROTECTED: /* Protected mode, no paging. */
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+
+ case PGMMODE_32_BIT: /* 32-bit paging. */
+ uShadowCr4 &= ~X86_CR4_PAE;
+ break;
+
+ case PGMMODE_PAE: /* PAE paging. */
+ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
+ /** Must use PAE paging as we could use physical memory > 4 GB */
+ uShadowCr4 |= X86_CR4_PAE;
+ break;
+
+ case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
+ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
+#ifdef VBOX_WITH_64_BITS_GUESTS
+ break;
+#else
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+#endif
+
+ default: /* shut up gcc */
+ return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
+ }
+ }
+
+ /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
+ bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
+ if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
+ {
+ pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
+ hmR0SvmUpdateVmRunFunction(pVCpu);
+ }
+
+ /* Avoid intercepting CR4 reads if the guest and shadow CR4 values are identical. */
+ if (uShadowCr4 == pCtx->cr4)
+ {
+ if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ pVmcb->ctrl.u16InterceptRdCRx &= ~RT_BIT(4);
+ else
+ {
+ /* If the nested-hypervisor intercepts CR4 reads, we need to continue intercepting them. */
+ PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = hmR0SvmGetNestedVmcbCache(pVCpu);
+ pVmcb->ctrl.u16InterceptRdCRx = (pVmcb->ctrl.u16InterceptRdCRx & ~RT_BIT(4))
+ | (pVmcbNstGstCache->u16InterceptRdCRx & RT_BIT(4));
+ }
+ }
+ else
+ pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(4);
+
+ /* CR4 writes are always intercepted (both guest, nested-guest) for tracking
+ PGM mode changes and AVX (for XCR0 syncing during worlds switching). */
+ Assert(pVmcb->ctrl.u16InterceptWrCRx & RT_BIT(4));
+
+ /* Update VMCB with the shadow CR4 the appropriate VMCB clean bits. */
+ Assert(!RT_HI_U32(uShadowCr4));
+ pVmcb->guest.u64CR4 = uShadowCr4;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_CRX_EFER | HMSVM_VMCB_CLEAN_INTERCEPTS);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest (or nested-guest) control registers into the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmExportGuestControlRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR_MASK)
+ {
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR0)
+ hmR0SvmExportGuestCR0(pVCpu, pVmcb);
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR2)
+ {
+ pVmcb->guest.u64CR2 = pVCpu->cpum.GstCtx.cr2;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
+ }
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR3)
+ hmR0SvmExportGuestCR3(pVCpu, pVmcb);
+
+ /* CR4 re-loading is ASSUMED to be done everytime we get in from ring-3! (XCR0) */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CR4)
+ {
+ int rc = hmR0SvmExportGuestCR4(pVCpu, pVmcb);
+ if (RT_FAILURE(rc))
+ return rc;
+ }
+
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_CR_MASK;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest (or nested-guest) segment registers into the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestSegmentRegs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ /* Guest segment registers. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SREG_MASK)
+ {
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_CS)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SS)
+ {
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
+ pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
+ }
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DS)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_ES)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_FS)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GS)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
+
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
+ }
+
+ /* Guest TR. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_TR)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
+
+ /* Guest LDTR. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_LDTR)
+ HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
+
+ /* Guest GDTR. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_GDTR)
+ {
+ pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
+ pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
+ }
+
+ /* Guest IDTR. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_IDTR)
+ {
+ pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
+ pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
+ }
+
+ pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SREG_MASK
+ | HM_CHANGED_GUEST_TABLE_MASK);
+}
+
+
+/**
+ * Exports the guest (or nested-guest) MSRs into the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestMsrs(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ /* Guest Sysenter MSRs. */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
+ {
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
+ pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
+ pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
+ pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
+ }
+
+ /*
+ * Guest EFER MSR.
+ * AMD-V requires guest EFER.SVME to be set. Weird.
+ * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
+ */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_EFER_MSR)
+ {
+ pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ }
+
+ /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit, otherwise SVM expects amd64 shadow paging. */
+ if ( !CPUMIsGuestInLongModeEx(pCtx)
+ && (pCtx->msrEFER & MSR_K6_EFER_LME))
+ {
+ pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
+ }
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_SYSCALL_MSRS)
+ {
+ pVmcb->guest.u64STAR = pCtx->msrSTAR;
+ pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
+ pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
+ pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
+ }
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_KERNEL_GS_BASE)
+ pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
+
+ pVCpu->hm.s.fCtxChanged &= ~( HM_CHANGED_GUEST_SYSENTER_MSR_MASK
+ | HM_CHANGED_GUEST_EFER_MSR
+ | HM_CHANGED_GUEST_SYSCALL_MSRS
+ | HM_CHANGED_GUEST_KERNEL_GS_BASE);
+
+ /*
+ * Setup the PAT MSR (applicable for Nested Paging only).
+ *
+ * The default value should be MSR_IA32_CR_PAT_INIT_VAL, but we treat all guest memory
+ * as WB, so choose type 6 for all PAT slots, see @bugref{9634}.
+ *
+ * While guests can modify and see the modified values through the shadow values,
+ * we shall not honor any guest modifications of this MSR to ensure caching is always
+ * enabled similar to how we clear CR0.CD and NW bits.
+ *
+ * For nested-guests this needs to always be set as well, see @bugref{7243#c109}.
+ */
+ pVmcb->guest.u64PAT = UINT64_C(0x0006060606060606);
+
+ /* Enable the last branch record bit if LBR virtualization is enabled. */
+ if (pVmcb->ctrl.LbrVirt.n.u1LbrVirt)
+ pVmcb->guest.u64DBGCTL = MSR_IA32_DEBUGCTL_LBR;
+}
+
+
+/**
+ * Exports the guest (or nested-guest) debug state into the VMCB and programs
+ * the necessary intercepts accordingly.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks Requires EFLAGS to be up-to-date in the VMCB!
+ */
+static void hmR0SvmExportSharedDebugState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ /** @todo Figure out stepping with nested-guest. */
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ /*
+ * We don't want to always intercept DRx read/writes for nested-guests as it causes
+ * problems when the nested hypervisor isn't intercepting them, see @bugref{10080}.
+ * Instead, they are strictly only requested when the nested hypervisor intercepts
+ * them -- handled while merging VMCB controls.
+ *
+ * If neither the outer nor the nested-hypervisor is intercepting DRx read/writes,
+ * then the nested-guest debug state should be actively loaded on the host so that
+ * nested-guest reads/writes its own debug registers without causing VM-exits.
+ */
+ if ( ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
+ || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
+ && !CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+ }
+
+ pVmcb->guest.u64DR6 = pCtx->dr[6];
+ pVmcb->guest.u64DR7 = pCtx->dr[7];
+ return;
+ }
+
+ /*
+ * Anyone single stepping on the host side? If so, we'll have to use the
+ * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
+ * the VMM level like the VT-x implementations does.
+ */
+ bool fInterceptMovDRx = false;
+ bool const fStepping = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
+ if (fStepping)
+ {
+ pVCpu->hmr0.s.fClearTrapFlag = true;
+ pVmcb->guest.u64RFlags |= X86_EFL_TF;
+ fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
+ }
+
+ if ( fStepping
+ || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
+ {
+ /*
+ * Use the combined guest and host DRx values found in the hypervisor
+ * register set because the debugger has breakpoints active or someone
+ * is single stepping on the host side.
+ *
+ * Note! DBGF expects a clean DR6 state before executing guest code.
+ */
+ if (!CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+ Assert(CPUMIsHyperDebugStateActive(pVCpu));
+ }
+
+ /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
+ if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
+ || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
+ {
+ pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
+ pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ }
+
+ /** @todo If we cared, we could optimize to allow the guest to read registers
+ * with the same values. */
+ fInterceptMovDRx = true;
+ pVCpu->hmr0.s.fUsingHyperDR7 = true;
+ Log5(("hmR0SvmExportSharedDebugState: Loaded hyper DRx\n"));
+ }
+ else
+ {
+ /*
+ * Update DR6, DR7 with the guest values if necessary.
+ */
+ if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
+ || pVmcb->guest.u64DR6 != pCtx->dr[6])
+ {
+ pVmcb->guest.u64DR7 = pCtx->dr[7];
+ pVmcb->guest.u64DR6 = pCtx->dr[6];
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ }
+ pVCpu->hmr0.s.fUsingHyperDR7 = false;
+
+ /*
+ * If the guest has enabled debug registers, we need to load them prior to
+ * executing guest code so they'll trigger at the right time.
+ */
+ if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
+ {
+ if (!CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+ }
+ Log5(("hmR0SvmExportSharedDebugState: Loaded guest DRx\n"));
+ }
+ /*
+ * If no debugging enabled, we'll lazy load DR0-3. We don't need to
+ * intercept #DB as DR6 is updated in the VMCB.
+ *
+ * Note! If we cared and dared, we could skip intercepting \#DB here.
+ * However, \#DB shouldn't be performance critical, so we'll play safe
+ * and keep the code similar to the VT-x code and always intercept it.
+ */
+ else if (!CPUMIsGuestDebugStateActive(pVCpu))
+ fInterceptMovDRx = true;
+ }
+
+ Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
+ if (fInterceptMovDRx)
+ {
+ if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
+ || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
+ {
+ pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
+ pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+ else
+ {
+ if ( pVmcb->ctrl.u16InterceptRdDRx
+ || pVmcb->ctrl.u16InterceptWrDRx)
+ {
+ pVmcb->ctrl.u16InterceptRdDRx = 0;
+ pVmcb->ctrl.u16InterceptWrDRx = 0;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ }
+ Log4Func(("DR6=%#RX64 DR7=%#RX64\n", pCtx->dr[6], pCtx->dr[7]));
+}
+
+/**
+ * Exports the hardware virtualization state into the nested-guest
+ * VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestHwvirtState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_HWVIRT)
+ {
+ if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
+ {
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
+
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(pCtx); /* Nested VGIF is not supported yet. */
+ Assert(g_fHmSvmFeatures & X86_CPUID_SVM_FEATURE_EDX_VGIF); /* Physical hardware supports VGIF. */
+ Assert(HMIsSvmVGifActive(pVM)); /* Outer VM has enabled VGIF. */
+ NOREF(pVM);
+
+ pVmcb->ctrl.IntCtrl.n.u1VGif = CPUMGetGuestGif(pCtx);
+ }
+
+ /*
+ * Ensure the nested-guest pause-filter counters don't exceed the outer guest values esp.
+ * since SVM doesn't have a preemption timer.
+ *
+ * We do this here rather than in hmR0SvmSetupVmcbNested() as we may have been executing the
+ * nested-guest in IEM incl. PAUSE instructions which would update the pause-filter counters
+ * and may continue execution in SVM R0 without a nested-guest #VMEXIT in between.
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
+ uint16_t const uGuestPauseFilterCount = pVM->hm.s.svm.cPauseFilter;
+ uint16_t const uGuestPauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, &pVCpu->cpum.GstCtx, SVM_CTRL_INTERCEPT_PAUSE))
+ {
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ pVmcbCtrl->u16PauseFilterCount = RT_MIN(pCtx->hwvirt.svm.cPauseFilter, uGuestPauseFilterCount);
+ pVmcbCtrl->u16PauseFilterThreshold = RT_MIN(pCtx->hwvirt.svm.cPauseFilterThreshold, uGuestPauseFilterThreshold);
+ }
+ else
+ {
+ /** @todo r=ramshankar: We can turn these assignments into assertions. */
+ pVmcbCtrl->u16PauseFilterCount = uGuestPauseFilterCount;
+ pVmcbCtrl->u16PauseFilterThreshold = uGuestPauseFilterThreshold;
+ }
+ pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_HWVIRT;
+ }
+}
+
+
+/**
+ * Exports the guest APIC TPR state into the VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ */
+static int hmR0SvmExportGuestApicTpr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
+ {
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if ( PDMHasApic(pVM)
+ && APICIsEnabled(pVCpu))
+ {
+ bool fPendingIntr;
+ uint8_t u8Tpr;
+ int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
+ AssertRCReturn(rc, rc);
+
+ /* Assume that we need to trap all TPR accesses and thus need not check on
+ every #VMEXIT if we should update the TPR. */
+ Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
+ pVCpu->hmr0.s.svm.fSyncVTpr = false;
+
+ if (!pVM->hm.s.fTprPatchingActive)
+ {
+ /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
+ pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
+
+ /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we
+ can deliver the interrupt to the guest. */
+ if (fPendingIntr)
+ pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
+ else
+ {
+ pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
+ pVCpu->hmr0.s.svm.fSyncVTpr = true;
+ }
+
+ pVmcb->ctrl.u32VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_INT_CTRL);
+ }
+ else
+ {
+ /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
+ pVmcb->guest.u64LSTAR = u8Tpr;
+ uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
+
+ /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
+ if (fPendingIntr)
+ hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ else
+ {
+ hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ pVCpu->hmr0.s.svm.fSyncVTpr = true;
+ }
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
+ }
+ }
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up the exception interrupts required for guest execution in the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportGuestXcptIntercepts(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+
+ /* If we modify intercepts from here, please check & adjust hmR0SvmMergeVmcbCtrlsNested() if required. */
+ if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_SVM_XCPT_INTERCEPTS)
+ {
+ /* Trap #UD for GIM provider (e.g. for hypercalls). */
+ if (pVCpu->hm.s.fGIMTrapXcptUD || pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
+ hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_UD);
+ else
+ hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_UD);
+
+ /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
+ if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
+ hmR0SvmSetXcptIntercept(pVmcb, X86_XCPT_BP);
+ else
+ hmR0SvmClearXcptIntercept(pVCpu, pVmcb, X86_XCPT_BP);
+
+ /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmExportGuestCR0(). */
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_SVM_XCPT_INTERCEPTS);
+ }
+}
+
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+/**
+ * Merges guest and nested-guest intercepts for executing the nested-guest using
+ * hardware-assisted SVM.
+ *
+ * This merges the guest and nested-guest intercepts in a way that if the outer
+ * guest intercept is set we need to intercept it in the nested-guest as
+ * well.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcbNstGst Pointer to the nested-guest VM control block.
+ */
+static void hmR0SvmMergeVmcbCtrlsNested(PVMCPUCC pVCpu)
+{
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+ PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
+ PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
+
+ /* Merge the guest's CR intercepts into the nested-guest VMCB. */
+ pVmcbNstGstCtrl->u16InterceptRdCRx |= pVmcb->ctrl.u16InterceptRdCRx;
+ pVmcbNstGstCtrl->u16InterceptWrCRx |= pVmcb->ctrl.u16InterceptWrCRx;
+
+ /* Always intercept CR4 writes for tracking PGM mode changes and AVX (for
+ XCR0 syncing during worlds switching). */
+ pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(4);
+
+ /* Without nested paging, intercept CR3 reads and writes as we load shadow page tables. */
+ if (!pVM->hmr0.s.fNestedPaging)
+ {
+ pVmcbNstGstCtrl->u16InterceptRdCRx |= RT_BIT(3);
+ pVmcbNstGstCtrl->u16InterceptWrCRx |= RT_BIT(3);
+ }
+
+ /* Merge the guest's DR intercepts into the nested-guest VMCB. */
+ pVmcbNstGstCtrl->u16InterceptRdDRx |= pVmcb->ctrl.u16InterceptRdDRx;
+ pVmcbNstGstCtrl->u16InterceptWrDRx |= pVmcb->ctrl.u16InterceptWrDRx;
+
+ /*
+ * Merge the guest's exception intercepts into the nested-guest VMCB.
+ *
+ * - #UD: Exclude these as the outer guest's GIM hypercalls are not applicable
+ * while executing the nested-guest.
+ *
+ * - #BP: Exclude breakpoints set by the VM debugger for the outer guest. This can
+ * be tweaked later depending on how we wish to implement breakpoints.
+ *
+ * - #GP: Exclude these as it's the inner VMMs problem to get vmsvga 3d drivers
+ * loaded into their guests, not ours.
+ *
+ * Warning!! This ASSUMES we only intercept \#UD for hypercall purposes and \#BP
+ * for VM debugger breakpoints, see hmR0SvmExportGuestXcptIntercepts().
+ */
+#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
+ pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt
+ & ~( RT_BIT(X86_XCPT_UD)
+ | RT_BIT(X86_XCPT_BP)
+ | (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv ? RT_BIT(X86_XCPT_GP) : 0));
+#else
+ pVmcbNstGstCtrl->u32InterceptXcpt |= pVmcb->ctrl.u32InterceptXcpt;
+#endif
+
+ /*
+ * Adjust intercepts while executing the nested-guest that differ from the
+ * outer guest intercepts.
+ *
+ * - VINTR: Exclude the outer guest intercept as we don't need to cause VINTR #VMEXITs
+ * that belong to the nested-guest to the outer guest.
+ *
+ * - VMMCALL: Exclude the outer guest intercept as when it's also not intercepted by
+ * the nested-guest, the physical CPU raises a \#UD exception as expected.
+ */
+ pVmcbNstGstCtrl->u64InterceptCtrl |= (pVmcb->ctrl.u64InterceptCtrl & ~( SVM_CTRL_INTERCEPT_VINTR
+ | SVM_CTRL_INTERCEPT_VMMCALL))
+ | HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS;
+
+ Assert( (pVmcbNstGstCtrl->u64InterceptCtrl & HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS)
+ == HMSVM_MANDATORY_GUEST_CTRL_INTERCEPTS);
+
+ /* Finally, update the VMCB clean bits. */
+ pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+}
+#endif
+
+
+/**
+ * Enters the AMD-V session.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR0DECL(int) SVMR0Enter(PVMCPUCC pVCpu)
+{
+ AssertPtr(pVCpu);
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.svm.fSupported);
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ LogFlowFunc(("pVCpu=%p\n", pVCpu));
+ Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
+ == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
+
+ pVCpu->hmr0.s.fLeaveDone = false;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Thread-context callback for AMD-V.
+ *
+ * This is used together with RTThreadCtxHookCreate() on platforms which
+ * supports it, and directly from VMMR0EmtPrepareForBlocking() and
+ * VMMR0EmtResumeAfterBlocking() on platforms which don't.
+ *
+ * @param enmEvent The thread-context event.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
+ * @thread EMT(pVCpu)
+ */
+VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
+{
+ NOREF(fGlobalInit);
+
+ switch (enmEvent)
+ {
+ case RTTHREADCTXEVENT_OUT:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ /* No longjmps (log-flush, locks) in this fragile context. */
+ VMMRZCallRing3Disable(pVCpu);
+
+ if (!pVCpu->hmr0.s.fLeaveDone)
+ {
+ hmR0SvmLeave(pVCpu, false /* fImportState */);
+ pVCpu->hmr0.s.fLeaveDone = true;
+ }
+
+ /* Leave HM context, takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+ AssertRC(rc); NOREF(rc);
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
+ break;
+ }
+
+ case RTTHREADCTXEVENT_IN:
+ {
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ VMCPU_ASSERT_EMT(pVCpu);
+
+ /* No longjmps (log-flush, locks) in this fragile context. */
+ VMMRZCallRing3Disable(pVCpu);
+
+ /*
+ * Initialize the bare minimum state required for HM. This takes care of
+ * initializing AMD-V if necessary (onlined CPUs, local init etc.)
+ */
+ int rc = hmR0EnterCpu(pVCpu);
+ AssertRC(rc); NOREF(rc);
+ Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
+ == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
+
+ pVCpu->hmr0.s.fLeaveDone = false;
+
+ /* Restore longjmp state. */
+ VMMRZCallRing3Enable(pVCpu);
+ break;
+ }
+
+ default:
+ break;
+ }
+}
+
+
+/**
+ * Saves the host state.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+VMMR0DECL(int) SVMR0ExportHostState(PVMCPUCC pVCpu)
+{
+ NOREF(pVCpu);
+
+ /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_HOST_CONTEXT);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Exports the guest or nested-guest state from the virtual-CPU context into the
+ * VMCB.
+ *
+ * Also sets up the appropriate VMRUN function to execute guest or nested-guest
+ * code based on the virtual-CPU mode.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM-transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmExportGuestState(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
+{
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
+
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Assert(pVmcb);
+
+ pVmcb->guest.u64RIP = pCtx->rip;
+ pVmcb->guest.u64RSP = pCtx->rsp;
+ pVmcb->guest.u64RFlags = pCtx->eflags.u;
+ pVmcb->guest.u64RAX = pCtx->rax;
+
+ bool const fIsNestedGuest = pSvmTransient->fIsNestedGuest;
+ RTCCUINTREG const fEFlags = ASMIntDisableFlags();
+
+ int rc = hmR0SvmExportGuestControlRegs(pVCpu, pVmcb);
+ AssertRCReturnStmt(rc, ASMSetFlags(fEFlags), rc);
+ hmR0SvmExportGuestSegmentRegs(pVCpu, pVmcb);
+ hmR0SvmExportGuestMsrs(pVCpu, pVmcb);
+ hmR0SvmExportGuestHwvirtState(pVCpu, pVmcb);
+
+ ASMSetFlags(fEFlags);
+
+ if (!fIsNestedGuest)
+ {
+ /* hmR0SvmExportGuestApicTpr() must be called -after- hmR0SvmExportGuestMsrs() as we
+ otherwise we would overwrite the LSTAR MSR that we use for TPR patching. */
+ hmR0SvmExportGuestApicTpr(pVCpu, pVmcb);
+ hmR0SvmExportGuestXcptIntercepts(pVCpu, pVmcb);
+ }
+
+ /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
+ uint64_t fUnusedMask = HM_CHANGED_GUEST_RIP
+ | HM_CHANGED_GUEST_RFLAGS
+ | HM_CHANGED_GUEST_GPRS_MASK
+ | HM_CHANGED_GUEST_X87
+ | HM_CHANGED_GUEST_SSE_AVX
+ | HM_CHANGED_GUEST_OTHER_XSAVE
+ | HM_CHANGED_GUEST_XCRx
+ | HM_CHANGED_GUEST_TSC_AUX
+ | HM_CHANGED_GUEST_OTHER_MSRS;
+ if (fIsNestedGuest)
+ fUnusedMask |= HM_CHANGED_SVM_XCPT_INTERCEPTS
+ | HM_CHANGED_GUEST_APIC_TPR;
+
+ ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( fUnusedMask
+ | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_SVM_MASK)));
+
+#ifdef VBOX_STRICT
+ /*
+ * All of the guest-CPU state and SVM keeper bits should be exported here by now,
+ * except for the host-context and/or shared host-guest context bits.
+ */
+ uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
+ AssertMsg(!(fCtxChanged & (HM_CHANGED_ALL_GUEST & ~HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)),
+ ("fCtxChanged=%#RX64\n", fCtxChanged));
+
+ /*
+ * If we need to log state that isn't always imported, we'll need to import them here.
+ * See hmR0SvmPostRunGuest() for which part of the state is imported uncondtionally.
+ */
+ hmR0SvmLogState(pVCpu, pVmcb, "hmR0SvmExportGuestState", 0 /* fFlags */, 0 /* uVerbose */);
+#endif
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
+ return VINF_SUCCESS;
+}
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+
+/**
+ * Merges the guest and nested-guest MSR permission bitmap.
+ *
+ * If the guest is intercepting an MSR we need to intercept it regardless of
+ * whether the nested-guest is intercepting it or not.
+ *
+ * @param pHostCpu The HM physical-CPU structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+DECLINLINE(void) hmR0SvmMergeMsrpmNested(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
+{
+ uint64_t const *pu64GstMsrpm = (uint64_t const *)pVCpu->hmr0.s.svm.pvMsrBitmap;
+ uint64_t const *pu64NstGstMsrpm = (uint64_t const *)&pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[0];
+ uint64_t *pu64DstMsrpm = (uint64_t *)pHostCpu->n.svm.pvNstGstMsrpm;
+
+ /* MSRPM bytes from offset 0x1800 are reserved, so we stop merging there. */
+ uint32_t const offRsvdQwords = 0x1800 >> 3;
+ for (uint32_t i = 0; i < offRsvdQwords; i++)
+ pu64DstMsrpm[i] = pu64NstGstMsrpm[i] | pu64GstMsrpm[i];
+}
+
+
+/**
+ * Caches the nested-guest VMCB fields before we modify them for execution using
+ * hardware-assisted SVM.
+ *
+ * @returns true if the VMCB was previously already cached, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @sa HMNotifySvmNstGstVmexit.
+ */
+static bool hmR0SvmCacheVmcbNested(PVMCPUCC pVCpu)
+{
+ /*
+ * Cache the nested-guest programmed VMCB fields if we have not cached it yet.
+ * Otherwise we risk re-caching the values we may have modified, see @bugref{7243#c44}.
+ *
+ * Nested-paging CR3 is not saved back into the VMCB on #VMEXIT, hence no need to
+ * cache and restore it, see AMD spec. 15.25.4 "Nested Paging and VMRUN/#VMEXIT".
+ */
+ PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
+ bool const fWasCached = pVmcbNstGstCache->fCacheValid;
+ if (!fWasCached)
+ {
+ PCSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
+ PCSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
+ pVmcbNstGstCache->u16InterceptRdCRx = pVmcbNstGstCtrl->u16InterceptRdCRx;
+ pVmcbNstGstCache->u16InterceptWrCRx = pVmcbNstGstCtrl->u16InterceptWrCRx;
+ pVmcbNstGstCache->u16InterceptRdDRx = pVmcbNstGstCtrl->u16InterceptRdDRx;
+ pVmcbNstGstCache->u16InterceptWrDRx = pVmcbNstGstCtrl->u16InterceptWrDRx;
+ pVmcbNstGstCache->u16PauseFilterThreshold = pVmcbNstGstCtrl->u16PauseFilterThreshold;
+ pVmcbNstGstCache->u16PauseFilterCount = pVmcbNstGstCtrl->u16PauseFilterCount;
+ pVmcbNstGstCache->u32InterceptXcpt = pVmcbNstGstCtrl->u32InterceptXcpt;
+ pVmcbNstGstCache->u64InterceptCtrl = pVmcbNstGstCtrl->u64InterceptCtrl;
+ pVmcbNstGstCache->u64TSCOffset = pVmcbNstGstCtrl->u64TSCOffset;
+ pVmcbNstGstCache->fVIntrMasking = pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking;
+ pVmcbNstGstCache->fNestedPaging = pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging;
+ pVmcbNstGstCache->fLbrVirt = pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt;
+ pVmcbNstGstCache->fCacheValid = true;
+ Log4Func(("Cached VMCB fields\n"));
+ }
+
+ return fWasCached;
+}
+
+
+/**
+ * Sets up the nested-guest VMCB for execution using hardware-assisted SVM.
+ *
+ * This is done the first time we enter nested-guest execution using SVM R0
+ * until the nested-guest \#VMEXIT (not to be confused with physical CPU
+ * \#VMEXITs which may or may not cause a corresponding nested-guest \#VMEXIT).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0SvmSetupVmcbNested(PVMCPUCC pVCpu)
+{
+ PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
+ PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
+
+ HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+
+ /*
+ * First cache the nested-guest VMCB fields we may potentially modify.
+ */
+ bool const fVmcbCached = hmR0SvmCacheVmcbNested(pVCpu);
+ if (!fVmcbCached)
+ {
+ /*
+ * The IOPM of the nested-guest can be ignored because the the guest always
+ * intercepts all IO port accesses. Thus, we'll swap to the guest IOPM rather
+ * than the nested-guest IOPM and swap the field back on the #VMEXIT.
+ */
+ pVmcbNstGstCtrl->u64IOPMPhysAddr = g_HCPhysIOBitmap;
+
+ /*
+ * Use the same nested-paging as the outer guest. We can't dynamically switch off
+ * nested-paging suddenly while executing a VM (see assertion at the end of
+ * Trap0eHandler() in PGMAllBth.h).
+ */
+ pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging = pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging;
+
+ /* Always enable V_INTR_MASKING as we do not want to allow access to the physical APIC TPR. */
+ pVmcbNstGstCtrl->IntCtrl.n.u1VIntrMasking = 1;
+
+ /*
+ * Turn off TPR syncing on #VMEXIT for nested-guests as CR8 intercepts are subject
+ * to the nested-guest intercepts and we always run with V_INTR_MASKING.
+ */
+ pVCpu->hmr0.s.svm.fSyncVTpr = false;
+
+# ifdef DEBUG_ramshankar
+ /* For debugging purposes - copy the LBR info. from outer guest VMCB. */
+ pVmcbNstGstCtrl->LbrVirt.n.u1LbrVirt = pVmcb->ctrl.LbrVirt.n.u1LbrVirt;
+# endif
+
+ /*
+ * If we don't expose Virtualized-VMSAVE/VMLOAD feature to the outer guest, we
+ * need to intercept VMSAVE/VMLOAD instructions executed by the nested-guest.
+ */
+ if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVirtVmsaveVmload)
+ pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VMSAVE
+ | SVM_CTRL_INTERCEPT_VMLOAD;
+
+ /*
+ * If we don't expose Virtual GIF feature to the outer guest, we need to intercept
+ * CLGI/STGI instructions executed by the nested-guest.
+ */
+ if (!pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fSvmVGif)
+ pVmcbNstGstCtrl->u64InterceptCtrl |= SVM_CTRL_INTERCEPT_CLGI
+ | SVM_CTRL_INTERCEPT_STGI;
+
+ /* Merge the guest and nested-guest intercepts. */
+ hmR0SvmMergeVmcbCtrlsNested(pVCpu);
+
+ /* Update the VMCB clean bits. */
+ pVmcbNstGstCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+ else
+ {
+ Assert(!pVCpu->hmr0.s.svm.fSyncVTpr);
+ Assert(pVmcbNstGstCtrl->u64IOPMPhysAddr == g_HCPhysIOBitmap);
+ Assert(RT_BOOL(pVmcbNstGstCtrl->NestedPagingCtrl.n.u1NestedPaging) == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
+ Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPagingCfg == pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
+ }
+}
+
+#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
+
+/**
+ * Exports the state shared between the host and guest (or nested-guest) into
+ * the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmExportSharedState(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
+ hmR0SvmExportSharedDebugState(pVCpu, pVmcb);
+
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
+ AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE),
+ ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
+}
+
+
+/**
+ * Worker for SVMR0ImportStateOnDemand.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+static void hmR0SvmImportGuestState(PVMCPUCC pVCpu, uint64_t fWhat)
+{
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ PCSVMVMCBSTATESAVE pVmcbGuest = &pVmcb->guest;
+ PCSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
+
+ /*
+ * We disable interrupts to make the updating of the state and in particular
+ * the fExtrn modification atomic wrt to preemption hooks.
+ */
+ RTCCUINTREG const fEFlags = ASMIntDisableFlags();
+
+ fWhat &= pCtx->fExtrn;
+ if (fWhat)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (fWhat & CPUMCTX_EXTRN_HWVIRT)
+ {
+ if (pVmcbCtrl->IntCtrl.n.u1VGifEnable)
+ {
+ Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); /* We don't yet support passing VGIF feature to the guest. */
+ Assert(HMIsSvmVGifActive(pVCpu->CTX_SUFF(pVM))); /* VM has configured it. */
+ CPUMSetGuestGif(pCtx, pVmcbCtrl->IntCtrl.n.u1VGif);
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ)
+ {
+ if ( !pVmcbCtrl->IntCtrl.n.u1VIrqPending
+ && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
+ }
+#endif
+
+ if (fWhat & CPUMCTX_EXTRN_INHIBIT_INT)
+ CPUMUpdateInterruptShadowEx(pCtx, pVmcbCtrl->IntShadow.n.u1IntShadow, pVmcbGuest->u64RIP);
+
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ pCtx->rip = pVmcbGuest->u64RIP;
+
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ {
+ pCtx->eflags.u = pVmcbGuest->u64RFlags;
+ if (pVCpu->hmr0.s.fClearTrapFlag)
+ {
+ pVCpu->hmr0.s.fClearTrapFlag = false;
+ pCtx->eflags.Bits.u1TF = 0;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ pCtx->rsp = pVmcbGuest->u64RSP;
+
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ pCtx->rax = pVmcbGuest->u64RAX;
+
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, CS, cs);
+ /* Correct the CS granularity bit. Haven't seen it being wrong in any other register (yet). */
+ /** @todo SELM might need to be fixed as it too should not care about the
+ * granularity bit. See @bugref{6785}. */
+ if ( !pCtx->cs.Attr.n.u1Granularity
+ && pCtx->cs.Attr.n.u1Present
+ && pCtx->cs.u32Limit > UINT32_C(0xfffff))
+ {
+ Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff);
+ pCtx->cs.Attr.n.u1Granularity = 1;
+ }
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, cs);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, SS, ss);
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ss);
+ /*
+ * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the
+ * VMCB and uses that and thus it's possible that when the CPL changes during
+ * guest execution that the SS DPL isn't updated by AMD-V. Observed on some
+ * AMD Fusion CPUs with 64-bit guests.
+ *
+ * See AMD spec. 15.5.1 "Basic operation".
+ */
+ Assert(!(pVmcbGuest->u8CPL & ~0x3));
+ uint8_t const uCpl = pVmcbGuest->u8CPL;
+ if (pCtx->ss.Attr.n.u2Dpl != uCpl)
+ pCtx->ss.Attr.n.u2Dpl = uCpl & 0x3;
+ }
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, DS, ds);
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, ds);
+ }
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, ES, es);
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, es);
+ }
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, FS, fs);
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, fs);
+ }
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ {
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, GS, gs);
+ HMSVM_ASSERT_SEG_GRANULARITY(pCtx, gs);
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ {
+ /*
+ * Fixup TR attributes so it's compatible with Intel. Important when saved-states
+ * are used between Intel and AMD, see @bugref{6208#c39}.
+ * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
+ */
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, TR, tr);
+ if (pCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
+ {
+ if ( pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
+ || CPUMIsGuestInLongModeEx(pCtx))
+ pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
+ else if (pCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
+ pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ HMSVM_SEG_REG_COPY_FROM_VMCB(pCtx, pVmcbGuest, LDTR, ldtr);
+
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ pCtx->gdtr.cbGdt = pVmcbGuest->GDTR.u32Limit;
+ pCtx->gdtr.pGdt = pVmcbGuest->GDTR.u64Base;
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ pCtx->idtr.cbIdt = pVmcbGuest->IDTR.u32Limit;
+ pCtx->idtr.pIdt = pVmcbGuest->IDTR.u64Base;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ pCtx->msrSTAR = pVmcbGuest->u64STAR;
+ pCtx->msrLSTAR = pVmcbGuest->u64LSTAR;
+ pCtx->msrCSTAR = pVmcbGuest->u64CSTAR;
+ pCtx->msrSFMASK = pVmcbGuest->u64SFMASK;
+ }
+
+ if ( (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ && !pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit /* Intercepted. AMD-V would clear the high 32 bits of EIP & ESP. */)
+ {
+ pCtx->SysEnter.cs = pVmcbGuest->u64SysEnterCS;
+ pCtx->SysEnter.eip = pVmcbGuest->u64SysEnterEIP;
+ pCtx->SysEnter.esp = pVmcbGuest->u64SysEnterESP;
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ pCtx->msrKERNELGSBASE = pVmcbGuest->u64KernelGSBase;
+
+ if (fWhat & CPUMCTX_EXTRN_DR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ {
+ if (!pVCpu->hmr0.s.fUsingHyperDR7)
+ pCtx->dr[6] = pVmcbGuest->u64DR6;
+ else
+ CPUMSetHyperDR6(pVCpu, pVmcbGuest->u64DR6);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ {
+ if (!pVCpu->hmr0.s.fUsingHyperDR7)
+ pCtx->dr[7] = pVmcbGuest->u64DR7;
+ else
+ Assert(pVmcbGuest->u64DR7 == CPUMGetHyperDR7(pVCpu));
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ {
+ /* We intercept changes to all CR0 bits except maybe TS & MP bits. */
+ uint64_t const uCr0 = (pCtx->cr0 & ~(X86_CR0_TS | X86_CR0_MP))
+ | (pVmcbGuest->u64CR0 & (X86_CR0_TS | X86_CR0_MP));
+ VMMRZCallRing3Disable(pVCpu); /* Calls into PGM which has Log statements. */
+ CPUMSetGuestCR0(pVCpu, uCr0);
+ VMMRZCallRing3Enable(pVCpu);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ pCtx->cr2 = pVmcbGuest->u64CR2;
+
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ {
+ if ( pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging
+ && pCtx->cr3 != pVmcbGuest->u64CR3)
+ {
+ CPUMSetGuestCR3(pVCpu, pVmcbGuest->u64CR3);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
+ }
+ }
+
+ /* Changes to CR4 are always intercepted. */
+ }
+
+ /* Update fExtrn. */
+ pCtx->fExtrn &= ~fWhat;
+
+ /* If everything has been imported, clear the HM keeper bit. */
+ if (!(pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL))
+ {
+ pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
+ Assert(!pCtx->fExtrn);
+ }
+ }
+ else
+ Assert(!pCtx->fExtrn || (pCtx->fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
+
+ ASMSetFlags(fEFlags);
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatImportGuestState, x);
+
+ /*
+ * Honor any pending CR3 updates.
+ *
+ * Consider this scenario: #VMEXIT -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp
+ * -> SVMR0CallRing3Callback() -> VMMRZCallRing3Disable() -> hmR0SvmImportGuestState()
+ * -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp -> continue with #VMEXIT
+ * handling -> hmR0SvmImportGuestState() and here we are.
+ *
+ * The reason for such complicated handling is because VM-exits that call into PGM expect
+ * CR3 to be up-to-date and thus any CR3-saves -before- the VM-exit (longjmp) would've
+ * postponed the CR3 update via the force-flag and cleared CR3 from fExtrn. Any SVM R0
+ * VM-exit handler that requests CR3 to be saved will end up here and we call PGMUpdateCR3().
+ *
+ * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again,
+ * and does not process force-flag like regular exits to ring-3 either, we cover for it here.
+ */
+ if ( VMMRZCallRing3IsEnabled(pVCpu)
+ && VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
+ {
+ AssertMsg(pCtx->cr3 == pVmcbGuest->u64CR3, ("cr3=%#RX64 vmcb_cr3=%#RX64\n", pCtx->cr3, pVmcbGuest->u64CR3));
+ PGMUpdateCR3(pVCpu, pCtx->cr3);
+ }
+}
+
+
+/**
+ * Saves the guest (or nested-guest) state from the VMCB into the guest-CPU
+ * context.
+ *
+ * Currently there is no residual state left in the CPU that is not updated in the
+ * VMCB.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+VMMR0DECL(int) SVMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
+{
+ hmR0SvmImportGuestState(pVCpu, fWhat);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets SVM \#VMEXIT auxiliary information.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmExitAux Where to store the auxiliary info.
+ */
+VMMR0DECL(int) SVMR0GetExitAuxInfo(PVMCPUCC pVCpu, PSVMEXITAUX pSvmExitAux)
+{
+ PCSVMTRANSIENT pSvmTransient = pVCpu->hmr0.s.svm.pSvmTransient;
+ if (RT_LIKELY(pSvmTransient))
+ {
+ PCSVMVMCB pVmcb = pSvmTransient->pVmcb;
+ if (RT_LIKELY(pVmcb))
+ {
+ pSvmExitAux->u64ExitCode = pVmcb->ctrl.u64ExitCode;
+ pSvmExitAux->u64ExitInfo1 = pVmcb->ctrl.u64ExitInfo1;
+ pSvmExitAux->u64ExitInfo2 = pVmcb->ctrl.u64ExitInfo2;
+ pSvmExitAux->ExitIntInfo = pVmcb->ctrl.ExitIntInfo;
+ return VINF_SUCCESS;
+ }
+ return VERR_SVM_IPE_5;
+ }
+ return VERR_NOT_AVAILABLE;
+}
+
+
+/**
+ * Does the necessary state syncing before returning to ring-3 for any reason
+ * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fImportState Whether to import the guest state from the VMCB back
+ * to the guest-CPU context.
+ *
+ * @remarks No-long-jmp zone!!!
+ */
+static void hmR0SvmLeave(PVMCPUCC pVCpu, bool fImportState)
+{
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
+ */
+
+ /* Save the guest state if necessary. */
+ if (fImportState)
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ /* Restore host FPU state if necessary and resync on next R0 reentry. */
+ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
+ Assert(!CPUMIsGuestFPUStateActive(pVCpu));
+
+ /*
+ * Restore host debug registers if necessary and resync on next R0 reentry.
+ */
+#ifdef VBOX_STRICT
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb; /** @todo nested-guest. */
+ Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
+ Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
+ }
+#endif
+ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
+ STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
+}
+
+
+/**
+ * Leaves the AMD-V session.
+ *
+ * Only used while returning to ring-3 either due to longjump or exits to
+ * ring-3.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static int hmR0SvmLeaveSession(PVMCPUCC pVCpu)
+{
+ HM_DISABLE_PREEMPT(pVCpu);
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
+ and done this from the SVMR0ThreadCtxCallback(). */
+ if (!pVCpu->hmr0.s.fLeaveDone)
+ {
+ hmR0SvmLeave(pVCpu, true /* fImportState */);
+ pVCpu->hmr0.s.fLeaveDone = true;
+ }
+
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether SVMR0CallRing3Callback() needs to be updated too.
+ */
+
+ /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
+ /* Deregister hook now that we've left HM context before re-enabling preemption. */
+ VMMR0ThreadCtxHookDisable(pVCpu);
+
+ /* Leave HM context. This takes care of local init (term). */
+ int rc = HMR0LeaveCpu(pVCpu);
+
+ HM_RESTORE_PREEMPT();
+ return rc;
+}
+
+
+/**
+ * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
+ * any remaining host state) before we go back to ring-3 due to an assertion.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR0DECL(int) SVMR0AssertionCallback(PVMCPUCC pVCpu)
+{
+ /*
+ * !!! IMPORTANT !!!
+ * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
+ * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
+ */
+ VMMR0AssertionRemoveNotification(pVCpu);
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ /* Import the entire guest state. */
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ /* Restore host FPU state if necessary and resync on next R0 reentry. */
+ CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
+
+ /* Restore host debug registers if necessary and resync on next R0 reentry. */
+ CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
+
+ /* Deregister the hook now that we've left HM context before re-enabling preemption. */
+ /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
+ VMMR0ThreadCtxHookDisable(pVCpu);
+
+ /* Leave HM context. This takes care of local init (term). */
+ HMR0LeaveCpu(pVCpu);
+
+ HM_RESTORE_PREEMPT();
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Take necessary actions before going back to ring-3.
+ *
+ * An action requires us to go back to ring-3. This function does the necessary
+ * steps before we can safely return to ring-3. This is not the same as longjmps
+ * to ring-3, this is voluntary.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param rcExit The reason for exiting to ring-3. Can be
+ * VINF_VMM_UNKNOWN_RING3_CALL.
+ */
+static VBOXSTRICTRC hmR0SvmExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
+{
+ Assert(pVCpu);
+ HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
+ VMMRZCallRing3Disable(pVCpu);
+ Log4Func(("rcExit=%d LocalFF=%#RX64 GlobalFF=%#RX32\n", VBOXSTRICTRC_VAL(rcExit), (uint64_t)pVCpu->fLocalForcedActions,
+ pVCpu->CTX_SUFF(pVM)->fGlobalForcedActions));
+
+ /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ hmR0SvmPendingEventToTrpmTrap(pVCpu);
+ Assert(!pVCpu->hm.s.Event.fPending);
+ }
+
+ /* Sync. the necessary state for going back to ring-3. */
+ hmR0SvmLeaveSession(pVCpu);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
+
+ /* Thread-context hooks are unregistered at this point!!! */
+ /* Ring-3 callback notifications are unregistered at this point!!! */
+
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
+ | CPUM_CHANGED_LDTR
+ | CPUM_CHANGED_GDTR
+ | CPUM_CHANGED_IDTR
+ | CPUM_CHANGED_TR
+ | CPUM_CHANGED_HIDDEN_SEL_REGS);
+ if ( pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging
+ && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
+ {
+ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
+ }
+
+ /* Update the exit-to-ring 3 reason. */
+ pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
+
+ /* On our way back from ring-3, reload the guest-CPU state if it may change while in ring-3. */
+ if ( rcExit != VINF_EM_RAW_INTERRUPT
+ || CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ {
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
+ VMMRZCallRing3Enable(pVCpu);
+
+ /*
+ * If we're emulating an instruction, we shouldn't have any TRPM traps pending
+ * and if we're injecting an event we should have a TRPM trap pending.
+ */
+ AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
+ pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
+ VERR_SVM_IPE_5);
+ AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
+ pVCpu->hm.s.u32HMError = VBOXSTRICTRC_VAL(rcExit),
+ VERR_SVM_IPE_4);
+
+ return rcExit;
+}
+
+
+/**
+ * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
+ * intercepts.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmUpdateTscOffsetting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ /*
+ * Avoid intercepting RDTSC/RDTSCP if we determined the host TSC (++) is stable
+ * and in case of a nested-guest, if the nested-VMCB specifies it is not intercepting
+ * RDTSC/RDTSCP as well.
+ */
+ bool fParavirtTsc;
+ uint64_t uTscOffset;
+ bool const fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVCpu->CTX_SUFF(pVM), pVCpu, &uTscOffset, &fParavirtTsc);
+
+ bool fIntercept;
+ if (fCanUseRealTsc)
+ fIntercept = hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
+ else
+ {
+ hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP);
+ fIntercept = true;
+ }
+
+ if (!fIntercept)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ /* Apply the nested-guest VMCB's TSC offset over the guest TSC offset. */
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
+#endif
+
+ /* Update the TSC offset in the VMCB and the relevant clean bits. */
+ pVmcb->ctrl.u64TSCOffset = uTscOffset;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+ }
+
+ /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
+ information before every VM-entry, hence we have nothing to do here at the moment. */
+ if (fParavirtTsc)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
+}
+
+
+/**
+ * Sets an event as a pending event to be injected into the guest.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pEvent Pointer to the SVM event.
+ * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
+ * page-fault.
+ *
+ * @remarks Statistics counter assumes this is a guest event being reflected to
+ * the guest i.e. 'StatInjectPendingReflect' is incremented always.
+ */
+DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPUCC pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
+{
+ Assert(!pVCpu->hm.s.Event.fPending);
+ Assert(pEvent->n.u1Valid);
+
+ pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
+ pVCpu->hm.s.Event.fPending = true;
+ pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
+
+ Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
+ (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
+}
+
+
+/**
+ * Sets an divide error (\#DE) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptDE(PVMCPUCC pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_DE;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPUCC pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_UD;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a debug (\#DB) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPUCC pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_DB;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param u32ErrCode The error-code for the page-fault.
+ * @param uFaultAddress The page fault address (CR2).
+ *
+ * @remarks This updates the guest CR2 with @a uFaultAddress!
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPUCC pVCpu, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_PF;
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = u32ErrCode;
+
+ /* Update CR2 of the guest. */
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR2);
+ if (pVCpu->cpum.GstCtx.cr2 != uFaultAddress)
+ {
+ pVCpu->cpum.GstCtx.cr2 = uFaultAddress;
+ /* The VMCB clean bit for CR2 will be updated while re-loading the guest state. */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
+ }
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
+}
+
+
+/**
+ * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPUCC pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_MF;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPUCC pVCpu)
+{
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_DF;
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = 0;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+}
+
+
+/**
+ * Injects an event into the guest upon VMRUN by updating the relevant field
+ * in the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the guest VM control block.
+ * @param pEvent Pointer to the event.
+ *
+ * @remarks No-long-jump zone!!!
+ * @remarks Requires CR0!
+ */
+DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMEVENT pEvent)
+{
+ Assert(!pVmcb->ctrl.EventInject.n.u1Valid);
+ pVmcb->ctrl.EventInject.u = pEvent->u;
+ if ( pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_EXCEPTION
+ || pVmcb->ctrl.EventInject.n.u3Type == SVM_EVENT_NMI)
+ {
+ Assert(pEvent->n.u8Vector <= X86_XCPT_LAST);
+ STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedXcpts[pEvent->n.u8Vector]);
+ }
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.aStatInjectedIrqs[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
+ RT_NOREF(pVCpu);
+
+ Log4Func(("u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
+ (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
+}
+
+
+
+/**
+ * Converts any TRPM trap into a pending HM event. This is typically used when
+ * entering from ring-3 (not longjmp returns).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0SvmTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
+{
+ Assert(TRPMHasTrap(pVCpu));
+ Assert(!pVCpu->hm.s.Event.fPending);
+
+ uint8_t uVector;
+ TRPMEVENT enmTrpmEvent;
+ uint32_t uErrCode;
+ RTGCUINTPTR GCPtrFaultAddress;
+ uint8_t cbInstr;
+
+ int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, NULL /* pfIcebp */);
+ AssertRC(rc);
+
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = uVector;
+
+ /* Refer AMD spec. 15.20 "Event Injection" for the format. */
+ if (enmTrpmEvent == TRPM_TRAP)
+ {
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ switch (uVector)
+ {
+ case X86_XCPT_NMI:
+ {
+ Event.n.u3Type = SVM_EVENT_NMI;
+ break;
+ }
+
+ case X86_XCPT_BP:
+ case X86_XCPT_OF:
+ AssertMsgFailed(("Invalid TRPM vector %d for event type %d\n", uVector, enmTrpmEvent));
+ RT_FALL_THRU();
+
+ case X86_XCPT_PF:
+ case X86_XCPT_DF:
+ case X86_XCPT_TS:
+ case X86_XCPT_NP:
+ case X86_XCPT_SS:
+ case X86_XCPT_GP:
+ case X86_XCPT_AC:
+ {
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = uErrCode;
+ break;
+ }
+ }
+ }
+ else if (enmTrpmEvent == TRPM_HARDWARE_INT)
+ Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
+ else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
+ Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
+ else
+ AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
+
+ rc = TRPMResetTrap(pVCpu);
+ AssertRC(rc);
+
+ Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
+ !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
+}
+
+
+/**
+ * Converts any pending SVM event into a TRPM trap. Typically used when leaving
+ * AMD-V to execute any instruction.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void hmR0SvmPendingEventToTrpmTrap(PVMCPUCC pVCpu)
+{
+ Assert(pVCpu->hm.s.Event.fPending);
+ Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
+
+ SVMEVENT Event;
+ Event.u = pVCpu->hm.s.Event.u64IntInfo;
+
+ uint8_t uVector = Event.n.u8Vector;
+ TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event, uVector);
+
+ Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, Event.n.u3Type));
+
+ int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
+ AssertRC(rc);
+
+ if (Event.n.u1ErrorCodeValid)
+ TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
+
+ if ( enmTrapType == TRPM_TRAP
+ && uVector == X86_XCPT_PF)
+ {
+ TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
+ Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
+ }
+ else if (enmTrapType == TRPM_SOFTWARE_INT)
+ TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
+ pVCpu->hm.s.Event.fPending = false;
+}
+
+
+/**
+ * Sets the virtual interrupt intercept control in the VMCB.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ */
+static void hmR0SvmSetIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
+
+ /*
+ * When AVIC isn't supported, set up an interrupt window to cause a #VMEXIT when the guest
+ * is ready to accept interrupts. At #VMEXIT, we then get the interrupt from the APIC
+ * (updating ISR at the right time) and inject the interrupt.
+ *
+ * With AVIC is supported, we could make use of the asynchronously delivery without
+ * #VMEXIT and we would be passing the AVIC page to SVM.
+ *
+ * In AMD-V, an interrupt window is achieved using a combination of V_IRQ (an interrupt
+ * is pending), V_IGN_TPR (ignore TPR priorities) and the VINTR intercept all being set.
+ */
+ Assert(pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR);
+ pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
+ hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_VINTR);
+ Log4(("Set VINTR intercept\n"));
+}
+
+
+/**
+ * Clears the virtual interrupt intercept control in the VMCB as
+ * we are figured the guest is unable process any interrupts
+ * at this point of time.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ */
+static void hmR0SvmClearIntWindowExiting(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx); NOREF(pVCpu);
+
+ PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
+ if ( pVmcbCtrl->IntCtrl.n.u1VIrqPending
+ || (pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
+ {
+ pVmcbCtrl->IntCtrl.n.u1VIrqPending = 0;
+ pVmcbCtrl->u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INT_CTRL;
+ hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_VINTR);
+ Log4(("Cleared VINTR intercept\n"));
+ }
+}
+
+
+/**
+ * Evaluates the event to be delivered to the guest and sets it as the pending
+ * event.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+static VBOXSTRICTRC hmR0SvmEvaluatePendingEvent(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT
+ | CPUMCTX_EXTRN_RFLAGS
+ | CPUMCTX_EXTRN_INHIBIT_INT
+ | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ);
+
+ Assert(!pVCpu->hm.s.Event.fPending);
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(pVmcb);
+
+ bool const fGif = CPUMGetGuestGif(pCtx);
+ bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(pCtx);
+ bool const fBlockNmi = CPUMAreInterruptsInhibitedByNmi(pCtx);
+
+ Log4Func(("fGif=%RTbool fBlockNmi=%RTbool fIntShadow=%RTbool fIntPending=%RTbool fNmiPending=%RTbool\n",
+ fGif, fBlockNmi, fIntShadow, VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC),
+ VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)));
+
+ /** @todo SMI. SMIs take priority over NMIs. */
+
+ /*
+ * Check if the guest or nested-guest can receive NMIs.
+ * Nested NMIs are not allowed, see AMD spec. 8.1.4 "Masking External Interrupts".
+ * NMIs take priority over maskable interrupts, see AMD spec. 8.5 "Priorities".
+ */
+ if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)
+ && !fBlockNmi)
+ {
+ if ( fGif
+ && !fIntShadow)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_NMI))
+ {
+ Log4(("Intercepting NMI -> #VMEXIT\n"));
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ return IEMExecSvmVmexit(pVCpu, SVM_EXIT_NMI, 0, 0);
+ }
+#endif
+ Log4(("Setting NMI pending for injection\n"));
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = X86_XCPT_NMI;
+ Event.n.u3Type = SVM_EVENT_NMI;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
+ }
+ else if (!fGif)
+ hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
+ else if (!pSvmTransient->fIsNestedGuest)
+ hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
+ /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
+ }
+ /*
+ * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt()
+ * returns a valid interrupt we -must- deliver the interrupt. We can no longer re-request
+ * it from the APIC device.
+ *
+ * For nested-guests, physical interrupts always take priority over virtual interrupts.
+ * We don't need to inject nested-guest virtual interrupts here, we can let the hardware
+ * do that work when we execute nested-guest code esp. since all the required information
+ * is in the VMCB, unlike physical interrupts where we need to fetch the interrupt from
+ * the virtual interrupt controller.
+ *
+ * See AMD spec. 15.21.4 "Injecting Virtual (INTR) Interrupts".
+ */
+ else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
+ && !pVCpu->hm.s.fSingleInstruction)
+ {
+ bool const fBlockInt = !pSvmTransient->fIsNestedGuest ? !(pCtx->eflags.u & X86_EFL_IF)
+ : CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx);
+ if ( fGif
+ && !fBlockInt
+ && !fIntShadow)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INTR))
+ {
+ Log4(("Intercepting INTR -> #VMEXIT\n"));
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ return IEMExecSvmVmexit(pVCpu, SVM_EXIT_INTR, 0, 0);
+ }
+#endif
+ uint8_t u8Interrupt;
+ int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
+ if (RT_SUCCESS(rc))
+ {
+ Log4(("Setting external interrupt %#x pending for injection\n", u8Interrupt));
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u8Vector = u8Interrupt;
+ Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ }
+ else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
+ {
+ /*
+ * AMD-V has no TPR thresholding feature. TPR and the force-flag will be
+ * updated eventually when the TPR is written by the guest.
+ */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
+ }
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
+ }
+ else if (!fGif)
+ hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_STGI);
+ else if (!pSvmTransient->fIsNestedGuest)
+ hmR0SvmSetIntWindowExiting(pVCpu, pVmcb);
+ /* else: for nested-guests, interrupt-window exiting will be picked up when merging VMCB controls. */
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Injects any pending events into the guest (or nested-guest).
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ *
+ * @remarks Must only be called when we are guaranteed to enter
+ * hardware-assisted SVM execution and not return to ring-3
+ * prematurely.
+ */
+static void hmR0SvmInjectPendingEvent(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ Assert(!TRPMHasTrap(pVCpu));
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ bool const fIntShadow = CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx);
+#ifdef VBOX_STRICT
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ bool const fGif = CPUMGetGuestGif(pCtx);
+ bool fAllowInt = fGif;
+ if (fGif)
+ {
+ /*
+ * For nested-guests we have no way to determine if we're injecting a physical or
+ * virtual interrupt at this point. Hence the partial verification below.
+ */
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ fAllowInt = CPUMIsGuestSvmPhysIntrEnabled(pVCpu, pCtx) || CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
+ else
+ fAllowInt = RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
+ }
+#endif
+
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ SVMEVENT Event;
+ Event.u = pVCpu->hm.s.Event.u64IntInfo;
+ Assert(Event.n.u1Valid);
+
+ /*
+ * Validate event injection pre-conditions.
+ */
+ if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
+ {
+ Assert(fAllowInt);
+ Assert(!fIntShadow);
+ }
+ else if (Event.n.u3Type == SVM_EVENT_NMI)
+ {
+ Assert(fGif);
+ Assert(!fIntShadow);
+ }
+
+ /*
+ * Before injecting an NMI we must set VMCPU_FF_BLOCK_NMIS to prevent nested NMIs. We
+ * do this only when we are surely going to inject the NMI as otherwise if we return
+ * to ring-3 prematurely we could leave NMIs blocked indefinitely upon re-entry into
+ * SVM R0.
+ *
+ * With VT-x, this is handled by the Guest interruptibility information VMCS field
+ * which will set the VMCS field after actually delivering the NMI which we read on
+ * VM-exit to determine the state.
+ */
+ if ( Event.n.u3Type == SVM_EVENT_NMI
+ && Event.n.u8Vector == X86_XCPT_NMI)
+ CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
+
+ /*
+ * Inject it (update VMCB for injection by the hardware).
+ */
+ Log4(("Injecting pending HM event\n"));
+ hmR0SvmInjectEventVmcb(pVCpu, pVmcb, &Event);
+ pVCpu->hm.s.Event.fPending = false;
+
+ if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
+ }
+ else
+ Assert(pVmcb->ctrl.EventInject.n.u1Valid == 0);
+
+ /*
+ * We could have injected an NMI through IEM and continue guest execution using
+ * hardware-assisted SVM. In which case, we would not have any events pending (above)
+ * but we still need to intercept IRET in order to eventually clear NMI inhibition.
+ */
+ if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
+ hmR0SvmSetCtrlIntercept(pVmcb, SVM_CTRL_INTERCEPT_IRET);
+
+ /*
+ * Update the guest interrupt shadow in the guest (or nested-guest) VMCB.
+ *
+ * For nested-guests: We need to update it too for the scenario where IEM executes
+ * the nested-guest but execution later continues here with an interrupt shadow active.
+ */
+ pVmcb->ctrl.IntShadow.n.u1IntShadow = fIntShadow;
+}
+
+
+/**
+ * Reports world-switch error and dumps some useful debug info.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param rcVMRun The return code from VMRUN (or
+ * VERR_SVM_INVALID_GUEST_STATE for invalid
+ * guest-state).
+ */
+static void hmR0SvmReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun)
+{
+ HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
+ {
+#ifdef VBOX_STRICT
+ hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Log4(("ctrl.u32VmcbCleanBits %#RX32\n", pVmcb->ctrl.u32VmcbCleanBits));
+ Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
+ Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
+ Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
+ Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
+ Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
+ Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
+ Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
+ Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
+ Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
+
+ Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
+ Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
+ Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
+
+ Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
+ Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
+ Log4(("ctrl.IntCtrl.u1VGif %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGif));
+ Log4(("ctrl.IntCtrl.u6Reserved0 %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
+ Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
+ Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
+ Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
+ Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
+ Log4(("ctrl.IntCtrl.u1VGifEnable %#x\n", pVmcb->ctrl.IntCtrl.n.u1VGifEnable));
+ Log4(("ctrl.IntCtrl.u5Reserved1 %#x\n", pVmcb->ctrl.IntCtrl.n.u5Reserved));
+ Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
+ Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
+
+ Log4(("ctrl.IntShadow.u1IntShadow %#x\n", pVmcb->ctrl.IntShadow.n.u1IntShadow));
+ Log4(("ctrl.IntShadow.u1GuestIntMask %#x\n", pVmcb->ctrl.IntShadow.n.u1GuestIntMask));
+ Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
+ Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
+ Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
+ Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
+ Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
+ Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
+ Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
+ Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
+ Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
+ Log4(("ctrl.NestedPagingCtrl.u1NestedPaging %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1NestedPaging));
+ Log4(("ctrl.NestedPagingCtrl.u1Sev %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1Sev));
+ Log4(("ctrl.NestedPagingCtrl.u1SevEs %#x\n", pVmcb->ctrl.NestedPagingCtrl.n.u1SevEs));
+ Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
+ Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
+ Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
+ Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
+ Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
+ Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
+
+ Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
+
+ Log4(("ctrl.LbrVirt.u1LbrVirt %#x\n", pVmcb->ctrl.LbrVirt.n.u1LbrVirt));
+ Log4(("ctrl.LbrVirt.u1VirtVmsaveVmload %#x\n", pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload));
+
+ Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
+ Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
+ Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
+ Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
+ Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
+ Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
+ Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
+ Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
+ Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
+ Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
+ Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
+ Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
+ Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
+ Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
+ Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
+ Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
+ Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
+ Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
+ Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
+ Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
+
+ Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
+ Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
+
+ Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
+ Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
+ Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
+ Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
+
+ Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
+ Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
+
+ Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
+ Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
+ Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
+ Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
+
+ Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
+ Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
+ Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
+ Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
+ Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
+ Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
+ Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
+
+ Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
+ Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
+ Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
+ Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
+
+ Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
+ Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
+ Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
+
+ Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
+ Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
+ Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
+ Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
+ Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
+ Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
+ Log4(("guest.u64PAT %#RX64\n", pVmcb->guest.u64PAT));
+ Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
+ Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
+ Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
+ Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
+ Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
+
+ NOREF(pVmcb);
+#endif /* VBOX_STRICT */
+ }
+ else
+ Log4Func(("rcVMRun=%d\n", rcVMRun));
+}
+
+
+/**
+ * Check per-VM and per-VCPU force flag actions that require us to go back to
+ * ring-3 for one reason or another.
+ *
+ * @returns Strict VBox status code (information status code included).
+ * @retval VINF_SUCCESS if we don't have any actions that require going back to
+ * ring-3.
+ * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
+ * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
+ * interrupts)
+ * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
+ * all EMTs to be in ring-3.
+ * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
+ * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
+ * to the EM loop.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static VBOXSTRICTRC hmR0SvmCheckForceFlags(PVMCPUCC pVCpu)
+{
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+
+ /* Could happen as a result of longjump. */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
+ PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
+
+ /* Update pending interrupts into the APIC's IRR. */
+ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
+ APICUpdatePendingInterrupts(pVCpu);
+
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if ( VM_FF_IS_ANY_SET(pVM, !pVCpu->hm.s.fSingleInstruction
+ ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
+ || VMCPU_FF_IS_ANY_SET(pVCpu, !pVCpu->hm.s.fSingleInstruction
+ ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
+ {
+ /* Pending PGM C3 sync. */
+ if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
+ {
+ int rc = PGMSyncCR3(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4,
+ VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
+ if (rc != VINF_SUCCESS)
+ {
+ Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
+ return rc;
+ }
+ }
+
+ /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
+ /* -XXX- what was that about single stepping? */
+ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
+ || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
+ Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
+ return rc;
+ }
+
+ /* Pending VM request packets, such as hardware interrupts. */
+ if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
+ || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
+ Log4Func(("Pending VM request forcing us back to ring-3\n"));
+ return VINF_EM_PENDING_REQUEST;
+ }
+
+ /* Pending PGM pool flushes. */
+ if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
+ Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
+ return VINF_PGM_POOL_FLUSH_PENDING;
+ }
+
+ /* Pending DMA requests. */
+ if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
+ Log4Func(("Pending DMA request forcing us back to ring-3\n"));
+ return VINF_EM_RAW_TO_R3;
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Does the preparations before executing guest code in AMD-V.
+ *
+ * This may cause longjmps to ring-3 and may even result in rescheduling to the
+ * recompiler. We must be cautious what we do here regarding committing
+ * guest-state information into the VMCB assuming we assuredly execute the guest
+ * in AMD-V. If we fall back to the recompiler after updating the VMCB and
+ * clearing the common-state (TRPM/forceflags), we must undo those changes so
+ * that the recompiler can (and should) use them when it resumes guest
+ * execution. Otherwise such operations must be done when we can no longer
+ * exit to ring-3.
+ *
+ * @returns Strict VBox status code (informational status codes included).
+ * @retval VINF_SUCCESS if we can proceed with running the guest.
+ * @retval VINF_* scheduling changes, we have to go back to ring-3.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+static VBOXSTRICTRC hmR0SvmPreRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ if (pSvmTransient->fIsNestedGuest)
+ {
+ Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
+ return VINF_EM_RESCHEDULE_REM;
+ }
+#endif
+
+ /* Check force flag actions that might require us to go back to ring-3. */
+ VBOXSTRICTRC rc = hmR0SvmCheckForceFlags(pVCpu);
+ if (rc != VINF_SUCCESS)
+ return rc;
+
+ if (TRPMHasTrap(pVCpu))
+ hmR0SvmTrpmTrapToPendingEvent(pVCpu);
+ else if (!pVCpu->hm.s.Event.fPending)
+ {
+ rc = hmR0SvmEvaluatePendingEvent(pVCpu, pSvmTransient);
+ if ( rc != VINF_SUCCESS
+ || pSvmTransient->fIsNestedGuest != CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ {
+ /* If a nested-guest VM-exit occurred, bail. */
+ if (pSvmTransient->fIsNestedGuest)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
+ return rc;
+ }
+ }
+
+ /*
+ * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
+ * Just do it in software, see @bugref{8411}.
+ * NB: If we could continue a task switch exit we wouldn't need to do this.
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if (RT_UNLIKELY( !g_fHmSvmFeatures
+ && pVCpu->hm.s.Event.fPending
+ && SVM_EVENT_GET_TYPE(pVCpu->hm.s.Event.u64IntInfo) == SVM_EVENT_NMI))
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+
+#ifdef HMSVM_SYNC_FULL_GUEST_STATE
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+#endif
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ /*
+ * Set up the nested-guest VMCB for execution using hardware-assisted SVM.
+ */
+ if (pSvmTransient->fIsNestedGuest)
+ hmR0SvmSetupVmcbNested(pVCpu);
+#endif
+
+ /*
+ * Export the guest state bits that are not shared with the host in any way as we can
+ * longjmp or get preempted in the midst of exporting some of the state.
+ */
+ rc = hmR0SvmExportGuestState(pVCpu, pSvmTransient);
+ AssertRCReturn(rc, rc);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
+
+ /* Ensure we've cached (and hopefully modified) the nested-guest VMCB for execution using hardware-assisted SVM. */
+ Assert(!pSvmTransient->fIsNestedGuest || pVCpu->hm.s.svm.NstGstVmcbCache.fCacheValid);
+
+ /*
+ * If we're not intercepting TPR changes in the guest, save the guest TPR before the
+ * world-switch so we can update it on the way back if the guest changed the TPR.
+ */
+ if (pVCpu->hmr0.s.svm.fSyncVTpr)
+ {
+ Assert(!pSvmTransient->fIsNestedGuest);
+ PCSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+ if (pVM->hm.s.fTprPatchingActive)
+ pSvmTransient->u8GuestTpr = pVmcb->guest.u64LSTAR;
+ else
+ pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
+ }
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ *
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
+ * better than a kernel panic. This also disables flushing of the R0-logger instance.
+ */
+ VMMRZCallRing3Disable(pVCpu);
+
+ /*
+ * We disable interrupts so that we don't miss any interrupts that would flag preemption
+ * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
+ * preemption disabled for a while. Since this is purly to aid the
+ * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
+ * disable interrupt on NT.
+ *
+ * We need to check for force-flags that could've possible been altered since we last
+ * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
+ * see @bugref{6398}).
+ *
+ * We also check a couple of other force-flags as a last opportunity to get the EMT back
+ * to ring-3 before executing guest code.
+ */
+ pSvmTransient->fEFlags = ASMIntDisableFlags();
+ if ( VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
+ || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
+ {
+ ASMSetFlags(pSvmTransient->fEFlags);
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
+ return VINF_EM_RAW_TO_R3;
+ }
+ if (RTThreadPreemptIsPending(NIL_RTTHREAD))
+ {
+ ASMSetFlags(pSvmTransient->fEFlags);
+ VMMRZCallRing3Enable(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
+ return VINF_EM_RAW_INTERRUPT;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Prepares to run guest (or nested-guest) code in AMD-V and we've committed to
+ * doing so.
+ *
+ * This means there is no backing out to ring-3 or anywhere else at this point.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ *
+ * @remarks Called with preemption disabled.
+ * @remarks No-long-jump zone!!!
+ */
+static void hmR0SvmPreRunGuestCommitted(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
+
+ VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
+
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PSVMVMCB pVmcb = pSvmTransient->pVmcb;
+
+ hmR0SvmInjectPendingEvent(pVCpu, pVmcb);
+
+ if (!CPUMIsGuestFPUStateActive(pVCpu))
+ {
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
+ CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
+ }
+
+ /* Load the state shared between host and guest (FPU, debug). */
+ if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE)
+ hmR0SvmExportSharedState(pVCpu, pVmcb);
+
+ pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT; /* Preemption might set this, nothing to do on AMD-V. */
+ AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
+
+ PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
+ RTCPUID const idHostCpu = pHostCpu->idCpu;
+ bool const fMigratedHostCpu = idHostCpu != pVCpu->hmr0.s.idLastCpu;
+
+ /* Setup TSC offsetting. */
+ if ( pSvmTransient->fUpdateTscOffsetting
+ || fMigratedHostCpu)
+ {
+ hmR0SvmUpdateTscOffsetting(pVCpu, pVmcb);
+ pSvmTransient->fUpdateTscOffsetting = false;
+ }
+
+ /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
+ if (!(pVmcb->ctrl.u64InterceptCtrl & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
+ else
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
+
+ /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
+ if (fMigratedHostCpu)
+ pVmcb->ctrl.u32VmcbCleanBits = 0;
+
+ /* Store status of the shared guest-host state at the time of VMRUN. */
+ pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
+ pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ uint8_t *pbMsrBitmap;
+ if (!pSvmTransient->fIsNestedGuest)
+ pbMsrBitmap = (uint8_t *)pVCpu->hmr0.s.svm.pvMsrBitmap;
+ else
+ {
+ /** @todo We could perhaps optimize this by monitoring if the guest modifies its
+ * MSRPM and only perform this if it changed also use EVEX.POR when it
+ * does. */
+ hmR0SvmMergeMsrpmNested(pHostCpu, pVCpu);
+
+ /* Update the nested-guest VMCB with the newly merged MSRPM (clean bits updated below). */
+ pVmcb->ctrl.u64MSRPMPhysAddr = pHostCpu->n.svm.HCPhysNstGstMsrpm;
+ pbMsrBitmap = (uint8_t *)pHostCpu->n.svm.pvNstGstMsrpm;
+ }
+#else
+ uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
+#endif
+
+ ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
+ /* Flush the appropriate tagged-TLB entries. */
+ hmR0SvmFlushTaggedTlb(pHostCpu, pVCpu, pVmcb);
+ Assert(pVCpu->hmr0.s.idLastCpu == idHostCpu);
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
+
+ TMNotifyStartOfExecution(pVM, pVCpu); /* Finally, notify TM to resume its clocks as we're about
+ to start executing. */
+
+ /*
+ * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that RDTSCPs
+ * (that don't cause exits) reads the guest MSR, see @bugref{3324}.
+ *
+ * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
+ */
+ if ( g_CpumHostFeatures.s.fRdTscP
+ && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
+ {
+ uint64_t const uGuestTscAux = CPUMGetGuestTscAux(pVCpu);
+ pVCpu->hmr0.s.svm.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
+ if (uGuestTscAux != pVCpu->hmr0.s.svm.u64HostTscAux)
+ ASMWrMsr(MSR_K8_TSC_AUX, uGuestTscAux);
+ hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
+ pSvmTransient->fRestoreTscAuxMsr = true;
+ }
+ else
+ {
+ hmR0SvmSetMsrPermission(pVCpu, pbMsrBitmap, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
+ pSvmTransient->fRestoreTscAuxMsr = false;
+ }
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
+
+ /*
+ * If VMCB Clean bits isn't supported by the CPU or exposed to the guest in the nested
+ * virtualization case, mark all state-bits as dirty indicating to the CPU to re-load
+ * from the VMCB.
+ */
+ bool const fSupportsVmcbCleanBits = hmR0SvmSupportsVmcbCleanBits(pVCpu, pSvmTransient->fIsNestedGuest);
+ if (!fSupportsVmcbCleanBits)
+ pVmcb->ctrl.u32VmcbCleanBits = 0;
+}
+
+
+/**
+ * Wrapper for running the guest (or nested-guest) code in AMD-V.
+ *
+ * @returns VBox strict status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param HCPhysVmcb The host physical address of the VMCB.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+DECLINLINE(int) hmR0SvmRunGuest(PVMCPUCC pVCpu, RTHCPHYS HCPhysVmcb)
+{
+ /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
+ pVCpu->cpum.GstCtx.fExtrn |= HMSVM_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
+ return pVCpu->hmr0.s.svm.pfnVMRun(pVCpu->CTX_SUFF(pVM), pVCpu, HCPhysVmcb);
+}
+
+
+/**
+ * Performs some essential restoration of state after running guest (or
+ * nested-guest) code in AMD-V.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ * @param rcVMRun Return code of VMRUN.
+ *
+ * @remarks Called with interrupts disabled.
+ * @remarks No-long-jump zone!!! This function will however re-enable longjmps
+ * unconditionally when it is safe to do so.
+ */
+static void hmR0SvmPostRunGuest(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, VBOXSTRICTRC rcVMRun)
+{
+ Assert(!VMMRZCallRing3IsEnabled(pVCpu));
+
+ ASMAtomicUoWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
+ ASMAtomicIncU32(&pVCpu->hmr0.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
+
+ PSVMVMCB pVmcb = pSvmTransient->pVmcb;
+ PSVMVMCBCTRL pVmcbCtrl = &pVmcb->ctrl;
+
+ /* TSC read must be done early for maximum accuracy. */
+ if (!(pVmcbCtrl->u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
+ {
+ if (!pSvmTransient->fIsNestedGuest)
+ TMCpuTickSetLastSeen(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ else
+ {
+ /* The nested-guest VMCB TSC offset shall eventually be restored on #VMEXIT via HMNotifySvmNstGstVmexit(). */
+ uint64_t const uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, pVCpu->hmr0.s.uTscExit + pVmcbCtrl->u64TSCOffset);
+ TMCpuTickSetLastSeen(pVCpu, uGstTsc);
+ }
+#endif
+ }
+
+ if (pSvmTransient->fRestoreTscAuxMsr)
+ {
+ uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
+ CPUMSetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
+ if (u64GuestTscAuxMsr != pVCpu->hmr0.s.svm.u64HostTscAux)
+ ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hmr0.s.svm.u64HostTscAux);
+ }
+
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ TMNotifyEndOfExecution(pVM, pVCpu, pVCpu->hmr0.s.uTscExit); /* Notify TM that the guest is no longer running. */
+ VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
+
+ Assert(!(ASMGetFlags() & X86_EFL_IF));
+ ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
+ VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
+
+ /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
+ if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
+ {
+ Log4Func(("VMRUN failure: rcVMRun=%Rrc\n", VBOXSTRICTRC_VAL(rcVMRun)));
+ return;
+ }
+
+ pSvmTransient->u64ExitCode = pVmcbCtrl->u64ExitCode; /* Save the #VMEXIT reason. */
+ pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
+ pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
+ pVmcbCtrl->u32VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
+
+#ifdef HMSVM_SYNC_FULL_GUEST_STATE
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMSVM_CPUMCTX_EXTRN_ALL));
+#else
+ /*
+ * Always import the following:
+ *
+ * - RIP for exit optimizations and evaluating event injection on re-entry.
+ * - RFLAGS for evaluating event injection on VM re-entry and for exporting shared debug
+ * state on preemption.
+ * - Interrupt shadow, GIF for evaluating event injection on VM re-entry.
+ * - CS for exit optimizations.
+ * - RAX, RSP for simplifying assumptions on GPRs. All other GPRs are swapped by the
+ * assembly switcher code.
+ * - Shared state (only DR7 currently) for exporting shared debug state on preemption.
+ */
+ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_RIP
+ | CPUMCTX_EXTRN_RFLAGS
+ | CPUMCTX_EXTRN_RAX
+ | CPUMCTX_EXTRN_RSP
+ | CPUMCTX_EXTRN_CS
+ | CPUMCTX_EXTRN_HWVIRT
+ | CPUMCTX_EXTRN_INHIBIT_INT
+ | CPUMCTX_EXTRN_HM_SVM_HWVIRT_VIRQ
+ | HMSVM_CPUMCTX_SHARED_STATE);
+#endif
+
+ if ( pSvmTransient->u64ExitCode != SVM_EXIT_INVALID
+ && pVCpu->hmr0.s.svm.fSyncVTpr)
+ {
+ Assert(!pSvmTransient->fIsNestedGuest);
+ /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
+ if ( pVM->hm.s.fTprPatchingActive
+ && (pVmcb->guest.u64LSTAR & 0xff) != pSvmTransient->u8GuestTpr)
+ {
+ int rc = APICSetTpr(pVCpu, pVmcb->guest.u64LSTAR & 0xff);
+ AssertRC(rc);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+ /* Sync TPR when we aren't intercepting CR8 writes. */
+ else if (pSvmTransient->u8GuestTpr != pVmcbCtrl->IntCtrl.n.u8VTPR)
+ {
+ int rc = APICSetTpr(pVCpu, pVmcbCtrl->IntCtrl.n.u8VTPR << 4);
+ AssertRC(rc);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+ }
+
+#ifdef DEBUG_ramshankar
+ if (CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.GstCtx))
+ {
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ hmR0SvmLogState(pVCpu, pVmcb, pVCpu->cpum.GstCtx, "hmR0SvmPostRunGuestNested", HMSVM_LOG_ALL & ~HMSVM_LOG_LBR,
+ 0 /* uVerbose */);
+ }
+#endif
+
+ HMSVM_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_SVM, pSvmTransient->u64ExitCode & EMEXIT_F_TYPE_MASK),
+ pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, pVCpu->hmr0.s.uTscExit);
+}
+
+
+/**
+ * Runs the guest code using AMD-V.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pcLoops Pointer to the number of executed loops.
+ */
+static VBOXSTRICTRC hmR0SvmRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
+{
+ uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
+ Assert(pcLoops);
+ Assert(*pcLoops <= cMaxResumeLoops);
+
+ SVMTRANSIENT SvmTransient;
+ RT_ZERO(SvmTransient);
+ SvmTransient.fUpdateTscOffsetting = true;
+ SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+
+ VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
+ for (;;)
+ {
+ Assert(!HMR0SuspendPending());
+ HMSVM_ASSERT_CPU_SAFE(pVCpu);
+
+ /* Preparatory work for running nested-guest code, this may force us to return to
+ ring-3. This bugger disables interrupts on VINF_SUCCESS! */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
+ if (rc != VINF_SUCCESS)
+ break;
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ *
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
+ * better than a kernel panic. This also disables flushing of the R0-logger instance.
+ */
+ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
+ rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
+
+ /* Restore any residual host-state and save any bits shared between host and guest
+ into the guest-CPU state. Re-enables interrupts! */
+ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
+
+ if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
+ || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
+ {
+ if (rc == VINF_SUCCESS)
+ rc = VERR_SVM_INVALID_GUEST_STATE;
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
+ hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
+ break;
+ }
+
+ /* Handle the #VMEXIT. */
+ HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
+ VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
+ rc = hmR0SvmHandleExit(pVCpu, &SvmTransient);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
+ if (rc != VINF_SUCCESS)
+ break;
+ if (++(*pcLoops) >= cMaxResumeLoops)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
+ rc = VINF_EM_RAW_INTERRUPT;
+ break;
+ }
+ }
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ return rc;
+}
+
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+/**
+ * Runs the nested-guest code using AMD-V.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pcLoops Pointer to the number of executed loops. If we're switching
+ * from the guest-code execution loop to this nested-guest
+ * execution loop pass the remainder value, else pass 0.
+ */
+static VBOXSTRICTRC hmR0SvmRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ HMSVM_ASSERT_IN_NESTED_GUEST(pCtx);
+ Assert(pcLoops);
+ Assert(*pcLoops <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops);
+ /** @todo r=bird: Sharing this with ring-3 isn't safe in the long run, I fear... */
+ RTHCPHYS const HCPhysVmcb = GVMMR0ConvertGVMPtr2HCPhys(pVCpu->pGVM, &pCtx->hwvirt.svm.Vmcb);
+
+ SVMTRANSIENT SvmTransient;
+ RT_ZERO(SvmTransient);
+ SvmTransient.fUpdateTscOffsetting = true;
+ SvmTransient.pVmcb = &pCtx->hwvirt.svm.Vmcb;
+ SvmTransient.fIsNestedGuest = true;
+
+ /* Setup pointer so PGM/IEM can query #VMEXIT auxiliary info. on demand in ring-0. */
+ pVCpu->hmr0.s.svm.pSvmTransient = &SvmTransient;
+
+ VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_4;
+ for (;;)
+ {
+ Assert(!HMR0SuspendPending());
+ HMSVM_ASSERT_CPU_SAFE(pVCpu);
+
+ /* Preparatory work for running nested-guest code, this may force us to return to
+ ring-3. This bugger disables interrupts on VINF_SUCCESS! */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
+ if ( rc != VINF_SUCCESS
+ || !CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ break;
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ *
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
+ * better than a kernel panic. This also disables flushing of the R0-logger instance.
+ */
+ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
+
+ rc = hmR0SvmRunGuest(pVCpu, HCPhysVmcb);
+
+ /* Restore any residual host-state and save any bits shared between host and guest
+ into the guest-CPU state. Re-enables interrupts! */
+ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
+
+ if (RT_LIKELY( rc == VINF_SUCCESS
+ && SvmTransient.u64ExitCode != SVM_EXIT_INVALID))
+ { /* extremely likely */ }
+ else
+ {
+ /* VMRUN failed, shouldn't really happen, Guru. */
+ if (rc != VINF_SUCCESS)
+ break;
+
+ /* Invalid nested-guest state. Cause a #VMEXIT but assert on strict builds. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ AssertMsgFailed(("Invalid nested-guest state. rc=%Rrc u64ExitCode=%#RX64\n", rc, SvmTransient.u64ExitCode));
+ rc = IEMExecSvmVmexit(pVCpu, SVM_EXIT_INVALID, 0, 0);
+ break;
+ }
+
+ /* Handle the #VMEXIT. */
+ HMSVM_NESTED_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
+ VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, &pCtx->hwvirt.svm.Vmcb);
+ rc = hmR0SvmHandleExitNested(pVCpu, &SvmTransient);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
+ if (rc == VINF_SUCCESS)
+ {
+ if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
+ rc = VINF_SVM_VMEXIT;
+ }
+ else
+ {
+ if (++(*pcLoops) <= pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops)
+ continue;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
+ rc = VINF_EM_RAW_INTERRUPT;
+ }
+ }
+ else
+ Assert(rc != VINF_SVM_VMEXIT);
+ break;
+ /** @todo NSTSVM: handle single-stepping. */
+ }
+
+ /* Ensure #VMEXIT auxiliary info. is no longer available. */
+ pVCpu->hmr0.s.svm.pSvmTransient = NULL;
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ return rc;
+}
+#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
+
+
+/**
+ * Checks if any expensive dtrace probes are enabled and we should go to the
+ * debug loop.
+ *
+ * @returns true if we should use debug loop, false if not.
+ */
+static bool hmR0SvmAnyExpensiveProbesEnabled(void)
+{
+ /* It's probably faster to OR the raw 32-bit counter variables together.
+ Since the variables are in an array and the probes are next to one
+ another (more or less), we have good locality. So, better read
+ eight-nine cache lines ever time and only have one conditional, than
+ 128+ conditionals, right? */
+ return ( VBOXVMM_R0_HMSVM_VMEXIT_ENABLED_RAW() /* expensive too due to context */
+ | VBOXVMM_XCPT_DE_ENABLED_RAW()
+ | VBOXVMM_XCPT_DB_ENABLED_RAW()
+ | VBOXVMM_XCPT_BP_ENABLED_RAW()
+ | VBOXVMM_XCPT_OF_ENABLED_RAW()
+ | VBOXVMM_XCPT_BR_ENABLED_RAW()
+ | VBOXVMM_XCPT_UD_ENABLED_RAW()
+ | VBOXVMM_XCPT_NM_ENABLED_RAW()
+ | VBOXVMM_XCPT_DF_ENABLED_RAW()
+ | VBOXVMM_XCPT_TS_ENABLED_RAW()
+ | VBOXVMM_XCPT_NP_ENABLED_RAW()
+ | VBOXVMM_XCPT_SS_ENABLED_RAW()
+ | VBOXVMM_XCPT_GP_ENABLED_RAW()
+ | VBOXVMM_XCPT_PF_ENABLED_RAW()
+ | VBOXVMM_XCPT_MF_ENABLED_RAW()
+ | VBOXVMM_XCPT_AC_ENABLED_RAW()
+ | VBOXVMM_XCPT_XF_ENABLED_RAW()
+ | VBOXVMM_XCPT_VE_ENABLED_RAW()
+ | VBOXVMM_XCPT_SX_ENABLED_RAW()
+ | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
+ | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
+ ) != 0
+ || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
+ | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
+ | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
+ | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
+ | VBOXVMM_INSTR_INVD_ENABLED_RAW()
+ | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
+ | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
+ | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
+ | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
+ | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
+ | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
+ | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
+ | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
+ | VBOXVMM_INSTR_STR_ENABLED_RAW()
+ | VBOXVMM_INSTR_LTR_ENABLED_RAW()
+ //| VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
+ | VBOXVMM_INSTR_RSM_ENABLED_RAW()
+ //| VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
+ //| VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
+ //| VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
+ //| VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
+ | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
+ | VBOXVMM_INSTR_SVM_VMRUN_ENABLED_RAW()
+ | VBOXVMM_INSTR_SVM_VMLOAD_ENABLED_RAW()
+ | VBOXVMM_INSTR_SVM_VMSAVE_ENABLED_RAW()
+ | VBOXVMM_INSTR_SVM_STGI_ENABLED_RAW()
+ | VBOXVMM_INSTR_SVM_CLGI_ENABLED_RAW()
+ ) != 0
+ || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
+ | VBOXVMM_EXIT_HALT_ENABLED_RAW()
+ | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
+ | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
+ | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
+ | VBOXVMM_EXIT_INVD_ENABLED_RAW()
+ | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
+ | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
+ | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
+ | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
+ | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
+ | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
+ | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
+ | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
+ | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
+ | VBOXVMM_EXIT_STR_ENABLED_RAW()
+ | VBOXVMM_EXIT_LTR_ENABLED_RAW()
+ //| VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
+ | VBOXVMM_EXIT_RSM_ENABLED_RAW()
+ //| VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
+ //| VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
+ //| VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
+ //| VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
+ | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
+ | VBOXVMM_EXIT_SVM_VMRUN_ENABLED_RAW()
+ | VBOXVMM_EXIT_SVM_VMLOAD_ENABLED_RAW()
+ | VBOXVMM_EXIT_SVM_VMSAVE_ENABLED_RAW()
+ | VBOXVMM_EXIT_SVM_STGI_ENABLED_RAW()
+ | VBOXVMM_EXIT_SVM_CLGI_ENABLED_RAW()
+ ) != 0;
+}
+
+
+/**
+ * Runs the guest code using AMD-V.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVMCPUCC pVCpu)
+{
+ AssertPtr(pVCpu);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Assert(VMMRZCallRing3IsEnabled(pVCpu));
+ Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
+ HMSVM_ASSERT_PREEMPT_SAFE(pVCpu);
+
+ uint32_t cLoops = 0;
+ VBOXSTRICTRC rc;
+ for (;;)
+ {
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ bool const fInNestedGuestMode = CPUMIsGuestInSvmNestedHwVirtMode(pCtx);
+#else
+ NOREF(pCtx);
+ bool const fInNestedGuestMode = false;
+#endif
+ if (!fInNestedGuestMode)
+ {
+ if ( !pVCpu->hm.s.fUseDebugLoop
+ && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0SvmAnyExpensiveProbesEnabled())
+ && !DBGFIsStepping(pVCpu)
+ && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
+ rc = hmR0SvmRunGuestCodeNormal(pVCpu, &cLoops);
+ else
+ rc = hmR0SvmRunGuestCodeDebug(pVCpu, &cLoops);
+ }
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ else
+ rc = hmR0SvmRunGuestCodeNested(pVCpu, &cLoops);
+
+ if (rc == VINF_SVM_VMRUN)
+ {
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+ continue;
+ }
+ if (rc == VINF_SVM_VMEXIT)
+ {
+ Assert(!CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+ continue;
+ }
+#endif
+ break;
+ }
+
+ /* Fixup error codes. */
+ if (rc == VERR_EM_INTERPRETER)
+ rc = VINF_EM_RAW_EMULATE_INSTR;
+ else if (rc == VINF_EM_RESET)
+ rc = VINF_EM_TRIPLE_FAULT;
+
+ /* Prepare to return to ring-3. This will remove longjmp notifications. */
+ rc = hmR0SvmExitToRing3(pVCpu, rc);
+ Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
+ Assert(!VMMR0AssertionIsNotificationSet(pVCpu));
+ return rc;
+}
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+
+/**
+ * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
+ *
+ * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
+ * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO.
+ */
+static bool hmR0SvmIsIoInterceptSet(void *pvIoBitmap, PSVMIOIOEXITINFO pIoExitInfo)
+{
+ const uint16_t u16Port = pIoExitInfo->n.u16Port;
+ const SVMIOIOTYPE enmIoType = (SVMIOIOTYPE)pIoExitInfo->n.u1Type;
+ const uint8_t cbReg = (pIoExitInfo->u >> SVM_IOIO_OP_SIZE_SHIFT) & 7;
+ const uint8_t cAddrSizeBits = ((pIoExitInfo->u >> SVM_IOIO_ADDR_SIZE_SHIFT) & 7) << 4;
+ const uint8_t iEffSeg = pIoExitInfo->n.u3Seg;
+ const bool fRep = pIoExitInfo->n.u1Rep;
+ const bool fStrIo = pIoExitInfo->n.u1Str;
+
+ return CPUMIsSvmIoInterceptSet(pvIoBitmap, u16Port, enmIoType, cbReg, cAddrSizeBits, iEffSeg, fRep, fStrIo,
+ NULL /* pIoExitInfo */);
+}
+
+
+/**
+ * Handles a nested-guest \#VMEXIT (for all EXITCODE values except
+ * SVM_EXIT_INVALID).
+ *
+ * @returns VBox status code (informational status codes included).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+static VBOXSTRICTRC hmR0SvmHandleExitNested(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_ASSERT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+ Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
+ Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
+
+ /*
+ * We import the complete state here because we use separate VMCBs for the guest and the
+ * nested-guest, and the guest's VMCB is used after the #VMEXIT. We can only save/restore
+ * the #VMEXIT specific state if we used the same VMCB for both guest and nested-guest.
+ */
+#define NST_GST_VMEXIT_CALL_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
+ do { \
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
+ return IEMExecSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); \
+ } while (0)
+
+ /*
+ * For all the #VMEXITs here we primarily figure out if the #VMEXIT is expected by the
+ * nested-guest. If it isn't, it should be handled by the (outer) guest.
+ */
+ PSVMVMCB pVmcbNstGst = &pVCpu->cpum.GstCtx.hwvirt.svm.Vmcb;
+ PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PSVMVMCBCTRL pVmcbNstGstCtrl = &pVmcbNstGst->ctrl;
+ uint64_t const uExitCode = pVmcbNstGstCtrl->u64ExitCode;
+ uint64_t const uExitInfo1 = pVmcbNstGstCtrl->u64ExitInfo1;
+ uint64_t const uExitInfo2 = pVmcbNstGstCtrl->u64ExitInfo2;
+
+ Assert(uExitCode == pVmcbNstGstCtrl->u64ExitCode);
+ switch (uExitCode)
+ {
+ case SVM_EXIT_CPUID:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CPUID))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitCpuid(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_RDTSC:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSC))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitRdtsc(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_RDTSCP:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDTSCP))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitRdtscp(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_MONITOR:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MONITOR))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitMonitor(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_MWAIT:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MWAIT))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitMwait(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_HLT:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_HLT))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitHlt(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_MSR:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_MSR_PROT))
+ {
+ uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
+ uint16_t offMsrpm;
+ uint8_t uMsrpmBit;
+ int rc = CPUMGetSvmMsrpmOffsetAndBit(idMsr, &offMsrpm, &uMsrpmBit);
+ if (RT_SUCCESS(rc))
+ {
+ Assert(uMsrpmBit == 0 || uMsrpmBit == 2 || uMsrpmBit == 4 || uMsrpmBit == 6);
+ Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+
+ uint8_t const * const pbMsrBitmap = &pVCpu->cpum.GstCtx.hwvirt.svm.abMsrBitmap[offMsrpm];
+ bool const fInterceptRead = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit));
+ bool const fInterceptWrite = RT_BOOL(*pbMsrBitmap & RT_BIT(uMsrpmBit + 1));
+
+ if ( (fInterceptWrite && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
+ || (fInterceptRead && pVmcbNstGstCtrl->u64ExitInfo1 == SVM_EXIT1_MSR_READ))
+ {
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ }
+ }
+ else
+ {
+ /*
+ * MSRs not covered by the MSRPM automatically cause an #VMEXIT.
+ * See AMD-V spec. "15.11 MSR Intercepts".
+ */
+ Assert(rc == VERR_OUT_OF_RANGE);
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ }
+ }
+ return hmR0SvmExitMsr(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_IOIO:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IOIO_PROT))
+ {
+ SVMIOIOEXITINFO IoExitInfo;
+ IoExitInfo.u = pVmcbNstGst->ctrl.u64ExitInfo1;
+ bool const fIntercept = hmR0SvmIsIoInterceptSet(pVCpu->cpum.GstCtx.hwvirt.svm.abIoBitmap, &IoExitInfo);
+ if (fIntercept)
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ }
+ return hmR0SvmExitIOInstr(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_PF:
+ {
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hmr0.s.fNestedPaging)
+ {
+ uint32_t const u32ErrCode = pVmcbNstGstCtrl->u64ExitInfo1;
+ uint64_t const uFaultAddress = pVmcbNstGstCtrl->u64ExitInfo2;
+
+ /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, u32ErrCode, uFaultAddress);
+
+ /* If the nested-guest is not intercepting #PFs, forward the #PF to the guest. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
+ hmR0SvmSetPendingXcptPF(pVCpu, u32ErrCode, uFaultAddress);
+ return VINF_SUCCESS;
+ }
+ return hmR0SvmExitXcptPF(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_UD:
+ {
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_UD))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+ }
+
+ case SVM_EXIT_XCPT_MF:
+ {
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_MF))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitXcptMF(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_DB:
+ {
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_DB))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmNestedExitXcptDB(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_AC:
+ {
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_AC))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitXcptAC(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_BP:
+ {
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_BP))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmNestedExitXcptBP(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_READ_CR0:
+ case SVM_EXIT_READ_CR3:
+ case SVM_EXIT_READ_CR4:
+ {
+ uint8_t const uCr = uExitCode - SVM_EXIT_READ_CR0;
+ if (CPUMIsGuestSvmReadCRxInterceptSet(pVCpu, pCtx, uCr))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitReadCRx(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_CR0_SEL_WRITE:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CR0_SEL_WRITE))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_WRITE_CR0:
+ case SVM_EXIT_WRITE_CR3:
+ case SVM_EXIT_WRITE_CR4:
+ case SVM_EXIT_WRITE_CR8: /* CR8 writes would go to the V_TPR rather than here, since we run with V_INTR_MASKING. */
+ {
+ uint8_t const uCr = uExitCode - SVM_EXIT_WRITE_CR0;
+ Log4Func(("Write CR%u: uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", uCr, uExitInfo1, uExitInfo2));
+
+ if (CPUMIsGuestSvmWriteCRxInterceptSet(pVCpu, pCtx, uCr))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitWriteCRx(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_PAUSE:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_PAUSE))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitPause(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_VINTR:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VINTR))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_NMI:
+ case SVM_EXIT_SMI:
+ case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
+ {
+ /*
+ * We shouldn't direct physical interrupts, NMIs, SMIs to the nested-guest.
+ *
+ * Although we don't intercept SMIs, the nested-guest might. Therefore, we might
+ * get an SMI #VMEXIT here so simply ignore rather than causing a corresponding
+ * nested-guest #VMEXIT.
+ *
+ * We shall import the complete state here as we may cause #VMEXITs from ring-3
+ * while trying to inject interrupts, see comment at the top of this function.
+ */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_ALL);
+ return hmR0SvmExitIntr(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_FERR_FREEZE:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_FERR_FREEZE))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_INVLPG:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPG))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitInvlpg(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_WBINVD:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_WBINVD))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitWbinvd(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_INVD:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVD))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitInvd(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_RDPMC:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RDPMC))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitRdpmc(pVCpu, pSvmTransient);
+ }
+
+ default:
+ {
+ switch (uExitCode)
+ {
+ case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
+ case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
+ case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
+ case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
+ {
+ uint8_t const uDr = uExitCode - SVM_EXIT_READ_DR0;
+ if (CPUMIsGuestSvmReadDRxInterceptSet(pVCpu, pCtx, uDr))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
+ case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
+ case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
+ case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
+ {
+ uint8_t const uDr = uExitCode - SVM_EXIT_WRITE_DR0;
+ if (CPUMIsGuestSvmWriteDRxInterceptSet(pVCpu, pCtx, uDr))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitWriteDRx(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XCPT_DE:
+ /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
+ case SVM_EXIT_XCPT_OF:
+ case SVM_EXIT_XCPT_BR:
+ /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
+ case SVM_EXIT_XCPT_NM:
+ case SVM_EXIT_XCPT_DF:
+ case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
+ case SVM_EXIT_XCPT_TS:
+ case SVM_EXIT_XCPT_NP:
+ case SVM_EXIT_XCPT_SS:
+ case SVM_EXIT_XCPT_GP:
+ /* SVM_EXIT_XCPT_PF: */ /* Handled above. */
+ case SVM_EXIT_XCPT_15: /* Reserved. */
+ /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
+ case SVM_EXIT_XCPT_MC:
+ case SVM_EXIT_XCPT_XF:
+ case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
+ case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
+ case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
+ {
+ uint8_t const uVector = uExitCode - SVM_EXIT_XCPT_0;
+ if (CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, uVector))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_XSETBV:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_XSETBV))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitXsetbv(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_TASK_SWITCH:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_TASK_SWITCH))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_IRET:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_IRET))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitIret(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_SHUTDOWN:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SHUTDOWN))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitShutdown(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_VMMCALL:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMMCALL))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitVmmCall(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_CLGI:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_CLGI))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitClgi(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_STGI:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_STGI))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitStgi(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_VMLOAD:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMLOAD))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitVmload(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_VMSAVE:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMSAVE))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitVmsave(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_INVLPGA:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_INVLPGA))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitInvlpga(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_VMRUN:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_VMRUN))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ return hmR0SvmExitVmrun(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_RSM:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_RSM))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+ }
+
+ case SVM_EXIT_SKINIT:
+ {
+ if (CPUMIsGuestSvmCtrlInterceptSet(pVCpu, pCtx, SVM_CTRL_INTERCEPT_SKINIT))
+ NST_GST_VMEXIT_CALL_RET(pVCpu, uExitCode, uExitInfo1, uExitInfo2);
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+ }
+
+ case SVM_EXIT_NPF:
+ {
+ Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
+ return hmR0SvmExitNestedPF(pVCpu, pSvmTransient);
+ }
+
+ case SVM_EXIT_INIT: /* We shouldn't get INIT signals while executing a nested-guest. */
+ return hmR0SvmExitUnexpected(pVCpu, pSvmTransient);
+
+ default:
+ {
+ AssertMsgFailed(("hmR0SvmHandleExitNested: Unknown exit code %#x\n", pSvmTransient->u64ExitCode));
+ pVCpu->hm.s.u32HMError = pSvmTransient->u64ExitCode;
+ return VERR_SVM_UNKNOWN_EXIT;
+ }
+ }
+ }
+ }
+ /* not reached */
+
+# undef NST_GST_VMEXIT_CALL_RET
+}
+
+#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
+
+/** @def VMEXIT_CALL_RET
+ * Used by hmR0SvmHandleExit and hmR0SvmDebugHandleExit
+ */
+#ifdef DEBUG_ramshankar
+# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) \
+ do { \
+ if ((a_fDbg) == 1) \
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL); \
+ int rc = a_CallExpr; \
+ if ((a_fDbg) == 1) \
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
+ return rc; \
+ } while (0)
+#else
+# define VMEXIT_CALL_RET(a_fDbg, a_CallExpr) return a_CallExpr
+#endif
+
+/**
+ * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
+ *
+ * @returns Strict VBox status code (informational status codes included).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ */
+static VBOXSTRICTRC hmR0SvmHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
+ Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
+
+ /*
+ * The ordering of the case labels is based on most-frequently-occurring #VMEXITs
+ * for most guests under normal workloads (for some definition of "normal").
+ */
+ uint64_t const uExitCode = pSvmTransient->u64ExitCode;
+ switch (uExitCode)
+ {
+ case SVM_EXIT_NPF: VMEXIT_CALL_RET(0, hmR0SvmExitNestedPF(pVCpu, pSvmTransient));
+ case SVM_EXIT_IOIO: VMEXIT_CALL_RET(0, hmR0SvmExitIOInstr(pVCpu, pSvmTransient));
+ case SVM_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0SvmExitRdtsc(pVCpu, pSvmTransient));
+ case SVM_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0SvmExitRdtscp(pVCpu, pSvmTransient));
+ case SVM_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0SvmExitCpuid(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_PF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptPF(pVCpu, pSvmTransient));
+ case SVM_EXIT_MSR: VMEXIT_CALL_RET(0, hmR0SvmExitMsr(pVCpu, pSvmTransient));
+ case SVM_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0SvmExitMonitor(pVCpu, pSvmTransient));
+ case SVM_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0SvmExitMwait(pVCpu, pSvmTransient));
+ case SVM_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0SvmExitHlt(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_XCPT_NMI: /* Should not occur, SVM_EXIT_NMI is used instead. */
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_NMI: VMEXIT_CALL_RET(0, hmR0SvmExitIntr(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_READ_CR0:
+ case SVM_EXIT_READ_CR3:
+ case SVM_EXIT_READ_CR4: VMEXIT_CALL_RET(0, hmR0SvmExitReadCRx(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_CR0_SEL_WRITE:
+ case SVM_EXIT_WRITE_CR0:
+ case SVM_EXIT_WRITE_CR3:
+ case SVM_EXIT_WRITE_CR4:
+ case SVM_EXIT_WRITE_CR8: VMEXIT_CALL_RET(0, hmR0SvmExitWriteCRx(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_VINTR: VMEXIT_CALL_RET(0, hmR0SvmExitVIntr(pVCpu, pSvmTransient));
+ case SVM_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0SvmExitPause(pVCpu, pSvmTransient));
+ case SVM_EXIT_VMMCALL: VMEXIT_CALL_RET(0, hmR0SvmExitVmmCall(pVCpu, pSvmTransient));
+ case SVM_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpg(pVCpu, pSvmTransient));
+ case SVM_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0SvmExitWbinvd(pVCpu, pSvmTransient));
+ case SVM_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0SvmExitInvd(pVCpu, pSvmTransient));
+ case SVM_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0SvmExitRdpmc(pVCpu, pSvmTransient));
+ case SVM_EXIT_IRET: VMEXIT_CALL_RET(0, hmR0SvmExitIret(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_DE: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDE(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_UD: VMEXIT_CALL_RET(0, hmR0SvmExitXcptUD(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_MF: VMEXIT_CALL_RET(0, hmR0SvmExitXcptMF(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_DB: VMEXIT_CALL_RET(0, hmR0SvmExitXcptDB(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_AC: VMEXIT_CALL_RET(0, hmR0SvmExitXcptAC(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_BP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptBP(pVCpu, pSvmTransient));
+ case SVM_EXIT_XCPT_GP: VMEXIT_CALL_RET(0, hmR0SvmExitXcptGP(pVCpu, pSvmTransient));
+ case SVM_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0SvmExitXsetbv(pVCpu, pSvmTransient));
+ case SVM_EXIT_FERR_FREEZE: VMEXIT_CALL_RET(0, hmR0SvmExitFerrFreeze(pVCpu, pSvmTransient));
+
+ default:
+ {
+ switch (pSvmTransient->u64ExitCode)
+ {
+ case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
+ case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
+ case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
+ case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
+ VMEXIT_CALL_RET(0, hmR0SvmExitReadDRx(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
+ case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
+ case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
+ case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
+ VMEXIT_CALL_RET(0, hmR0SvmExitWriteDRx(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0SvmExitTaskSwitch(pVCpu, pSvmTransient));
+ case SVM_EXIT_SHUTDOWN: VMEXIT_CALL_RET(0, hmR0SvmExitShutdown(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_SMI:
+ case SVM_EXIT_INIT:
+ {
+ /*
+ * We don't intercept SMIs. As for INIT signals, it really shouldn't ever happen here.
+ * If it ever does, we want to know about it so log the exit code and bail.
+ */
+ VMEXIT_CALL_RET(0, hmR0SvmExitUnexpected(pVCpu, pSvmTransient));
+ }
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ case SVM_EXIT_CLGI: VMEXIT_CALL_RET(0, hmR0SvmExitClgi(pVCpu, pSvmTransient));
+ case SVM_EXIT_STGI: VMEXIT_CALL_RET(0, hmR0SvmExitStgi(pVCpu, pSvmTransient));
+ case SVM_EXIT_VMLOAD: VMEXIT_CALL_RET(0, hmR0SvmExitVmload(pVCpu, pSvmTransient));
+ case SVM_EXIT_VMSAVE: VMEXIT_CALL_RET(0, hmR0SvmExitVmsave(pVCpu, pSvmTransient));
+ case SVM_EXIT_INVLPGA: VMEXIT_CALL_RET(0, hmR0SvmExitInvlpga(pVCpu, pSvmTransient));
+ case SVM_EXIT_VMRUN: VMEXIT_CALL_RET(0, hmR0SvmExitVmrun(pVCpu, pSvmTransient));
+#else
+ case SVM_EXIT_CLGI:
+ case SVM_EXIT_STGI:
+ case SVM_EXIT_VMLOAD:
+ case SVM_EXIT_VMSAVE:
+ case SVM_EXIT_INVLPGA:
+ case SVM_EXIT_VMRUN:
+#endif
+ case SVM_EXIT_RSM:
+ case SVM_EXIT_SKINIT:
+ {
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * The remaining should only be possible when debugging or dtracing.
+ */
+ case SVM_EXIT_XCPT_DE:
+ /* SVM_EXIT_XCPT_DB: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_NMI: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_BP: */ /* Handled above. */
+ case SVM_EXIT_XCPT_OF:
+ case SVM_EXIT_XCPT_BR:
+ /* SVM_EXIT_XCPT_UD: */ /* Handled above. */
+ case SVM_EXIT_XCPT_NM:
+ case SVM_EXIT_XCPT_DF:
+ case SVM_EXIT_XCPT_CO_SEG_OVERRUN:
+ case SVM_EXIT_XCPT_TS:
+ case SVM_EXIT_XCPT_NP:
+ case SVM_EXIT_XCPT_SS:
+ /* SVM_EXIT_XCPT_GP: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_PF: */
+ case SVM_EXIT_XCPT_15: /* Reserved. */
+ /* SVM_EXIT_XCPT_MF: */ /* Handled above. */
+ /* SVM_EXIT_XCPT_AC: */ /* Handled above. */
+ case SVM_EXIT_XCPT_MC:
+ case SVM_EXIT_XCPT_XF:
+ case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
+ case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
+ case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
+ VMEXIT_CALL_RET(0, hmR0SvmExitXcptGeneric(pVCpu, pSvmTransient));
+
+ case SVM_EXIT_SWINT: VMEXIT_CALL_RET(0, hmR0SvmExitSwInt(pVCpu, pSvmTransient));
+ case SVM_EXIT_TR_READ: VMEXIT_CALL_RET(0, hmR0SvmExitTrRead(pVCpu, pSvmTransient));
+ case SVM_EXIT_TR_WRITE: VMEXIT_CALL_RET(0, hmR0SvmExitTrWrite(pVCpu, pSvmTransient)); /* Also OS/2 TLB workaround. */
+
+ default:
+ {
+ AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#RX64\n", uExitCode));
+ pVCpu->hm.s.u32HMError = uExitCode;
+ return VERR_SVM_UNKNOWN_EXIT;
+ }
+ }
+ }
+ }
+ /* not reached */
+}
+
+
+/** @name Execution loop for single stepping, DBGF events and expensive Dtrace probes.
+ *
+ * The following few functions and associated structure contains the bloat
+ * necessary for providing detailed debug events and dtrace probes as well as
+ * reliable host side single stepping. This works on the principle of
+ * "subclassing" the normal execution loop and workers. We replace the loop
+ * method completely and override selected helpers to add necessary adjustments
+ * to their core operation.
+ *
+ * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
+ * any performance for debug and analysis features.
+ *
+ * @{
+ */
+
+/**
+ * Transient per-VCPU debug state of VMCS and related info. we save/restore in
+ * the debug run loop.
+ */
+typedef struct SVMRUNDBGSTATE
+{
+ /** The initial SVMVMCBCTRL::u64InterceptCtrl value (helps with restore). */
+ uint64_t bmInterceptInitial;
+ /** The initial SVMVMCBCTRL::u32InterceptXcpt value (helps with restore). */
+ uint32_t bmXcptInitial;
+ /** The initial SVMVMCBCTRL::u16InterceptRdCRx value (helps with restore). */
+ uint16_t bmInterceptRdCRxInitial;
+ /** The initial SVMVMCBCTRL::u16InterceptWrCRx value (helps with restore). */
+ uint16_t bmInterceptWrCRxInitial;
+ /** The initial SVMVMCBCTRL::u16InterceptRdDRx value (helps with restore). */
+ uint16_t bmInterceptRdDRxInitial;
+ /** The initial SVMVMCBCTRL::u16InterceptWrDRx value (helps with restore). */
+ uint16_t bmInterceptWrDRxInitial;
+
+ /** Whether we've actually modified the intercept control qword. */
+ bool fModifiedInterceptCtrl : 1;
+ /** Whether we've actually modified the exception bitmap. */
+ bool fModifiedXcptBitmap : 1;
+ /** Whether we've actually modified SVMVMCBCTRL::u16InterceptRdCRx. */
+ bool fModifiedInterceptRdCRx : 1;
+ /** Whether we've actually modified SVMVMCBCTRL::u16InterceptWrCRx. */
+ bool fModifiedInterceptWrCRx : 1;
+ /** Whether we've actually modified SVMVMCBCTRL::u16InterceptRdDRx. */
+ bool fModifiedInterceptRdDRx : 1;
+ /** Whether we've actually modified SVMVMCBCTRL::u16InterceptWrDRx. */
+ bool fModifiedInterceptWrDRx : 1;
+
+ /** The CS we started executing with. */
+ uint16_t uCsStart;
+ /** The RIP we started executing at. This is for detecting that we stepped. */
+ uint64_t uRipStart;
+
+ /** The sequence number of the Dtrace provider settings the state was
+ * configured against. */
+ uint32_t uDtraceSettingsSeqNo;
+ /** Extra stuff we need in SVMVMCBCTRL::u32InterceptXcpt. */
+ uint32_t bmXcptExtra;
+ /** Extra stuff we need in SVMVMCBCTRL::u64InterceptCtrl. */
+ uint64_t bmInterceptExtra;
+ /** Extra stuff we need in SVMVMCBCTRL::u16InterceptRdCRx. */
+ uint16_t bmInterceptRdCRxExtra;
+ /** Extra stuff we need in SVMVMCBCTRL::u16InterceptWrCRx. */
+ uint16_t bmInterceptWrCRxExtra;
+ /** Extra stuff we need in SVMVMCBCTRL::u16InterceptRdDRx. */
+ uint16_t bmInterceptRdDRxExtra;
+ /** Extra stuff we need in SVMVMCBCTRL::u16InterceptWrDRx. */
+ uint16_t bmInterceptWrDRxExtra;
+ /** VM-exits to check (one bit per VM-exit). */
+ uint32_t bmExitsToCheck[33];
+} SVMRUNDBGSTATE;
+AssertCompileMemberSize(SVMRUNDBGSTATE, bmExitsToCheck, (SVM_EXIT_MAX + 1 + 31) / 32 * 4);
+typedef SVMRUNDBGSTATE *PSVMRUNDBGSTATE;
+
+
+/**
+ * Initializes the SVMRUNDBGSTATE structure.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pSvmTransient The SVM-transient structure.
+ * @param pDbgState The debug state to initialize.
+ */
+static void hmR0SvmRunDebugStateInit(PVMCPUCC pVCpu, PCSVMTRANSIENT pSvmTransient, PSVMRUNDBGSTATE pDbgState)
+{
+ PSVMVMCB pVmcb = pSvmTransient->pVmcb;
+ pDbgState->bmInterceptInitial = pVmcb->ctrl.u64InterceptCtrl;
+ pDbgState->bmXcptInitial = pVmcb->ctrl.u32InterceptXcpt;
+ pDbgState->bmInterceptRdCRxInitial = pVmcb->ctrl.u16InterceptRdCRx;
+ pDbgState->bmInterceptWrCRxInitial = pVmcb->ctrl.u16InterceptWrCRx;
+ pDbgState->bmInterceptRdDRxInitial = pVmcb->ctrl.u16InterceptRdDRx;
+ pDbgState->bmInterceptWrDRxInitial = pVmcb->ctrl.u16InterceptWrDRx;
+
+ pDbgState->fModifiedInterceptCtrl = false;
+ pDbgState->fModifiedXcptBitmap = false;
+ pDbgState->fModifiedInterceptRdCRx = false;
+ pDbgState->fModifiedInterceptWrCRx = false;
+ pDbgState->fModifiedInterceptRdDRx = false;
+ pDbgState->fModifiedInterceptWrDRx = false;
+
+ pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
+ pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
+
+ /* We don't really need to zero these. */
+ pDbgState->bmInterceptExtra = 0;
+ pDbgState->bmXcptExtra = 0;
+ pDbgState->bmInterceptRdCRxExtra = 0;
+ pDbgState->bmInterceptWrCRxExtra = 0;
+ pDbgState->bmInterceptRdDRxExtra = 0;
+ pDbgState->bmInterceptWrDRxExtra = 0;
+}
+
+
+/**
+ * Updates the VMCB fields with changes requested by @a pDbgState.
+ *
+ * This is performed after hmR0SvmPreRunGuestDebugStateUpdate as well
+ * immediately before executing guest code, i.e. when interrupts are disabled.
+ * We don't check status codes here as we cannot easily assert or return in the
+ * latter case.
+ *
+ * @param pSvmTransient The SVM-transient structure.
+ * @param pDbgState The debug state.
+ */
+static void hmR0SvmPreRunGuestDebugStateApply(PSVMTRANSIENT pSvmTransient, PSVMRUNDBGSTATE pDbgState)
+{
+ /*
+ * Ensure desired flags in VMCS control fields are set.
+ */
+ PSVMVMCB const pVmcb = pSvmTransient->pVmcb;
+#define ADD_EXTRA_INTERCEPTS(a_VmcbCtrlField, a_bmExtra, a_fModified) do { \
+ if ((pVmcb->ctrl. a_VmcbCtrlField & (a_bmExtra)) != (a_bmExtra)) \
+ { \
+ pVmcb->ctrl. a_VmcbCtrlField |= (a_bmExtra); \
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; \
+ Log6Func((#a_VmcbCtrlField ": %#RX64\n", pVmcb->ctrl. a_VmcbCtrlField)); \
+ (a_fModified) = true; \
+ } \
+ } while (0)
+ ADD_EXTRA_INTERCEPTS(u64InterceptCtrl, pDbgState->bmInterceptExtra, pDbgState->fModifiedInterceptCtrl);
+ ADD_EXTRA_INTERCEPTS(u32InterceptXcpt, pDbgState->bmXcptExtra, pDbgState->fModifiedXcptBitmap);
+ ADD_EXTRA_INTERCEPTS(u16InterceptRdCRx, pDbgState->bmInterceptRdCRxExtra, pDbgState->fModifiedInterceptRdCRx);
+ ADD_EXTRA_INTERCEPTS(u16InterceptWrCRx, pDbgState->bmInterceptWrCRxExtra, pDbgState->fModifiedInterceptWrCRx);
+ ADD_EXTRA_INTERCEPTS(u16InterceptRdDRx, pDbgState->bmInterceptRdDRxExtra, pDbgState->fModifiedInterceptRdDRx);
+ ADD_EXTRA_INTERCEPTS(u16InterceptWrDRx, pDbgState->bmInterceptWrDRxExtra, pDbgState->fModifiedInterceptWrDRx);
+#undef ADD_EXTRA_INTERCEPTS
+}
+
+
+/**
+ * Restores VMCB fields that were changed by hmR0SvmPreRunGuestDebugStateApply
+ * for re-entry next time around.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pSvmTransient The SVM-transient structure.
+ * @param pDbgState The debug state.
+ */
+static void hmR0SvmRunDebugStateRevert(PSVMTRANSIENT pSvmTransient, PSVMRUNDBGSTATE pDbgState)
+{
+ /*
+ * Restore VM-exit control settings as we may not reenter this function the
+ * next time around.
+ */
+ PSVMVMCB const pVmcb = pSvmTransient->pVmcb;
+
+#define RESTORE_INTERCEPTS(a_VmcbCtrlField, a_bmInitial, a_fModified) do { \
+ if ((a_fModified)) \
+ { \
+ pVmcb->ctrl. a_VmcbCtrlField = (a_bmInitial); \
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS; \
+ } \
+ } while (0)
+ RESTORE_INTERCEPTS(u64InterceptCtrl, pDbgState->bmInterceptInitial, pDbgState->fModifiedInterceptCtrl);
+ RESTORE_INTERCEPTS(u32InterceptXcpt, pDbgState->bmXcptInitial, pDbgState->fModifiedXcptBitmap);
+ RESTORE_INTERCEPTS(u16InterceptRdCRx, pDbgState->bmInterceptRdCRxInitial, pDbgState->fModifiedInterceptRdCRx);
+ RESTORE_INTERCEPTS(u16InterceptWrCRx, pDbgState->bmInterceptWrCRxInitial, pDbgState->fModifiedInterceptWrCRx);
+ RESTORE_INTERCEPTS(u16InterceptRdDRx, pDbgState->bmInterceptRdDRxInitial, pDbgState->fModifiedInterceptRdDRx);
+ RESTORE_INTERCEPTS(u16InterceptWrDRx, pDbgState->bmInterceptWrDRxInitial, pDbgState->fModifiedInterceptWrDRx);
+#undef RESTORE_INTERCEPTS
+}
+
+
+/**
+ * Configures VM-exit controls for current DBGF and DTrace settings.
+ *
+ * This updates @a pDbgState and the VMCB execution control fields (in the debug
+ * state) to reflect the necessary VM-exits demanded by DBGF and DTrace.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient The SVM-transient structure. May update
+ * fUpdatedTscOffsettingAndPreemptTimer.
+ * @param pDbgState The debug state.
+ */
+static void hmR0SvmPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, PSVMRUNDBGSTATE pDbgState)
+{
+ /*
+ * Take down the dtrace serial number so we can spot changes.
+ */
+ pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
+ ASMCompilerBarrier();
+
+ /*
+ * Clear data members that we'll be rebuilding here.
+ */
+ pDbgState->bmXcptExtra = 0;
+ pDbgState->bmInterceptExtra = 0;
+ pDbgState->bmInterceptRdCRxExtra = 0;
+ pDbgState->bmInterceptWrCRxExtra = 0;
+ pDbgState->bmInterceptRdDRxExtra = 0;
+ pDbgState->bmInterceptWrDRxExtra = 0;
+ for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
+ pDbgState->bmExitsToCheck[i] = 0;
+
+ /*
+ * Software interrupts (INT XXh)
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
+ || VBOXVMM_INT_SOFTWARE_ENABLED())
+ {
+ pDbgState->bmInterceptExtra |= SVM_CTRL_INTERCEPT_INTN;
+ ASMBitSet(pDbgState->bmExitsToCheck, SVM_EXIT_SWINT);
+ }
+
+ /*
+ * INT3 breakpoints - triggered by #BP exceptions.
+ */
+ if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
+ pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
+
+ /*
+ * Exception bitmap and XCPT events+probes.
+ */
+#define SET_XCPT(a_iXcpt) do { \
+ pDbgState->bmXcptExtra |= RT_BIT_32(a_iXcpt); \
+ ASMBitSet(pDbgState->bmExitsToCheck, SVM_EXIT_XCPT_0 + (a_iXcpt)); \
+ } while (0)
+
+ for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
+ if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
+ SET_XCPT(iXcpt);
+
+ if (VBOXVMM_XCPT_DE_ENABLED()) SET_XCPT(X86_XCPT_DE);
+ if (VBOXVMM_XCPT_DB_ENABLED()) SET_XCPT(X86_XCPT_DB);
+ if (VBOXVMM_XCPT_BP_ENABLED()) SET_XCPT(X86_XCPT_BP);
+ if (VBOXVMM_XCPT_OF_ENABLED()) SET_XCPT(X86_XCPT_OF);
+ if (VBOXVMM_XCPT_BR_ENABLED()) SET_XCPT(X86_XCPT_BR);
+ if (VBOXVMM_XCPT_UD_ENABLED()) SET_XCPT(X86_XCPT_UD);
+ if (VBOXVMM_XCPT_NM_ENABLED()) SET_XCPT(X86_XCPT_NM);
+ if (VBOXVMM_XCPT_DF_ENABLED()) SET_XCPT(X86_XCPT_DF);
+ if (VBOXVMM_XCPT_TS_ENABLED()) SET_XCPT(X86_XCPT_TS);
+ if (VBOXVMM_XCPT_NP_ENABLED()) SET_XCPT(X86_XCPT_NP);
+ if (VBOXVMM_XCPT_SS_ENABLED()) SET_XCPT(X86_XCPT_SS);
+ if (VBOXVMM_XCPT_GP_ENABLED()) SET_XCPT(X86_XCPT_GP);
+ if (VBOXVMM_XCPT_PF_ENABLED()) SET_XCPT(X86_XCPT_PF);
+ if (VBOXVMM_XCPT_MF_ENABLED()) SET_XCPT(X86_XCPT_MF);
+ if (VBOXVMM_XCPT_AC_ENABLED()) SET_XCPT(X86_XCPT_AC);
+ if (VBOXVMM_XCPT_XF_ENABLED()) SET_XCPT(X86_XCPT_XF);
+ if (VBOXVMM_XCPT_VE_ENABLED()) SET_XCPT(X86_XCPT_VE);
+ if (VBOXVMM_XCPT_SX_ENABLED()) SET_XCPT(X86_XCPT_SX);
+
+#undef SET_XCPT
+
+ /*
+ * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
+ *
+ * Note! This is the reverse of what hmR0SvmHandleExitDtraceEvents does.
+ * So, when adding/changing/removing please don't forget to update it.
+ *
+ * Some of the macros are picking up local variables to save horizontal space,
+ * (being able to see it in a table is the lesser evil here).
+ */
+#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
+ ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
+ || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
+#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+#define SET_INCP_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fInterceptCtrl) \
+ if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
+ { \
+ (pDbgState)->bmInterceptExtra |= (a_fInterceptCtrl); \
+ AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
+ ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
+ } else do { } while (0)
+
+ /** @todo double check these */
+ /** @todo Check what more AMD-V specific we can intercept. */
+ //SET_INCP_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, SVM_EXIT_TASK_SWITCH, SVM_CTRL_INTERCEPT_TASK_SWITCH);
+ SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, SVM_EXIT_TASK_SWITCH);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_VMM_CALL, SVM_EXIT_VMMCALL, SVM_CTRL_INTERCEPT_VMMCALL);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, SVM_EXIT_VMMCALL);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SVM_VMRUN, SVM_EXIT_VMRUN, SVM_CTRL_INTERCEPT_VMRUN);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SVM_VMRUN, SVM_EXIT_VMRUN);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SVM_VMLOAD, SVM_EXIT_VMLOAD, SVM_CTRL_INTERCEPT_VMLOAD);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SVM_VMLOAD, SVM_EXIT_VMLOAD);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SVM_VMSAVE, SVM_EXIT_VMSAVE, SVM_CTRL_INTERCEPT_VMSAVE);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SVM_VMSAVE, SVM_EXIT_VMSAVE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SVM_STGI, SVM_EXIT_STGI, SVM_CTRL_INTERCEPT_STGI);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SVM_STGI, SVM_EXIT_STGI);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SVM_CLGI, SVM_EXIT_CLGI, SVM_CTRL_INTERCEPT_CLGI);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SVM_CLGI, SVM_EXIT_CLGI);
+
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_CPUID, SVM_EXIT_CPUID, SVM_CTRL_INTERCEPT_CPUID);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, SVM_EXIT_CPUID);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_HALT, SVM_EXIT_HLT, SVM_CTRL_INTERCEPT_HLT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, SVM_EXIT_HLT);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_INVD, SVM_EXIT_INVD, SVM_CTRL_INTERCEPT_INVD);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, SVM_EXIT_INVD);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_INVLPG, SVM_EXIT_INVLPG, SVM_CTRL_INTERCEPT_INVLPG);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, SVM_EXIT_INVLPG);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_RDPMC, SVM_EXIT_RDPMC, SVM_CTRL_INTERCEPT_RDPMC);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, SVM_EXIT_RDPMC);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_RDTSC, SVM_EXIT_RDTSC, SVM_CTRL_INTERCEPT_RDTSC);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, SVM_EXIT_RDTSC);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_RDTSCP, SVM_EXIT_RDTSCP, SVM_CTRL_INTERCEPT_RDTSCP);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, SVM_EXIT_RDTSCP);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_RSM, SVM_EXIT_RSM, SVM_CTRL_INTERCEPT_RSM);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, SVM_EXIT_RSM);
+
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
+ pDbgState->bmInterceptRdCRxExtra = 0xffff;
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ) || IS_EITHER_ENABLED(pVM, EXIT_CRX_READ))
+ ASMBitSetRange(pDbgState->bmExitsToCheck, SVM_EXIT_READ_CR0, SVM_EXIT_READ_CR15 + 1);
+
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
+ pDbgState->bmInterceptWrCRxExtra = 0xffff;
+ if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE) || IS_EITHER_ENABLED(pVM, EXIT_CRX_WRITE))
+ {
+ ASMBitSetRange(pDbgState->bmExitsToCheck, SVM_EXIT_WRITE_CR0, SVM_EXIT_WRITE_CR15 + 1);
+ ASMBitSet(pDbgState->bmExitsToCheck, SVM_EXIT_CR0_SEL_WRITE);
+ }
+
+ if (IS_EITHER_ENABLED(pVM, INSTR_DRX_READ))
+ pDbgState->bmInterceptRdDRxExtra = 0xffff;
+ if (IS_EITHER_ENABLED(pVM, INSTR_DRX_READ) || IS_EITHER_ENABLED(pVM, EXIT_DRX_READ))
+ ASMBitSetRange(pDbgState->bmExitsToCheck, SVM_EXIT_READ_DR0, SVM_EXIT_READ_DR15 + 1);
+
+ if (IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
+ pDbgState->bmInterceptWrDRxExtra = 0xffff;
+ if (IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE) || IS_EITHER_ENABLED(pVM, EXIT_DRX_WRITE))
+ ASMBitSetRange(pDbgState->bmExitsToCheck, SVM_EXIT_WRITE_DR0, SVM_EXIT_WRITE_DR15 + 1);
+
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_RDMSR, SVM_EXIT_MSR); /** @todo modify bitmap to intercept almost everything? (Clearing MSR_PROT just means no intercepts.) */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, SVM_EXIT_MSR);
+ SET_ONLY_XBM_IF_EITHER_EN(INSTR_WRMSR, SVM_EXIT_MSR); /** @todo ditto */
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, SVM_EXIT_MSR);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_MWAIT, SVM_EXIT_MWAIT, SVM_CTRL_INTERCEPT_MWAIT);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, SVM_EXIT_MWAIT);
+ if (ASMBitTest(pDbgState->bmExitsToCheck, SVM_EXIT_MWAIT))
+ ASMBitSet(pDbgState->bmExitsToCheck, SVM_EXIT_MWAIT_ARMED);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_MONITOR, SVM_EXIT_MONITOR, SVM_CTRL_INTERCEPT_MONITOR);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, SVM_EXIT_MONITOR);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_PAUSE, SVM_EXIT_PAUSE, SVM_CTRL_INTERCEPT_PAUSE);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, SVM_EXIT_PAUSE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SIDT, SVM_EXIT_IDTR_READ, SVM_CTRL_INTERCEPT_IDTR_READS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, SVM_EXIT_IDTR_READ);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_LIDT, SVM_EXIT_IDTR_WRITE, SVM_CTRL_INTERCEPT_IDTR_WRITES);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, SVM_EXIT_IDTR_WRITE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SGDT, SVM_EXIT_GDTR_READ, SVM_CTRL_INTERCEPT_GDTR_READS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, SVM_EXIT_GDTR_READ);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_LGDT, SVM_EXIT_GDTR_WRITE, SVM_CTRL_INTERCEPT_GDTR_WRITES);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, SVM_EXIT_GDTR_WRITE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_SLDT, SVM_EXIT_LDTR_READ, SVM_CTRL_INTERCEPT_LDTR_READS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, SVM_EXIT_LDTR_READ);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_LLDT, SVM_EXIT_LDTR_WRITE, SVM_CTRL_INTERCEPT_LDTR_WRITES);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, SVM_EXIT_LDTR_WRITE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_STR, SVM_EXIT_TR_READ, SVM_CTRL_INTERCEPT_TR_READS);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, SVM_EXIT_TR_READ);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_LTR, SVM_EXIT_TR_WRITE, SVM_CTRL_INTERCEPT_TR_WRITES);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, SVM_EXIT_TR_WRITE);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_WBINVD, SVM_EXIT_WBINVD, SVM_CTRL_INTERCEPT_WBINVD);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, SVM_EXIT_WBINVD);
+ SET_INCP_XBM_IF_EITHER_EN(INSTR_XSETBV, SVM_EXIT_XSETBV, SVM_CTRL_INTERCEPT_XSETBV);
+ SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, SVM_EXIT_XSETBV);
+
+ if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_TRIPLE_FAULT))
+ ASMBitSet(pDbgState->bmExitsToCheck, SVM_EXIT_SHUTDOWN);
+
+#undef IS_EITHER_ENABLED
+#undef SET_ONLY_XBM_IF_EITHER_EN
+#undef SET_INCP_XBM_IF_EITHER_EN
+
+ /*
+ * Sanitize the control stuff.
+ */
+ /** @todo filter out unsupported stuff? */
+ if ( pVCpu->hmr0.s.fDebugWantRdTscExit
+ != RT_BOOL(pDbgState->bmInterceptExtra & (SVM_CTRL_INTERCEPT_RDTSC | SVM_CTRL_INTERCEPT_RDTSCP)))
+ {
+ pVCpu->hmr0.s.fDebugWantRdTscExit ^= true;
+ /// @todo pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
+ RT_NOREF(pSvmTransient);
+ }
+
+ Log6(("HM: debug state: bmInterceptExtra=%#RX64 bmXcptExtra=%#RX32%s%s%s%s bmExitsToCheck=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
+ pDbgState->bmInterceptExtra, pDbgState->bmXcptExtra,
+ pDbgState->bmInterceptRdCRxExtra ? " rd-cr" : "",
+ pDbgState->bmInterceptWrCRxExtra ? " wr-cr" : "",
+ pDbgState->bmInterceptRdDRxExtra ? " rd-dr" : "",
+ pDbgState->bmInterceptWrDRxExtra ? " wr-dr" : "",
+ pDbgState->bmExitsToCheck[0],
+ pDbgState->bmExitsToCheck[1],
+ pDbgState->bmExitsToCheck[2],
+ pDbgState->bmExitsToCheck[3],
+ pDbgState->bmExitsToCheck[4]));
+}
+
+
+/**
+ * Fires off DBGF events and dtrace probes for a VM-exit, when it's
+ * appropriate.
+ *
+ * The caller has checked the VM-exit against the SVMRUNDBGSTATE::bmExitsToCheck
+ * bitmap.
+ *
+ * @returns Strict VBox status code (i.e. informational status codes too).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient The SVM-transient structure.
+ * @param uExitCode The VM-exit code.
+ *
+ * @remarks The name of this function is displayed by dtrace, so keep it short
+ * and to the point. No longer than 33 chars long, please.
+ */
+static VBOXSTRICTRC hmR0SvmHandleExitDtraceEvents(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, uint64_t uExitCode)
+{
+ /*
+ * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
+ * same time check whether any corresponding Dtrace event is enabled (fDtrace).
+ *
+ * Note! This is the reverse operation of what hmR0SvmPreRunGuestDebugStateUpdate
+ * does. Must add/change/remove both places. Same ordering, please.
+ *
+ * Added/removed events must also be reflected in the next section
+ * where we dispatch dtrace events.
+ */
+ bool fDtrace1 = false;
+ bool fDtrace2 = false;
+ DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
+ DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
+ uint64_t uEventArg = 0;
+#define SET_XCPT(a_XcptName) \
+ do { \
+ enmEvent2 = RT_CONCAT(DBGFEVENT_XCPT_, a_XcptName); \
+ fDtrace2 = RT_CONCAT3(VBOXVMM_XCPT_, a_XcptName, _ENABLED)(); \
+ } while (0)
+#define SET_EXIT(a_EventSubName) \
+ do { \
+ enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
+ fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
+ } while (0)
+#define SET_BOTH(a_EventSubName) \
+ do { \
+ enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
+ enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
+ fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
+ fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
+ } while (0)
+ switch (uExitCode)
+ {
+ case SVM_EXIT_SWINT:
+ enmEvent2 = DBGFEVENT_INTERRUPT_SOFTWARE;
+ fDtrace2 = VBOXVMM_INT_SOFTWARE_ENABLED();
+ uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1;
+ break;
+
+ case SVM_EXIT_XCPT_DE: SET_XCPT(DE); break;
+ case SVM_EXIT_XCPT_DB: SET_XCPT(DB); break;
+ case SVM_EXIT_XCPT_BP: SET_XCPT(BP); break;
+ case SVM_EXIT_XCPT_OF: SET_XCPT(OF); break;
+ case SVM_EXIT_XCPT_BR: SET_XCPT(BR); break;
+ case SVM_EXIT_XCPT_UD: SET_XCPT(UD); break;
+ case SVM_EXIT_XCPT_NM: SET_XCPT(NM); break;
+ case SVM_EXIT_XCPT_DF: SET_XCPT(DF); break;
+ case SVM_EXIT_XCPT_TS: SET_XCPT(TS); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+ case SVM_EXIT_XCPT_NP: SET_XCPT(NP); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+ case SVM_EXIT_XCPT_SS: SET_XCPT(SS); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+ case SVM_EXIT_XCPT_GP: SET_XCPT(GP); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+ case SVM_EXIT_XCPT_PF: SET_XCPT(PF); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+ case SVM_EXIT_XCPT_MF: SET_XCPT(MF); break;
+ case SVM_EXIT_XCPT_AC: SET_XCPT(AC); break;
+ case SVM_EXIT_XCPT_XF: SET_XCPT(XF); break;
+ case SVM_EXIT_XCPT_VE: SET_XCPT(VE); break;
+ case SVM_EXIT_XCPT_SX: SET_XCPT(SX); uEventArg = pSvmTransient->pVmcb->ctrl.u64ExitInfo1; break;
+
+ case SVM_EXIT_XCPT_2: enmEvent2 = DBGFEVENT_XCPT_02; break;
+ case SVM_EXIT_XCPT_9: enmEvent2 = DBGFEVENT_XCPT_09; break;
+ case SVM_EXIT_XCPT_15: enmEvent2 = DBGFEVENT_XCPT_0f; break;
+ case SVM_EXIT_XCPT_18: enmEvent2 = DBGFEVENT_XCPT_MC; break;
+ case SVM_EXIT_XCPT_21: enmEvent2 = DBGFEVENT_XCPT_15; break;
+ case SVM_EXIT_XCPT_22: enmEvent2 = DBGFEVENT_XCPT_16; break;
+ case SVM_EXIT_XCPT_23: enmEvent2 = DBGFEVENT_XCPT_17; break;
+ case SVM_EXIT_XCPT_24: enmEvent2 = DBGFEVENT_XCPT_18; break;
+ case SVM_EXIT_XCPT_25: enmEvent2 = DBGFEVENT_XCPT_19; break;
+ case SVM_EXIT_XCPT_26: enmEvent2 = DBGFEVENT_XCPT_1a; break;
+ case SVM_EXIT_XCPT_27: enmEvent2 = DBGFEVENT_XCPT_1b; break;
+ case SVM_EXIT_XCPT_28: enmEvent2 = DBGFEVENT_XCPT_1c; break;
+ case SVM_EXIT_XCPT_29: enmEvent2 = DBGFEVENT_XCPT_1d; break;
+ case SVM_EXIT_XCPT_31: enmEvent2 = DBGFEVENT_XCPT_1f; break;
+
+ case SVM_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
+ case SVM_EXIT_VMMCALL: SET_BOTH(VMM_CALL); break;
+ case SVM_EXIT_VMRUN: SET_BOTH(SVM_VMRUN); break;
+ case SVM_EXIT_VMLOAD: SET_BOTH(SVM_VMLOAD); break;
+ case SVM_EXIT_VMSAVE: SET_BOTH(SVM_VMSAVE); break;
+ case SVM_EXIT_STGI: SET_BOTH(SVM_STGI); break;
+ case SVM_EXIT_CLGI: SET_BOTH(SVM_CLGI); break;
+ case SVM_EXIT_CPUID: SET_BOTH(CPUID); break;
+ case SVM_EXIT_HLT: SET_BOTH(HALT); break;
+ case SVM_EXIT_INVD: SET_BOTH(INVD); break;
+ case SVM_EXIT_INVLPG: SET_BOTH(INVLPG); break;
+ case SVM_EXIT_RDPMC: SET_BOTH(RDPMC); break;
+ case SVM_EXIT_RDTSC: SET_BOTH(RDTSC); break;
+ case SVM_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
+ case SVM_EXIT_RSM: SET_BOTH(RSM); break;
+
+ case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
+ case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
+ case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
+ case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
+ SET_BOTH(CRX_READ);
+ uEventArg = uExitCode - SVM_EXIT_READ_CR0;
+ break;
+ case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
+ case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
+ case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
+ case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
+ case SVM_EXIT_CR0_SEL_WRITE:
+ SET_BOTH(CRX_WRITE);
+ uEventArg = uExitCode - SVM_EXIT_WRITE_CR0;
+ break;
+ case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
+ case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
+ case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
+ case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
+ SET_BOTH(DRX_READ);
+ uEventArg = uExitCode - SVM_EXIT_READ_DR0;
+ break;
+ case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
+ case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
+ case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
+ case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
+ SET_BOTH(DRX_WRITE);
+ uEventArg = uExitCode - SVM_EXIT_WRITE_DR0;
+ break;
+ case SVM_EXIT_MSR:
+ if (pSvmTransient->pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
+ SET_BOTH(WRMSR);
+ else
+ SET_BOTH(RDMSR);
+ break;
+ case SVM_EXIT_MWAIT_ARMED:
+ case SVM_EXIT_MWAIT: SET_BOTH(MWAIT); break;
+ case SVM_EXIT_MONITOR: SET_BOTH(MONITOR); break;
+ case SVM_EXIT_PAUSE: SET_BOTH(PAUSE); break;
+ case SVM_EXIT_IDTR_READ: SET_BOTH(SIDT); break;
+ case SVM_EXIT_IDTR_WRITE: SET_BOTH(LIDT); break;
+ case SVM_EXIT_GDTR_READ: SET_BOTH(SGDT); break;
+ case SVM_EXIT_GDTR_WRITE: SET_BOTH(LGDT); break;
+ case SVM_EXIT_LDTR_READ: SET_BOTH(SLDT); break;
+ case SVM_EXIT_LDTR_WRITE: SET_BOTH(LLDT); break;
+ case SVM_EXIT_TR_READ: SET_BOTH(STR); break;
+ case SVM_EXIT_TR_WRITE: SET_BOTH(LTR); break;
+ case SVM_EXIT_WBINVD: SET_BOTH(WBINVD); break;
+ case SVM_EXIT_XSETBV: SET_BOTH(XSETBV); break;
+
+ case SVM_EXIT_SHUTDOWN:
+ enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
+ //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
+ break;
+
+ default:
+ AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitCode));
+ break;
+ }
+#undef SET_BOTH
+#undef SET_EXIT
+
+ /*
+ * Dtrace tracepoints go first. We do them here at once so we don't
+ * have to copy the guest state saving and stuff a few dozen times.
+ * Down side is that we've got to repeat the switch, though this time
+ * we use enmEvent since the probes are a subset of what DBGF does.
+ */
+ if (fDtrace1 || fDtrace2)
+ {
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ switch (enmEvent1)
+ {
+ /** @todo consider which extra parameters would be helpful for each probe. */
+ case DBGFEVENT_END: break;
+ case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
+ case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, (uint32_t)uEventArg); break;
+ case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, (uint32_t)uEventArg); break;
+ case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, (uint32_t)uEventArg); break;
+ case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, (uint32_t)uEventArg); break;
+ case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, (uint32_t)uEventArg, pCtx->cr2); break;
+ case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
+ case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, (uint32_t)uEventArg); break;
+ case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
+ case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
+ case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
+ RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
+ case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SVM_VMRUN: VBOXVMM_INSTR_SVM_VMRUN(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SVM_VMLOAD: VBOXVMM_INSTR_SVM_VMLOAD(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SVM_VMSAVE: VBOXVMM_INSTR_SVM_VMSAVE(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SVM_STGI: VBOXVMM_INSTR_SVM_STGI(pVCpu, pCtx); break;
+ case DBGFEVENT_INSTR_SVM_CLGI: VBOXVMM_INSTR_SVM_CLGI(pVCpu, pCtx); break;
+ default: AssertMsgFailed(("enmEvent1=%d uExitCode=%d\n", enmEvent1, uExitCode)); break;
+ }
+ switch (enmEvent2)
+ {
+ /** @todo consider which extra parameters would be helpful for each probe. */
+ case DBGFEVENT_END: break;
+ case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
+ case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
+ case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
+ case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
+ RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
+ case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SVM_VMRUN: VBOXVMM_EXIT_SVM_VMRUN(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SVM_VMLOAD: VBOXVMM_EXIT_SVM_VMLOAD(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SVM_VMSAVE: VBOXVMM_EXIT_SVM_VMSAVE(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SVM_STGI: VBOXVMM_EXIT_SVM_STGI(pVCpu, pCtx); break;
+ case DBGFEVENT_EXIT_SVM_CLGI: VBOXVMM_EXIT_SVM_CLGI(pVCpu, pCtx); break;
+ default: AssertMsgFailed(("enmEvent2=%d uExitCode=%d\n", enmEvent2, uExitCode)); break;
+ }
+ }
+
+ /*
+ * Fire of the DBGF event, if enabled (our check here is just a quick one,
+ * the DBGF call will do a full check).
+ *
+ * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
+ * Note! If we have to events, we prioritize the first, i.e. the instruction
+ * one, in order to avoid event nesting.
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ VBOXSTRICTRC rcStrict;
+ if ( enmEvent1 != DBGFEVENT_END
+ && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
+ {
+ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
+ }
+ else if ( enmEvent2 != DBGFEVENT_END
+ && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
+ {
+ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
+ }
+ else
+ rcStrict = VINF_SUCCESS;
+ return rcStrict;
+}
+
+
+/**
+ * Handles a guest \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID),
+ * debug variant.
+ *
+ * @returns Strict VBox status code (informational status codes included).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ * @param pDbgState The runtime debug state.
+ */
+static VBOXSTRICTRC hmR0SvmDebugHandleExit(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient, PSVMRUNDBGSTATE pDbgState)
+{
+ Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
+ Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
+
+ /*
+ * Expensive (saves context) generic dtrace VM-exit probe.
+ */
+ uint64_t const uExitCode = pSvmTransient->u64ExitCode;
+ if (!VBOXVMM_R0_HMSVM_VMEXIT_ENABLED())
+ { /* more likely */ }
+ else
+ {
+ hmR0SvmImportGuestState(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, uExitCode, pSvmTransient->pVmcb);
+ }
+
+ /*
+ * Check for single stepping event if we're stepping.
+ */
+ if (pVCpu->hm.s.fSingleInstruction)
+ {
+ switch (uExitCode)
+ {
+ /* Various events: */
+ case SVM_EXIT_XCPT_0: case SVM_EXIT_XCPT_1: case SVM_EXIT_XCPT_2: case SVM_EXIT_XCPT_3:
+ case SVM_EXIT_XCPT_4: case SVM_EXIT_XCPT_5: case SVM_EXIT_XCPT_6: case SVM_EXIT_XCPT_7:
+ case SVM_EXIT_XCPT_8: case SVM_EXIT_XCPT_9: case SVM_EXIT_XCPT_10: case SVM_EXIT_XCPT_11:
+ case SVM_EXIT_XCPT_12: case SVM_EXIT_XCPT_13: case SVM_EXIT_XCPT_14: case SVM_EXIT_XCPT_15:
+ case SVM_EXIT_XCPT_16: case SVM_EXIT_XCPT_17: case SVM_EXIT_XCPT_18: case SVM_EXIT_XCPT_19:
+ case SVM_EXIT_XCPT_20: case SVM_EXIT_XCPT_21: case SVM_EXIT_XCPT_22: case SVM_EXIT_XCPT_23:
+ case SVM_EXIT_XCPT_24: case SVM_EXIT_XCPT_25: case SVM_EXIT_XCPT_26: case SVM_EXIT_XCPT_27:
+ case SVM_EXIT_XCPT_28: case SVM_EXIT_XCPT_29: case SVM_EXIT_XCPT_30: case SVM_EXIT_XCPT_31:
+ case SVM_EXIT_INTR:
+ case SVM_EXIT_NMI:
+ case SVM_EXIT_VINTR:
+ case SVM_EXIT_NPF:
+ case SVM_EXIT_AVIC_NOACCEL:
+
+ /* Instruction specific VM-exits: */
+ case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
+ case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
+ case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
+ case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
+ case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
+ case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
+ case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
+ case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
+ case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
+ case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
+ case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
+ case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
+ case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
+ case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
+ case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
+ case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
+ case SVM_EXIT_CR0_SEL_WRITE:
+ case SVM_EXIT_IDTR_READ:
+ case SVM_EXIT_GDTR_READ:
+ case SVM_EXIT_LDTR_READ:
+ case SVM_EXIT_TR_READ:
+ case SVM_EXIT_IDTR_WRITE:
+ case SVM_EXIT_GDTR_WRITE:
+ case SVM_EXIT_LDTR_WRITE:
+ case SVM_EXIT_TR_WRITE:
+ case SVM_EXIT_RDTSC:
+ case SVM_EXIT_RDPMC:
+ case SVM_EXIT_PUSHF:
+ case SVM_EXIT_POPF:
+ case SVM_EXIT_CPUID:
+ case SVM_EXIT_RSM:
+ case SVM_EXIT_IRET:
+ case SVM_EXIT_SWINT:
+ case SVM_EXIT_INVD:
+ case SVM_EXIT_PAUSE:
+ case SVM_EXIT_HLT:
+ case SVM_EXIT_INVLPG:
+ case SVM_EXIT_INVLPGA:
+ case SVM_EXIT_IOIO:
+ case SVM_EXIT_MSR:
+ case SVM_EXIT_TASK_SWITCH:
+ case SVM_EXIT_VMRUN:
+ case SVM_EXIT_VMMCALL:
+ case SVM_EXIT_VMLOAD:
+ case SVM_EXIT_VMSAVE:
+ case SVM_EXIT_STGI:
+ case SVM_EXIT_CLGI:
+ case SVM_EXIT_SKINIT:
+ case SVM_EXIT_RDTSCP:
+ case SVM_EXIT_ICEBP:
+ case SVM_EXIT_WBINVD:
+ case SVM_EXIT_MONITOR:
+ case SVM_EXIT_MWAIT:
+ case SVM_EXIT_MWAIT_ARMED:
+ case SVM_EXIT_XSETBV:
+ case SVM_EXIT_RDPRU:
+ case SVM_EXIT_WRITE_EFER_TRAP:
+ case SVM_EXIT_WRITE_CR0_TRAP: case SVM_EXIT_WRITE_CR1_TRAP: case SVM_EXIT_WRITE_CR2_TRAP: case SVM_EXIT_WRITE_CR3_TRAP:
+ case SVM_EXIT_WRITE_CR4_TRAP: case SVM_EXIT_WRITE_CR5_TRAP: case SVM_EXIT_WRITE_CR6_TRAP: case SVM_EXIT_WRITE_CR7_TRAP:
+ case SVM_EXIT_WRITE_CR8_TRAP: case SVM_EXIT_WRITE_CR9_TRAP: case SVM_EXIT_WRITE_CR10_TRAP: case SVM_EXIT_WRITE_CR11_TRAP:
+ case SVM_EXIT_WRITE_CR12_TRAP: case SVM_EXIT_WRITE_CR13_TRAP: case SVM_EXIT_WRITE_CR14_TRAP: case SVM_EXIT_WRITE_CR15_TRAP:
+ case SVM_EXIT_MCOMMIT:
+ {
+ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
+ || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
+ {
+ Log6Func(("VINF_EM_DBG_STEPPED: %04x:%08RX64 (exit %u)\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode));
+ return VINF_EM_DBG_STEPPED;
+ }
+ break;
+ }
+
+ /* Errors and unexpected events: */
+ case SVM_EXIT_FERR_FREEZE:
+ case SVM_EXIT_SHUTDOWN:
+ case SVM_EXIT_AVIC_INCOMPLETE_IPI:
+ break;
+
+ case SVM_EXIT_SMI:
+ case SVM_EXIT_INIT:
+ default:
+ AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitCode));
+ break;
+ }
+ }
+
+ /*
+ * Check for debugger event breakpoints and dtrace probes.
+ */
+ if ( uExitCode < sizeof(pDbgState->bmExitsToCheck) * 8U
+ && ASMBitTest(pDbgState->bmExitsToCheck, uExitCode) )
+ {
+ VBOXSTRICTRC rcStrict = hmR0SvmHandleExitDtraceEvents(pVCpu, pSvmTransient, uExitCode);
+ if (rcStrict != VINF_SUCCESS)
+ {
+ Log6Func(("%04x:%08RX64 (exit %u) -> %Rrc\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, uExitCode, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+ }
+ }
+
+ /*
+ * Normal processing.
+ */
+ return hmR0SvmHandleExit(pVCpu, pSvmTransient);
+}
+
+
+/**
+ * Runs the guest code using AMD-V in single step mode.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pcLoops Pointer to the number of executed loops.
+ */
+static VBOXSTRICTRC hmR0SvmRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
+{
+ uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hmr0.s.cMaxResumeLoops;
+ Assert(pcLoops);
+ Assert(*pcLoops <= cMaxResumeLoops);
+
+ SVMTRANSIENT SvmTransient;
+ RT_ZERO(SvmTransient);
+ SvmTransient.fUpdateTscOffsetting = true;
+ SvmTransient.pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+
+ /* Set HMCPU indicators. */
+ bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
+ pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
+ pVCpu->hmr0.s.fDebugWantRdTscExit = false;
+ pVCpu->hmr0.s.fUsingDebugLoop = true;
+
+ /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
+ SVMRUNDBGSTATE DbgState;
+ hmR0SvmRunDebugStateInit(pVCpu, &SvmTransient, &DbgState);
+ hmR0SvmPreRunGuestDebugStateUpdate(pVCpu, &SvmTransient, &DbgState);
+
+ /*
+ * The loop.
+ */
+ VBOXSTRICTRC rc = VERR_INTERNAL_ERROR_5;
+ for (;;)
+ {
+ Assert(!HMR0SuspendPending());
+ AssertMsg(pVCpu->hmr0.s.idEnteredCpu == RTMpCpuId(),
+ ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hmr0.s.idEnteredCpu,
+ (unsigned)RTMpCpuId(), *pcLoops));
+ bool fStepping = pVCpu->hm.s.fSingleInstruction;
+
+ /* Set up VM-execution controls the next two can respond to. */
+ hmR0SvmPreRunGuestDebugStateApply(&SvmTransient, &DbgState);
+
+ /* Preparatory work for running nested-guest code, this may force us to return to
+ ring-3. This bugger disables interrupts on VINF_SUCCESS! */
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
+ rc = hmR0SvmPreRunGuest(pVCpu, &SvmTransient);
+ if (rc != VINF_SUCCESS)
+ break;
+
+ /*
+ * No longjmps to ring-3 from this point on!!!
+ *
+ * Asserts() will still longjmp to ring-3 (but won't return), which is intentional,
+ * better than a kernel panic. This also disables flushing of the R0-logger instance.
+ */
+ hmR0SvmPreRunGuestCommitted(pVCpu, &SvmTransient);
+
+ /* Override any obnoxious code in the above two calls. */
+ hmR0SvmPreRunGuestDebugStateApply(&SvmTransient, &DbgState);
+#if 0
+ Log(("%04x:%08RX64 ds=%04x %04x:%08RX64 i=%#RX64\n",
+ SvmTransient.pVmcb->guest.CS.u16Sel, SvmTransient.pVmcb->guest.u64RIP, SvmTransient.pVmcb->guest.DS.u16Sel,
+ SvmTransient.pVmcb->guest.SS.u16Sel, SvmTransient.pVmcb->guest.u64RSP, SvmTransient.pVmcb->ctrl.EventInject.u));
+#endif
+
+ /*
+ * Finally execute guest code.
+ */
+ rc = hmR0SvmRunGuest(pVCpu, pVCpu->hmr0.s.svm.HCPhysVmcb);
+
+ /* Restore any residual host-state and save any bits shared between host and guest
+ into the guest-CPU state. Re-enables interrupts! */
+ hmR0SvmPostRunGuest(pVCpu, &SvmTransient, rc);
+#if 0
+ Log(("%04x:%08RX64 ds=%04x %04x:%08RX64 i=%#RX64 exit=%d\n",
+ SvmTransient.pVmcb->guest.CS.u16Sel, SvmTransient.pVmcb->guest.u64RIP, SvmTransient.pVmcb->guest.DS.u16Sel,
+ SvmTransient.pVmcb->guest.SS.u16Sel, SvmTransient.pVmcb->guest.u64RSP, SvmTransient.pVmcb->ctrl.EventInject.u, SvmTransient.u64ExitCode));
+#endif
+
+ if (RT_LIKELY( rc == VINF_SUCCESS /* Check for VMRUN errors. */
+ && SvmTransient.u64ExitCode != SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
+ { /* very likely*/ }
+ else
+ {
+ if (rc == VINF_SUCCESS)
+ rc = VERR_SVM_INVALID_GUEST_STATE;
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
+ hmR0SvmReportWorldSwitchError(pVCpu, VBOXSTRICTRC_VAL(rc));
+ return rc;
+ }
+
+ /* Handle the #VMEXIT. */
+ HMSVM_DEBUG_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
+ STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
+ VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, pVCpu->hmr0.s.svm.pVmcb);
+ rc = hmR0SvmDebugHandleExit(pVCpu, &SvmTransient, &DbgState);
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
+ if (rc != VINF_SUCCESS)
+ break;
+ if (++(*pcLoops) >= cMaxResumeLoops)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
+ rc = VINF_EM_RAW_INTERRUPT;
+ break;
+ }
+
+ /*
+ * Stepping: Did the RIP change, if so, consider it a single step.
+ * Otherwise, make sure one of the TFs gets set.
+ */
+ if (fStepping)
+ {
+ hmR0SvmImportGuestState(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
+ || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
+ {
+ Log6Func(("VINF_EM_DBG_STEPPED: %04x:%08RX64 (exit %u)\n",
+ pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, SvmTransient.u64ExitCode));
+ rc = VINF_EM_DBG_STEPPED;
+ break;
+ }
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
+ }
+
+ /*
+ * Update when dtrace settings changes (DBGF kicks us, so no need to check).
+ * Revert the state changes afterware so we can drop intercepts no longer needed.
+ */
+ if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
+ {
+ hmR0SvmPreRunGuestDebugStateUpdate(pVCpu, &SvmTransient, &DbgState);
+ hmR0SvmRunDebugStateRevert(&SvmTransient, &DbgState);
+ }
+ }
+
+ /*
+ * Clear the X86_EFL_TF if necessary.
+ */
+ if (pVCpu->hmr0.s.fClearTrapFlag)
+ {
+ pVCpu->hmr0.s.fClearTrapFlag = false;
+ pCtx->eflags.Bits.u1TF = 0;
+ }
+
+ /* Restore HMCPU indicators. */
+ pVCpu->hmr0.s.fUsingDebugLoop = false;
+ pVCpu->hmr0.s.fDebugWantRdTscExit = false;
+ pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
+
+ /* Restore all controls applied by hmR0SvmPreRunGuestDebugStateApply above. */
+ hmR0SvmRunDebugStateRevert(&SvmTransient, &DbgState);
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
+ return rc;
+}
+
+/** @} */
+
+#undef VMEXIT_CALL_RET
+
+
+#ifdef VBOX_STRICT
+/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
+# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
+ RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
+
+# define HMSVM_ASSERT_PREEMPT_CPUID() \
+ do \
+ { \
+ RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
+ AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
+ } while (0)
+
+# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
+ do { \
+ AssertPtr((a_pVCpu)); \
+ AssertPtr((a_pSvmTransient)); \
+ Assert(ASMIntAreEnabled()); \
+ HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
+ HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
+ Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu)); \
+ HMSVM_ASSERT_PREEMPT_SAFE((a_pVCpu)); \
+ if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \
+ HMSVM_ASSERT_PREEMPT_CPUID(); \
+ } while (0)
+#else
+# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pSvmTransient) \
+ do { \
+ RT_NOREF2(a_pVCpu, a_pSvmTransient); \
+ } while (0)
+#endif
+
+
+/**
+ * Gets the IEM exception flags for the specified SVM event.
+ *
+ * @returns The IEM exception flags.
+ * @param pEvent Pointer to the SVM event.
+ *
+ * @remarks This function currently only constructs flags required for
+ * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
+ * and CR2 aspects of an exception are not included).
+ */
+static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
+{
+ uint8_t const uEventType = pEvent->n.u3Type;
+ uint32_t fIemXcptFlags;
+ switch (uEventType)
+ {
+ case SVM_EVENT_EXCEPTION:
+ /*
+ * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
+ * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
+ */
+ if (pEvent->n.u8Vector == X86_XCPT_BP)
+ {
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
+ break;
+ }
+ if (pEvent->n.u8Vector == X86_XCPT_OF)
+ {
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
+ break;
+ }
+ /** @todo How do we distinguish ICEBP \#DB from the regular one? */
+ RT_FALL_THRU();
+ case SVM_EVENT_NMI:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
+ break;
+
+ case SVM_EVENT_EXTERNAL_IRQ:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
+ break;
+
+ case SVM_EVENT_SOFTWARE_INT:
+ fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
+ break;
+
+ default:
+ fIemXcptFlags = 0;
+ AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
+ break;
+ }
+ return fIemXcptFlags;
+}
+
+
+/**
+ * Handle a condition that occurred while delivering an event through the guest
+ * IDT.
+ *
+ * @returns VBox status code (informational error codes included).
+ * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
+ * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
+ * continue execution of the guest which will delivery the \#DF.
+ * @retval VINF_EM_RESET if we detected a triple-fault condition.
+ * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pSvmTransient Pointer to the SVM transient structure.
+ *
+ * @remarks No-long-jump zone!!!
+ */
+static int hmR0SvmCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ /** @todo r=bird: Looks like this is called on many exits and we start by
+ * loading CR2 on the offchance that we actually have work to do here.
+ *
+ * HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY can surely check
+ * pVmcb->ctrl.ExitIntInfo.n.u1Valid, can't it?
+ *
+ * Also, what's the deal with hmR0SvmGetCurrentVmcb() vs pSvmTransient->pVmcb?
+ */
+ int rc = VINF_SUCCESS;
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR2);
+
+ Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
+ pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
+ pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
+
+ /*
+ * The EXITINTINFO (if valid) contains the prior exception (IDT vector) that was trying to
+ * be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector).
+ *
+ * See AMD spec. 15.7.3 "EXITINFO Pseudo-Code".
+ */
+ if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
+ {
+ IEMXCPTRAISE enmRaise;
+ IEMXCPTRAISEINFO fRaiseInfo;
+ bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0 <= SVM_EXIT_XCPT_31;
+ uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
+ if (fExitIsHwXcpt)
+ {
+ uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_XCPT_0;
+ uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
+ uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
+ enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
+ }
+ else
+ {
+ /*
+ * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF)
+ * then we end up here.
+ *
+ * If the event was:
+ * - a software interrupt, we can re-execute the instruction which will
+ * regenerate the event.
+ * - an NMI, we need to clear NMI blocking and re-inject the NMI.
+ * - a hardware exception or external interrupt, we re-inject it.
+ */
+ fRaiseInfo = IEMXCPTRAISEINFO_NONE;
+ if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
+ enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
+ else
+ enmRaise = IEMXCPTRAISE_PREV_EVENT;
+ }
+
+ switch (enmRaise)
+ {
+ case IEMXCPTRAISE_CURRENT_XCPT:
+ case IEMXCPTRAISE_PREV_EVENT:
+ {
+ /* For software interrupts, we shall re-execute the instruction. */
+ if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
+ {
+ RTGCUINTPTR GCPtrFaultAddress = 0;
+
+ /* If we are re-injecting an NMI, clear NMI blocking. */
+ if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
+ CPUMClearInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
+
+ /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
+ if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
+ {
+ pSvmTransient->fVectoringPF = true;
+ Log4Func(("IDT: Pending vectoring #PF due to delivery of Ext-Int/NMI. uCR2=%#RX64\n",
+ pVCpu->cpum.GstCtx.cr2));
+ }
+ else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
+ && uIdtVector == X86_XCPT_PF)
+ {
+ /*
+ * If the previous exception was a #PF, we need to recover the CR2 value.
+ * This can't happen with shadow paging.
+ */
+ GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
+ }
+
+ /*
+ * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
+ * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
+ */
+ Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
+ hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
+
+ Log4Func(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
+ pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
+ pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
+ }
+ break;
+ }
+
+ case IEMXCPTRAISE_REEXEC_INSTR:
+ {
+ Assert(rc == VINF_SUCCESS);
+ break;
+ }
+
+ case IEMXCPTRAISE_DOUBLE_FAULT:
+ {
+ /*
+ * Determing a vectoring double #PF condition. Used later, when PGM evaluates
+ * the second #PF as a guest #PF (and not a shadow #PF) and needs to be
+ * converted into a #DF.
+ */
+ if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
+ {
+ Log4Func(("IDT: Pending vectoring double #PF uCR2=%#RX64\n", pVCpu->cpum.GstCtx.cr2));
+ pSvmTransient->fVectoringDoublePF = true;
+ Assert(rc == VINF_SUCCESS);
+ }
+ else
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ rc = VINF_HM_DOUBLE_FAULT;
+ }
+ break;
+ }
+
+ case IEMXCPTRAISE_TRIPLE_FAULT:
+ {
+ rc = VINF_EM_RESET;
+ break;
+ }
+
+ case IEMXCPTRAISE_CPU_HANG:
+ {
+ rc = VERR_EM_GUEST_CPU_HANG;
+ break;
+ }
+
+ default:
+ AssertMsgFailedBreakStmt(("Bogus enmRaise value: %d (%#x)\n", enmRaise, enmRaise), rc = VERR_SVM_IPE_2);
+ }
+ }
+ Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
+ return rc;
+}
+
+
+/**
+ * Advances the guest RIP by the number of bytes specified in @a cb.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cb RIP increment value in bytes.
+ */
+DECLINLINE(void) hmR0SvmAdvanceRip(PVMCPUCC pVCpu, uint32_t cb)
+{
+ pVCpu->cpum.GstCtx.rip += cb;
+ CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
+ /** @todo clear RF. */
+}
+
+
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
+/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
+
+/** @name \#VMEXIT handlers.
+ * @{
+ */
+
+/**
+ * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
+ * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
+ */
+HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
+ else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
+
+ /*
+ * AMD-V has no preemption timer and the generic periodic preemption timer has no way to
+ * signal -before- the timer fires if the current interrupt is our own timer or a some
+ * other host interrupt. We also cannot examine what interrupt it is until the host
+ * actually take the interrupt.
+ *
+ * Going back to executing guest code here unconditionally causes random scheduling
+ * problems (observed on an AMD Phenom 9850 Quad-Core on Windows 64-bit host).
+ */
+ return VINF_EM_RAW_INTERRUPT;
+}
+
+
+/**
+ * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedWbinvd(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedInvd(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RCX);
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedCpuid(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ CPUM_ASSERT_NOT_EXTRN(pVCpu, IEM_CPUMCTX_EXTRN_XCPT_MASK);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+
+ Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedRdtsc(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ pSvmTransient->fUpdateTscOffsetting = true;
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_TSC_AUX);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedRdtscp(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ pSvmTransient->fUpdateTscOffsetting = true;
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR4);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedRdpmc(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if ( fSupportsDecodeAssists
+ && fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
+ rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return VBOXSTRICTRC_VAL(rcStrict);
+}
+
+
+/**
+ * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedHlt(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if ( rcStrict == VINF_EM_HALT
+ || rcStrict == VINF_SUCCESS)
+ rcStrict = EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx) ? VINF_SUCCESS : VINF_EM_HALT;
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ if (rcStrict != VINF_SUCCESS)
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
+ return VBOXSTRICTRC_VAL(rcStrict);;
+}
+
+
+/**
+ * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ /*
+ * If the instruction length is supplied by the CPU is 3 bytes, we can be certain that no
+ * segment override prefix is present (and thus use the default segment DS). Otherwise, a
+ * segment override prefix or other prefixes might be used, in which case we fallback to
+ * IEMExecOne() to figure out.
+ */
+ VBOXSTRICTRC rcStrict;
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = hmR0SvmSupportsNextRipSave(pVCpu) ? pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip : 0;
+ if (cbInstr)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
+ rcStrict = IEMExecDecodedMonitor(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedMwait(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if ( rcStrict == VINF_EM_HALT
+ && EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
+ rcStrict = VINF_SUCCESS;
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ return VINF_EM_RESET;
+}
+
+
+/**
+ * \#VMEXIT handler for unexpected exits. Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitUnexpected(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ AssertMsgFailed(("hmR0SvmExitUnexpected: ExitCode=%#RX64 uExitInfo1=%#RX64 uExitInfo2=%#RX64\n", pSvmTransient->u64ExitCode,
+ pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2));
+ RT_NOREF(pVmcb);
+ pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
+ return VERR_SVM_UNEXPECTED_EXIT;
+}
+
+
+/**
+ * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Log4Func(("CS:RIP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip));
+#ifdef VBOX_WITH_STATISTICS
+ switch (pSvmTransient->u64ExitCode)
+ {
+ case SVM_EXIT_READ_CR0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
+ case SVM_EXIT_READ_CR2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
+ case SVM_EXIT_READ_CR3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
+ case SVM_EXIT_READ_CR4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
+ case SVM_EXIT_READ_CR8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
+ }
+#endif
+
+ bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if ( fSupportsDecodeAssists
+ && fSupportsNextRipSave)
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
+ if (fMovCRx)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_CR_MASK
+ | CPUMCTX_EXTRN_APIC_TPR);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
+ uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
+ uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
+ VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return VBOXSTRICTRC_VAL(rcStrict);
+ }
+ /* else: SMSW instruction, fall back below to IEM for this. */
+ }
+
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_PGM_SYNC_CR3
+ || rcStrict == VINF_IEM_RAISED_XCPT,
+ ("hmR0SvmExitReadCRx: IEMExecOne failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ uint64_t const uExitCode = pSvmTransient->u64ExitCode;
+ uint8_t const iCrReg = uExitCode == SVM_EXIT_CR0_SEL_WRITE ? 0 : (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0);
+ Assert(iCrReg <= 15);
+
+ VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ bool fDecodedInstr = false;
+ bool const fSupportsDecodeAssists = hmR0SvmSupportsDecodeAssists(pVCpu);
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if ( fSupportsDecodeAssists
+ && fSupportsNextRipSave)
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
+ if (fMovCRx)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4
+ | CPUMCTX_EXTRN_APIC_TPR);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
+ uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
+ Log4Func(("Mov CR%u w/ iGReg=%#x\n", iCrReg, iGReg));
+ rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
+ fDecodedInstr = true;
+ }
+ /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
+ }
+
+ if (!fDecodedInstr)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ Log4Func(("iCrReg=%#x\n", iCrReg));
+ rcStrict = IEMExecOne(pVCpu);
+ if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
+ || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
+ rcStrict = VERR_EM_INTERPRETER;
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ switch (iCrReg)
+ {
+ case 0:
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
+ break;
+
+ case 2:
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR2);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
+ break;
+
+ case 3:
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR3);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
+ break;
+
+ case 4:
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
+ break;
+
+ case 8:
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
+ break;
+
+ default:
+ {
+ AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
+ pSvmTransient->u64ExitCode, iCrReg));
+ break;
+ }
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_SYNC_CR3);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT helper for read MSRs, see hmR0SvmExitMsr.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ */
+static VBOXSTRICTRC hmR0SvmExitReadMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb)
+{
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
+ Log4Func(("idMsr=%#RX32\n", pVCpu->cpum.GstCtx.ecx));
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ /** @todo Optimize this: Only retrieve the MSR bits we need here. CPUMAllMsrs.cpp
+ * can ask for what it needs instead of using CPUMCTX_EXTRN_ALL_MSRS. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedRdmsr(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT
+ || rcStrict == VINF_CPUM_R3_MSR_READ,
+ ("hmR0SvmExitReadMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT helper for write MSRs, see hmR0SvmExitMsr.
+ *
+ * @returns Strict VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcb Pointer to the VM control block.
+ * @param pSvmTransient Pointer to the SVM-transient structure.
+ */
+static VBOXSTRICTRC hmR0SvmExitWriteMsr(PVMCPUCC pVCpu, PSVMVMCB pVmcb, PSVMTRANSIENT pSvmTransient)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ uint32_t const idMsr = pCtx->ecx;
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
+ Log4Func(("idMsr=%#RX32\n", idMsr));
+
+ /*
+ * Handle TPR patching MSR writes.
+ * We utilitize the LSTAR MSR for patching.
+ */
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if ( idMsr == MSR_K8_LSTAR
+ && pVCpu->CTX_SUFF(pVM)->hm.s.fTprPatchingActive)
+ {
+ unsigned cbInstr;
+ if (fSupportsNextRipSave)
+ cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ else
+ {
+ PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
+ int rc = EMInterpretDisasCurrent(pVCpu, pDis, &cbInstr);
+ if ( rc == VINF_SUCCESS
+ && pDis->pCurInstr->uOpcode == OP_WRMSR)
+ Assert(cbInstr > 0);
+ else
+ cbInstr = 0;
+ }
+
+ /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
+ if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
+ {
+ int rc = APICSetTpr(pVCpu, pCtx->eax & 0xff);
+ AssertRCReturn(rc, rc);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+
+ int rc = VINF_SUCCESS;
+ hmR0SvmAdvanceRip(pVCpu, cbInstr);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ return rc;
+ }
+
+ /*
+ * Handle regular MSR writes.
+ */
+ VBOXSTRICTRC rcStrict;
+ if (fSupportsNextRipSave)
+ {
+ /** @todo Optimize this: We don't need to get much of the MSR state here
+ * since we're only updating. CPUMAllMsrs.cpp can ask for what it needs and
+ * clear the applicable extern flags. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedWrmsr(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_ALL_MSRS);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ AssertMsg( rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_IEM_RAISED_XCPT
+ || rcStrict == VINF_CPUM_R3_MSR_WRITE,
+ ("hmR0SvmExitWriteMsr: Unexpected status %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* If this is an X2APIC WRMSR access, update the APIC TPR state. */
+ if ( idMsr >= MSR_IA32_X2APIC_START
+ && idMsr <= MSR_IA32_X2APIC_END)
+ {
+ /*
+ * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest().
+ * When full APIC register virtualization is implemented we'll have to make sure
+ * APIC state is saved from the VMCB before IEM changes it.
+ */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+ else
+ {
+ switch (idMsr)
+ {
+ case MSR_IA32_TSC: pSvmTransient->fUpdateTscOffsetting = true; break;
+ case MSR_K6_EFER: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR); break;
+ case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
+ case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
+ case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
+ case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
+ case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
+ }
+ }
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ)
+ return hmR0SvmExitReadMsr(pVCpu, pVmcb);
+
+ Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE);
+ return hmR0SvmExitWriteMsr(pVCpu, pVmcb, pSvmTransient);
+}
+
+
+/**
+ * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
+
+ /** @todo Stepping with nested-guest. */
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if (!CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
+ if (pSvmTransient->fWasGuestDebugStateActive)
+ {
+ AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
+ pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
+ return VERR_SVM_UNEXPECTED_EXIT;
+ }
+
+ /*
+ * Lazy DR0-3 loading.
+ */
+ if (!pSvmTransient->fWasHyperDebugStateActive)
+ {
+ Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
+ Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
+
+ /* Don't intercept DRx read and writes. */
+ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+ pVmcb->ctrl.u16InterceptRdDRx = 0;
+ pVmcb->ctrl.u16InterceptWrDRx = 0;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
+
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
+ CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+
+ HM_RESTORE_PREEMPT();
+ VMMRZCallRing3Enable(pVCpu);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
+ return VINF_SUCCESS;
+ }
+ }
+
+ /*
+ * Interpret the read/writing of DRx.
+ */
+ /** @todo Decode assist. */
+ VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu);
+ Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
+ if (RT_LIKELY(rc == VINF_SUCCESS))
+ {
+ /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
+ /** @todo CPUM should set this flag! */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
+ }
+ else
+ Assert(rc == VERR_EM_INTERPRETER);
+ return rc;
+}
+
+
+/**
+ * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
+ VBOXSTRICTRC rc = hmR0SvmExitReadDRx(pVCpu, pSvmTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
+ STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
+ return rc;
+}
+
+
+/**
+ * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+
+ /** @todo decode assists... */
+ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ {
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
+ Log4Func(("New XCR0=%#RX64 fLoadSaveGuestXcr0=%RTbool (cr4=%#RX64)\n", pCtx->aXcr[0], fLoadSaveGuestXcr0, pCtx->cr4));
+ if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
+ {
+ pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
+ hmR0SvmUpdateVmRunFunction(pVCpu);
+ }
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK);
+
+ /* I/O operation lookup arrays. */
+ static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
+ static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
+ the result (in AL/AX/EAX). */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+
+ Log4Func(("CS:RIP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip));
+
+ /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
+ SVMIOIOEXITINFO IoExitInfo;
+ IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
+ uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
+ uint32_t cbValue = s_aIOSize[uIOWidth];
+ uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
+
+ if (RT_UNLIKELY(!cbValue))
+ {
+ AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
+ return VERR_EM_INTERPRETER;
+ }
+
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = NULL;
+ if ( !pVCpu->hm.s.fSingleInstruction
+ && !pVCpu->cpum.GstCtx.eflags.Bits.u1TF)
+ pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ !IoExitInfo.n.u1Str
+ ? IoExitInfo.n.u1Type == SVM_IOIO_READ
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
+ : IoExitInfo.n.u1Type == SVM_IOIO_READ
+ ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
+ : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+ bool fUpdateRipAlready = false;
+ if (IoExitInfo.n.u1Str)
+ {
+ /* INS/OUTS - I/O String instruction. */
+ /** @todo Huh? why can't we use the segment prefix information given by AMD-V
+ * in EXITINFO1? Investigate once this thing is up and running. */
+ Log4Func(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
+ IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
+ AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
+ static IEMMODE const s_aenmAddrMode[8] =
+ {
+ (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
+ };
+ IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
+ if (enmAddrMode != (IEMMODE)-1)
+ {
+ uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
+ if (cbInstr <= 15 && cbInstr >= 1)
+ {
+ Assert(cbInstr >= 1U + IoExitInfo.n.u1Rep);
+ if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
+ {
+ /* Don't know exactly how to detect whether u3Seg is valid, currently
+ only enabling it for Bulldozer and later with NRIP. OS/2 broke on
+ 2384 Opterons when only checking NRIP. */
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if ( fSupportsNextRipSave
+ && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
+ {
+ AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1Rep,
+ ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3Seg, cbInstr, IoExitInfo.n.u1Rep));
+ rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
+ IoExitInfo.n.u3Seg, true /*fIoChecked*/);
+ }
+ else if (cbInstr == 1U + IoExitInfo.n.u1Rep)
+ rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
+ X86_SREG_DS, true /*fIoChecked*/);
+ else
+ rcStrict = IEMExecOne(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
+ }
+ else
+ {
+ AssertMsg(IoExitInfo.n.u3Seg == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3Seg));
+ rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1Rep, (uint8_t)cbInstr,
+ true /*fIoChecked*/);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
+ }
+ }
+ else
+ {
+ AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
+ rcStrict = IEMExecOne(pVCpu);
+ }
+ }
+ else
+ {
+ AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
+ rcStrict = IEMExecOne(pVCpu);
+ }
+ fUpdateRipAlready = true;
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ /* IN/OUT - I/O instruction. */
+ Assert(!IoExitInfo.n.u1Rep);
+
+ uint8_t const cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
+ if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
+ {
+ rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
+ if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
+ && !pCtx->eflags.Bits.u1TF)
+ rcStrict = EMRZSetPendingIoPortWrite(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue, pCtx->eax & uAndVal);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
+ }
+ else
+ {
+ uint32_t u32Val = 0;
+ rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /* Save result of I/O IN instr. in AL/AX/EAX. */
+ /** @todo r=bird: 32-bit op size should clear high bits of rax! */
+ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
+ }
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_READ
+ && !pCtx->eflags.Bits.u1TF)
+ rcStrict = EMRZSetPendingIoPortRead(pVCpu, IoExitInfo.n.u16Port, cbInstr, cbValue);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
+ }
+ }
+
+ if (IOM_SUCCESS(rcStrict))
+ {
+ /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
+ if (!fUpdateRipAlready)
+ pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
+
+ /*
+ * If any I/O breakpoints are armed, we need to check if one triggered
+ * and take appropriate action.
+ * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
+ */
+ /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
+ * execution engines about whether hyper BPs and such are pending. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_DR7);
+ uint32_t const uDr7 = pCtx->dr[7];
+ if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
+ && X86_DR7_ANY_RW_IO(uDr7)
+ && (pCtx->cr4 & X86_CR4_DE))
+ || DBGFBpIsHwIoArmed(pVM)))
+ {
+ /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
+ VMMRZCallRing3Disable(pVCpu);
+ HM_DISABLE_PREEMPT(pVCpu);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
+ CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
+
+ VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, &pVCpu->cpum.GstCtx, IoExitInfo.n.u16Port, cbValue);
+ if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
+ {
+ /* Raise #DB. */
+ pVmcb->guest.u64DR6 = pCtx->dr[6];
+ pVmcb->guest.u64DR7 = pCtx->dr[7];
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ hmR0SvmSetPendingXcptDB(pVCpu);
+ }
+ /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
+ however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
+ else if ( rcStrict2 != VINF_SUCCESS
+ && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
+ rcStrict = rcStrict2;
+ AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
+
+ HM_RESTORE_PREEMPT();
+ VMMRZCallRing3Enable(pVCpu);
+ }
+
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ }
+#ifdef VBOX_STRICT
+ if ( rcStrict == VINF_IOM_R3_IOPORT_READ
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
+ Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
+ else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
+ || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
+ || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
+ Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
+ else
+ {
+ /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
+ * statuses, that the VMM device and some others may return. See
+ * IOM_SUCCESS() for guidance. */
+ AssertMsg( RT_FAILURE(rcStrict)
+ || rcStrict == VINF_SUCCESS
+ || rcStrict == VINF_EM_RAW_EMULATE_INSTR
+ || rcStrict == VINF_EM_DBG_BREAKPOINT
+ || rcStrict == VINF_EM_RAW_GUEST_TRAP
+ || rcStrict == VINF_EM_DBG_STEPPED
+ || rcStrict == VINF_EM_RAW_TO_R3
+ || rcStrict == VINF_EM_TRIPLE_FAULT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
+ }
+#endif
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ STAM_COUNTER_INC(!IoExitInfo.n.u1Str
+ ? IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
+ : IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
+ Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, IoExitInfo.n.u1Rep ? "REP " : "",
+ IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? "OUT" : "IN", IoExitInfo.n.u1Str ? "S" : "", IoExitInfo.n.u16Port, uIOWidth));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ Assert(pVM->hmr0.s.fNestedPaging);
+
+ /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
+ uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1; /* Note! High bits in EXITINFO1 may contain additional info and are
+ thus intentionally not copied into u32ErrCode. */
+
+ Log4Func(("#NPF at CS:RIP=%04x:%RX64 GCPhysFaultAddr=%RGp ErrCode=%#x cbInstrFetched=%u %.15Rhxs\n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr,
+ u32ErrCode, pVmcb->ctrl.cbInstrFetched, pVmcb->ctrl.abInstr));
+
+ /*
+ * TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions.
+ */
+ if ( pVM->hm.s.fTprPatchingAllowed
+ && (GCPhysFaultAddr & GUEST_PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
+ && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
+ || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
+ && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
+ && !CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMGetGuestCPL(pVCpu)
+ && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
+ {
+ RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
+ GCPhysApicBase &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
+
+ if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
+ {
+ /* Only attempt to patch the instruction once. */
+ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
+ if (!pPatch)
+ return VINF_EM_HM_PATCH_TPR_INSTR;
+ }
+ }
+
+ /*
+ * Determine the nested paging mode.
+ */
+/** @todo r=bird: Gotta love this nested paging hacking we're still carrying with us... (Split PGM_TYPE_NESTED.) */
+ PGMMODE const enmNestedPagingMode = PGMGetHostMode(pVM);
+
+ /*
+ * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
+ */
+ Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
+ if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
+ {
+ /*
+ * If event delivery causes an MMIO #NPF, go back to instruction emulation as otherwise
+ * injecting the original pending event would most likely cause the same MMIO #NPF.
+ */
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ VBOXSTRICTRC rcStrict;
+ PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
+ EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
+ pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
+ if (!pExitRec)
+ {
+
+ rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, pCtx, GCPhysFaultAddr, u32ErrCode);
+
+ /*
+ * If we succeed, resume guest execution.
+ *
+ * If we fail in interpreting the instruction because we couldn't get the guest
+ * physical address of the page containing the instruction via the guest's page
+ * tables (we would invalidate the guest page in the host TLB), resume execution
+ * which would cause a guest page fault to let the guest handle this weird case.
+ *
+ * See @bugref{6043}.
+ */
+ if ( rcStrict == VINF_SUCCESS
+ || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
+ || rcStrict == VERR_PAGE_NOT_PRESENT)
+ {
+ /* Successfully handled MMIO operation. */
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ rcStrict = VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ /*
+ * Frequent exit or something needing probing. Get state and call EMHistoryExec.
+ */
+ Assert(pCtx == &pVCpu->cpum.GstCtx);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhysFaultAddr));
+
+ rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+ return rcStrict;
+ }
+
+ /*
+ * Nested page-fault.
+ */
+ TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
+ int rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, pCtx, GCPhysFaultAddr);
+ TRPMResetTrap(pVCpu);
+
+ Log4Func(("#NPF: PGMR0Trap0eHandlerNestedPaging returns %Rrc CS:RIP=%04x:%RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
+
+ /*
+ * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
+ */
+ if ( rc == VINF_SUCCESS
+ || rc == VERR_PAGE_TABLE_NOT_PRESENT
+ || rc == VERR_PAGE_NOT_PRESENT)
+ {
+ /* We've successfully synced our shadow page tables. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
+ rc = VINF_SUCCESS;
+ }
+
+ /*
+ * If delivering an event causes an #NPF (and not MMIO), we shall resolve the fault and
+ * re-inject the original event.
+ */
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
+
+ /*
+ * If the #NPF handler requested emulation of the instruction, ignore it.
+ * We need to re-inject the original event so as to not lose it.
+ * Reproducible when booting ReactOS 0.4.12 with BTRFS (installed using BootCD,
+ * LiveCD is broken for other reasons).
+ */
+ if (rc == VINF_EM_RAW_EMULATE_INSTR)
+ rc = VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ return rc;
+}
+
+
+/**
+ * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+
+ /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ hmR0SvmClearIntWindowExiting(pVCpu, pVmcb);
+
+ /* Deliver the pending interrupt via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
+ Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
+#endif
+
+ /* Check if this task-switch occurred while delivering an event through the guest IDT. */
+ if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
+ {
+ /*
+ * AMD-V provides us with the exception which caused the TS; we collect
+ * the information in the call to hmR0SvmCheckExitDueToEventDelivery().
+ */
+ Log4Func(("TS occurred during event delivery\n"));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ /** @todo Emulate task switch someday, currently just going back to ring-3 for
+ * emulation. */
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
+ return VERR_EM_INTERPRETER;
+}
+
+
+/**
+ * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hm.s.fTprPatchingAllowed)
+ {
+ int rc = hmEmulateSvmMovTpr(pVM, pVCpu);
+ if (rc != VERR_NOT_FOUND)
+ {
+ Log4Func(("hmEmulateSvmMovTpr returns %Rrc\n", rc));
+ return rc;
+ }
+ }
+
+ if (EMAreHypercallInstructionsEnabled(pVCpu))
+ {
+ unsigned cbInstr;
+ if (hmR0SvmSupportsNextRipSave(pVCpu))
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ }
+ else
+ {
+ PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
+ int rc = EMInterpretDisasCurrent(pVCpu, pDis, &cbInstr);
+ if ( rc == VINF_SUCCESS
+ && pDis->pCurInstr->uOpcode == OP_VMMCALL)
+ Assert(cbInstr > 0);
+ else
+ cbInstr = 0;
+ }
+
+ VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
+ if (RT_SUCCESS(rcStrict))
+ {
+ /* Only update the RIP if we're continuing guest execution and not in the case
+ of say VINF_GIM_R3_HYPERCALL. */
+ if (rcStrict == VINF_SUCCESS)
+ hmR0SvmAdvanceRip(pVCpu, cbInstr);
+
+ return VBOXSTRICTRC_VAL(rcStrict);
+ }
+ else
+ Log4Func(("GIMHypercall returns %Rrc -> #UD\n", VBOXSTRICTRC_VAL(rcStrict)));
+ }
+
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ unsigned cbInstr;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ }
+ else
+ {
+ PDISCPUSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
+ int rc = EMInterpretDisasCurrent(pVCpu, pDis, &cbInstr);
+ if ( rc == VINF_SUCCESS
+ && pDis->pCurInstr->uOpcode == OP_PAUSE)
+ Assert(cbInstr > 0);
+ else
+ cbInstr = 0;
+ }
+
+ /** @todo The guest has likely hit a contended spinlock. We might want to
+ * poke a schedule different guest VCPU. */
+ hmR0SvmAdvanceRip(pVCpu, cbInstr);
+ return VINF_EM_RAW_INTERRUPT;
+}
+
+
+/**
+ * \#VMEXIT handler for FERR intercept (SVM_EXIT_FERR_FREEZE). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitFerrFreeze(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CR0);
+ Assert(!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE));
+
+ Log4Func(("Raising IRQ 13 in response to #FERR\n"));
+ return PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
+}
+
+
+/**
+ * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now (almost) ready. */
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_IRET);
+
+ /* Emulate the IRET. We have to execute the IRET before an NMI, but must potentially
+ * deliver a pending NMI right after. If the IRET faults, an NMI can come before the
+ * handler executes. Yes, x86 is ugly.
+ */
+ return VINF_EM_RAW_EMULATE_INSTR;
+}
+
+
+/**
+ * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_XCPT_14).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint32_t uErrCode = pVmcb->ctrl.u64ExitInfo1;
+ uint64_t const uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
+
+#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
+ if (pVM->hmr0.s.fNestedPaging)
+ {
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
+ if ( !pSvmTransient->fVectoringDoublePF
+ || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ /* A genuine guest #PF, reflect it to the guest. */
+ hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
+ Log4Func(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RX64 ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
+ uFaultAddress, uErrCode));
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ Log4Func(("Pending #DF due to vectoring #PF. NP\n"));
+ }
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return VINF_SUCCESS;
+ }
+#endif
+
+ Assert(!pVM->hmr0.s.fNestedPaging);
+
+ /*
+ * TPR patching shortcut for APIC TPR reads and writes; only applicable to 32-bit guests.
+ */
+ if ( pVM->hm.s.fTprPatchingAllowed
+ && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
+ && !(uErrCode & X86_TRAP_PF_P) /* Not present. */
+ && !CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
+ && !CPUMIsGuestInLongModeEx(pCtx)
+ && !CPUMGetGuestCPL(pVCpu)
+ && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
+ {
+ RTGCPHYS GCPhysApicBase;
+ GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
+ GCPhysApicBase &= ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
+
+ /* Check if the page at the fault-address is the APIC base. */
+ PGMPTWALK Walk;
+ int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, &Walk);
+ if ( rc2 == VINF_SUCCESS
+ && Walk.GCPhys == GCPhysApicBase)
+ {
+ /* Only attempt to patch the instruction once. */
+ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
+ if (!pPatch)
+ return VINF_EM_HM_PATCH_TPR_INSTR;
+ }
+ }
+
+ Log4Func(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
+ pCtx->rip, uErrCode, pCtx->cr3));
+
+ /*
+ * If it's a vectoring #PF, emulate injecting the original event injection as
+ * PGMTrap0eHandler() is incapable of differentiating between instruction emulation and
+ * event injection that caused a #PF. See @bugref{6607}.
+ */
+ if (pSvmTransient->fVectoringPF)
+ {
+ Assert(pVCpu->hm.s.Event.fPending);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ TRPMAssertXcptPF(pVCpu, uFaultAddress, uErrCode);
+ int rc = PGMTrap0eHandler(pVCpu, uErrCode, pCtx, (RTGCPTR)uFaultAddress);
+
+ Log4Func(("#PF: rc=%Rrc\n", rc));
+
+ if (rc == VINF_SUCCESS)
+ {
+ /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ return rc;
+ }
+
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
+
+ /*
+ * If a nested-guest delivers a #PF and that causes a #PF which is -not- a shadow #PF,
+ * we should simply forward the #PF to the guest and is up to the nested-hypervisor to
+ * determine whether it is a nested-shadow #PF or a #DF, see @bugref{7243#c121}.
+ */
+ if ( !pSvmTransient->fVectoringDoublePF
+ || CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ /* It's a guest (or nested-guest) page fault and needs to be reflected. */
+ uErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
+ TRPMResetTrap(pVCpu);
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+ /* If the nested-guest is intercepting #PFs, cause a #PF #VMEXIT. */
+ if ( CPUMIsGuestInSvmNestedHwVirtMode(pCtx)
+ && CPUMIsGuestSvmXcptInterceptSet(pVCpu, pCtx, X86_XCPT_PF))
+ return IEMExecSvmVmexit(pVCpu, SVM_EXIT_XCPT_PF, uErrCode, uFaultAddress);
+#endif
+
+ hmR0SvmSetPendingXcptPF(pVCpu, uErrCode, uFaultAddress);
+ }
+ else
+ {
+ /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
+ TRPMResetTrap(pVCpu);
+ hmR0SvmSetPendingXcptDF(pVCpu);
+ Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
+ return VINF_SUCCESS;
+ }
+
+ TRPMResetTrap(pVCpu);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
+ return rc;
+}
+
+
+
+/**
+ * \#VMEXIT handler for division overflow exceptions (SVM_EXIT_XCPT_1).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptDE(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
+
+ /* Paranoia; Ensure we cannot be called as a result of event delivery. */
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
+
+ int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
+ if (pVCpu->hm.s.fGCMTrapXcptDE)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ uint8_t cbInstr = 0;
+ VBOXSTRICTRC rcStrict = GCMXcptDE(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
+ if (rcStrict == VINF_SUCCESS)
+ rc = VINF_SUCCESS; /* Restart instruction with modified guest register context. */
+ else if (rcStrict == VERR_NOT_FOUND)
+ rc = VERR_NOT_FOUND; /* Deliver the exception. */
+ else
+ Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
+ }
+
+ /* If the GCM #DE exception handler didn't succeed or wasn't needed, raise #DE. */
+ if (RT_FAILURE(rc))
+ {
+ hmR0SvmSetPendingXcptDE(pVCpu);
+ rc = VINF_SUCCESS;
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
+ return rc;
+}
+
+
+/**
+ * \#VMEXIT handler for undefined opcode (SVM_EXIT_XCPT_6).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_ASSERT_NOT_IN_NESTED_GUEST(&pVCpu->cpum.GstCtx);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
+
+ /* Paranoia; Ensure we cannot be called as a result of event delivery. */
+ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+ Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
+
+ /** @todo if we accumulate more optional stuff here, we ought to combine the
+ * reading of opcode bytes to avoid doing more than once. */
+
+ VBOXSTRICTRC rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
+ if (pVCpu->hm.s.fGIMTrapXcptUD)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ uint8_t cbInstr = 0;
+ rcStrict = GIMXcptUD(pVCpu, &pVCpu->cpum.GstCtx, NULL /* pDis */, &cbInstr);
+ if (rcStrict == VINF_SUCCESS)
+ {
+ /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
+ hmR0SvmAdvanceRip(pVCpu, cbInstr);
+ rcStrict = VINF_SUCCESS;
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ }
+ else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
+ rcStrict = VINF_SUCCESS;
+ else if (rcStrict == VINF_GIM_R3_HYPERCALL)
+ rcStrict = VINF_GIM_R3_HYPERCALL;
+ else
+ {
+ Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
+ rcStrict = VERR_SVM_UNEXPECTED_XCPT_EXIT;
+ }
+ }
+
+ if (pVCpu->hm.s.svm.fEmulateLongModeSysEnterExit)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS
+ | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
+ if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
+ {
+ /* Ideally, IEM should just handle all these special #UD situations, but
+ we don't quite trust things to behave optimially when doing that. So,
+ for now we'll restrict ourselves to a handful of possible sysenter and
+ sysexit encodings that we filter right here. */
+ uint8_t abInstr[SVM_CTRL_GUEST_INSTR_BYTES_MAX];
+ uint8_t cbInstr = pVmcb->ctrl.cbInstrFetched;
+ uint32_t const uCpl = CPUMGetGuestCPL(pVCpu);
+ uint8_t const cbMin = uCpl != 0 ? 2 : 1 + 2;
+ RTGCPTR const GCPtrInstr = pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base;
+ if (cbInstr < cbMin || cbInstr > SVM_CTRL_GUEST_INSTR_BYTES_MAX)
+ {
+ cbInstr = cbMin;
+ int rc2 = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, GCPtrInstr, cbInstr);
+ AssertRCStmt(rc2, cbInstr = 0);
+ }
+ else
+ memcpy(abInstr, pVmcb->ctrl.abInstr, cbInstr); /* unlikely */
+ if ( cbInstr == 0 /* read error */
+ || (cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x34) /* sysenter */
+ || ( uCpl == 0
+ && ( ( cbInstr >= 2 && abInstr[0] == 0x0f && abInstr[1] == 0x35) /* sysexit */
+ || ( cbInstr >= 3 && abInstr[1] == 0x0f && abInstr[2] == 0x35 /* rex.w sysexit */
+ && (abInstr[0] & (X86_OP_REX_W | 0xf0)) == X86_OP_REX_W))))
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK
+ | CPUMCTX_EXTRN_SREG_MASK /* without ES+DS+GS the app will #GP later - go figure */);
+ Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
+ rcStrict = IEMExecOneWithPrefetchedByPC(pVCpu, GCPtrInstr, abInstr, cbInstr);
+ Log6(("hmR0SvmExitXcptUD: sysenter/sysexit: rcStrict=%Rrc %04x:%08RX64 %08RX64 %04x:%08RX64\n",
+ VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u,
+ pVCpu->cpum.GstCtx.ss.Sel, pVCpu->cpum.GstCtx.rsp));
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK); /** @todo Lazy bird. */
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ rcStrict = VINF_SUCCESS;
+ return rcStrict;
+ }
+ Log6(("hmR0SvmExitXcptUD: not sysenter/sysexit: %.*Rhxs at %#llx CPL=%u\n", cbInstr, abInstr, GCPtrInstr, uCpl));
+ }
+ else
+ Log6(("hmR0SvmExitXcptUD: not in long mode at %04x:%llx\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
+ }
+
+ /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
+ if (RT_FAILURE(rcStrict))
+ {
+ hmR0SvmSetPendingXcptUD(pVCpu);
+ rcStrict = VINF_SUCCESS;
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_XCPT_16).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+
+ /* Paranoia; Ensure we cannot be called as a result of event delivery. */
+ Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid); NOREF(pVmcb);
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
+
+ if (!(pCtx->cr0 & X86_CR0_NE))
+ {
+ PDISSTATE pDis = &pVCpu->hmr0.s.svm.DisState;
+ unsigned cbInstr;
+ int rc = EMInterpretDisasCurrent(pVCpu, pDis, &cbInstr);
+ if (RT_SUCCESS(rc))
+ {
+ /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
+ rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13 /* u8Irq */, 1 /* u8Level */, 0 /* uTagSrc */);
+ if (RT_SUCCESS(rc))
+ hmR0SvmAdvanceRip(pVCpu, cbInstr);
+ }
+ else
+ Log4Func(("EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
+ return rc;
+ }
+
+ hmR0SvmSetPendingXcptMF(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1). Conditional
+ * \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
+
+ if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
+
+ /*
+ * This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data
+ * breakpoint). However, for both cases DR6 and DR7 are updated to what the exception
+ * handler expects. See AMD spec. 15.12.2 "#DB (Debug)".
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ PSVMVMCB pVmcb = pVCpu->hmr0.s.svm.pVmcb;
+ int rc = DBGFTrap01Handler(pVM, pVCpu, &pVCpu->cpum.GstCtx, pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
+
+ /* Reflect the exception back to the guest. */
+ hmR0SvmSetPendingXcptDB(pVCpu);
+ rc = VINF_SUCCESS;
+ }
+
+ /*
+ * Update DR6.
+ */
+ if (CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
+ pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
+ pVmcb->ctrl.u32VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
+ }
+ else
+ {
+ AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
+ Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
+ }
+
+ return rc;
+}
+
+
+/**
+ * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_XCPT_17).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+ STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
+
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_AC;
+ Event.n.u1ErrorCodeValid = 1;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
+
+ VBOXSTRICTRC rc = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.GstCtx);
+ if (rc == VINF_EM_RAW_GUEST_TRAP)
+ {
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_BP;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ rc = VINF_SUCCESS;
+ }
+
+ Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
+ return rc;
+}
+
+
+/**
+ * Hacks its way around the lovely mesa driver's backdoor accesses.
+ *
+ * @sa hmR0VmxHandleMesaDrvGp
+ */
+static int hmR0SvmHandleMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
+{
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK);
+ Log(("hmR0SvmHandleMesaDrvGp: at %04x:%08RX64 rcx=%RX64 rbx=%RX64\n",
+ pVmcb->guest.CS.u16Sel, pVmcb->guest.u64RIP, pCtx->rcx, pCtx->rbx));
+ RT_NOREF(pCtx, pVmcb);
+
+ /* For now we'll just skip the instruction. */
+ hmR0SvmAdvanceRip(pVCpu, 1);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
+ * backdoor logging w/o checking what it is running inside.
+ *
+ * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
+ * backdoor port and magic numbers loaded in registers.
+ *
+ * @returns true if it is, false if it isn't.
+ * @sa hmR0VmxIsMesaDrvGp
+ */
+DECLINLINE(bool) hmR0SvmIsMesaDrvGp(PVMCPUCC pVCpu, PCPUMCTX pCtx, PCSVMVMCB pVmcb)
+{
+ /* Check magic and port. */
+ Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
+ /*Log8(("hmR0SvmIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax, pCtx->rdx));*/
+ if (pCtx->dx != UINT32_C(0x5658))
+ return false;
+ if ((pCtx->fExtrn & CPUMCTX_EXTRN_RAX ? pVmcb->guest.u64RAX : pCtx->rax) != UINT32_C(0x564d5868))
+ return false;
+
+ /* Check that it is #GP(0). */
+ if (pVmcb->ctrl.u64ExitInfo1 != 0)
+ return false;
+
+ /* Flat ring-3 CS. */
+ /*Log8(("hmR0SvmIsMesaDrvGp: u8CPL=%d base=%RX64\n", pVmcb->guest.u8CPL, pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base));*/
+ if (pVmcb->guest.u8CPL != 3)
+ return false;
+ if ((pCtx->fExtrn & CPUMCTX_EXTRN_CS ? pVmcb->guest.CS.u64Base : pCtx->cs.u64Base) != 0)
+ return false;
+
+ /* 0xed: IN eAX,dx */
+ if (pVmcb->ctrl.cbInstrFetched < 1) /* unlikely, it turns out. */
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_GPRS_MASK
+ | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_EFER);
+ uint8_t abInstr[1];
+ int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
+ /*Log8(("hmR0SvmIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0])); */
+ if (RT_FAILURE(rc))
+ return false;
+ if (abInstr[0] != 0xed)
+ return false;
+ }
+ else
+ {
+ /*Log8(("hmR0SvmIsMesaDrvGp: %#x\n", pVmcb->ctrl.abInstr));*/
+ if (pVmcb->ctrl.abInstr[0] != 0xed)
+ return false;
+ }
+ return true;
+}
+
+
+/**
+ * \#VMEXIT handler for general protection faults (SVM_EXIT_XCPT_BP).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptGP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
+ if ( !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
+ || !hmR0SvmIsMesaDrvGp(pVCpu, pCtx, pVmcb))
+ {
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_GP;
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+ }
+ return hmR0SvmHandleMesaDrvGp(pVCpu, pCtx, pVmcb);
+}
+
+
+/**
+ * \#VMEXIT handler for generic exceptions. Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitXcptGeneric(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const uVector = pVmcb->ctrl.u64ExitCode - SVM_EXIT_XCPT_0;
+ uint32_t const uErrCode = pVmcb->ctrl.u64ExitInfo1;
+ Assert(pSvmTransient->u64ExitCode == pVmcb->ctrl.u64ExitCode);
+ Assert(uVector <= X86_XCPT_LAST);
+ Log4Func(("uVector=%#x uErrCode=%u\n", uVector, uErrCode));
+
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = uVector;
+ switch (uVector)
+ {
+ /* Shouldn't be here for reflecting #PFs (among other things, the fault address isn't passed along). */
+ case X86_XCPT_PF: AssertMsgFailed(("hmR0SvmExitXcptGeneric: Unexpected exception")); return VERR_SVM_IPE_5;
+ case X86_XCPT_DF:
+ case X86_XCPT_TS:
+ case X86_XCPT_NP:
+ case X86_XCPT_SS:
+ case X86_XCPT_GP:
+ case X86_XCPT_AC:
+ {
+ Event.n.u1ErrorCodeValid = 1;
+ Event.n.u32ErrorCode = uErrCode;
+ break;
+ }
+ }
+
+#ifdef VBOX_WITH_STATISTICS
+ switch (uVector)
+ {
+ case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
+ case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
+ case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
+ case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
+ case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
+ case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
+ case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
+ case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
+ case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
+ case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
+ case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
+ case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
+ case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
+ case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
+ case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
+ case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
+ default:
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
+ break;
+ }
+#endif
+
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * \#VMEXIT handler for software interrupt (INTn). Conditional \#VMEXIT (debug).
+ */
+HMSVM_EXIT_DECL hmR0SvmExitSwInt(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
+ Event.n.u8Vector = pVmcb->ctrl.u64ExitInfo1 & 0xff;
+ Log4Func(("uVector=%#x\n", Event.n.u8Vector));
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Generic exit handler that interprets the current instruction
+ *
+ * Useful exit that only gets triggered by dtrace and the debugger. Caller does
+ * the exit logging, and this function does the rest.
+ */
+static VBOXSTRICTRC hmR0SvmExitInterpretInstruction(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient,
+ uint64_t fExtraImport, uint64_t fHmChanged)
+{
+#if 1
+ RT_NOREF(pSvmTransient);
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fExtraImport);
+ VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
+ if (rcStrict == VINF_SUCCESS)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, fHmChanged | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RIP);
+ else
+ {
+ Log4Func(("IEMExecOne -> %Rrc\n", VBOXSTRICTRC_VAL(rcStrict) ));
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK | fHmChanged);
+ rcStrict = VINF_SUCCESS;
+ }
+ else
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, fHmChanged);
+ }
+ return rcStrict;
+#else
+ RT_NOREF(pVCpu, pSvmTransient, fExtraImport, fHmChanged);
+ return VINF_EM_RAW_EMULATE_INSTR;
+#endif
+}
+
+
+/**
+ * \#VMEXIT handler for STR. Conditional \#VMEXIT (debug).
+ */
+HMSVM_EXIT_DECL hmR0SvmExitTrRead(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ Log4Func(("%04x:%08RX64\n", pSvmTransient->pVmcb->guest.CS.u16Sel, pSvmTransient->pVmcb->guest.u64RIP));
+ return hmR0SvmExitInterpretInstruction(pVCpu, pSvmTransient, CPUMCTX_EXTRN_TR, 0);
+}
+
+
+/**
+ * \#VMEXIT handler for LTR. Conditional \#VMEXIT (OS/2 TLB workaround, debug).
+ */
+HMSVM_EXIT_DECL hmR0SvmExitTrWrite(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ /* Workaround for lack of TLB flushing in OS/2 when returning to protected
+ mode after a real mode call (like a BIOS call). See ticketref:20625
+ comment 14. */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ if (pVM->hm.s.fMissingOS2TlbFlushWorkaround)
+ {
+ Log4Func(("%04x:%08RX64 TLB flush\n", pSvmTransient->pVmcb->guest.CS.u16Sel, pSvmTransient->pVmcb->guest.u64RIP));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ }
+ else
+ Log4Func(("%04x:%08RX64\n", pSvmTransient->pVmcb->guest.CS.u16Sel, pSvmTransient->pVmcb->guest.u64RIP));
+
+ return hmR0SvmExitInterpretInstruction(pVCpu, pSvmTransient, CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_GDTR, HM_CHANGED_GUEST_TR);
+}
+
+
+#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
+/**
+ * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(pVmcb);
+ Assert(!pVmcb->ctrl.IntCtrl.n.u1VGifEnable);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ rcStrict = VINF_SUCCESS;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ /*
+ * When VGIF is not used we always intercept STGI instructions. When VGIF is used,
+ * we only intercept STGI when events are pending for GIF to become 1.
+ */
+ PSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ if (pVmcb->ctrl.IntCtrl.n.u1VGifEnable)
+ hmR0SvmClearCtrlIntercept(pVCpu, pVmcb, SVM_CTRL_INTERCEPT_STGI);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ uint64_t const fImport = CPUMCTX_EXTRN_HWVIRT;
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_HWVIRT);
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(pVmcb);
+ Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ uint64_t const fImport = CPUMCTX_EXTRN_FS | CPUMCTX_EXTRN_GS | CPUMCTX_EXTRN_KERNEL_GS_BASE
+ | CPUMCTX_EXTRN_TR | CPUMCTX_EXTRN_LDTR | CPUMCTX_EXTRN_SYSCALL_MSRS
+ | CPUMCTX_EXTRN_SYSENTER_MSRS;
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | fImport);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK | fImport);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS | HM_CHANGED_GUEST_GS
+ | HM_CHANGED_GUEST_TR | HM_CHANGED_GUEST_LDTR
+ | HM_CHANGED_GUEST_KERNEL_GS_BASE | HM_CHANGED_GUEST_SYSCALL_MSRS
+ | HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ Assert(!pVmcb->ctrl.LbrVirt.n.u1VirtVmsaveVmload);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ if (fSupportsNextRipSave)
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
+ }
+ else
+ {
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
+ rcStrict = IEMExecOne(pVCpu);
+ }
+
+ if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ /* We shall import the entire state here, just in case we enter and continue execution of
+ the nested-guest with hardware-assisted SVM in ring-0, we would be switching VMCBs and
+ could lose lose part of CPU state. */
+ HMSVM_CPUMCTX_IMPORT_STATE(pVCpu, HMSVM_CPUMCTX_EXTRN_ALL);
+
+ VBOXSTRICTRC rcStrict;
+ bool const fSupportsNextRipSave = hmR0SvmSupportsNextRipSave(pVCpu);
+ STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
+ if (fSupportsNextRipSave)
+ {
+ PCSVMVMCB pVmcb = hmR0SvmGetCurrentVmcb(pVCpu);
+ uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pVCpu->cpum.GstCtx.rip;
+ rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
+ }
+ else
+ {
+ /* We use IEMExecOneBypassEx() here as it supresses attempt to continue emulating any
+ instruction(s) when interrupt inhibition is set as part of emulating the VMRUN
+ instruction itself, see @bugref{7243#c126} */
+ rcStrict = IEMExecOneBypassEx(pVCpu, NULL /* pcbWritten */);
+ }
+ STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
+
+ if (rcStrict == VINF_SUCCESS)
+ {
+ rcStrict = VINF_SVM_VMRUN;
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_SVM_VMRUN_MASK);
+ }
+ else if (rcStrict == VINF_IEM_RAISED_XCPT)
+ {
+ ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
+ rcStrict = VINF_SUCCESS;
+ }
+ HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
+ return rcStrict;
+}
+
+
+/**
+ * Nested-guest \#VMEXIT handler for debug exceptions (SVM_EXIT_XCPT_1).
+ * Unconditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmNestedExitXcptDB(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ if (pVCpu->hm.s.Event.fPending)
+ {
+ STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
+ return VINF_EM_RAW_INJECT_TRPM_EVENT;
+ }
+
+ hmR0SvmSetPendingXcptDB(pVCpu);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Nested-guest \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_XCPT_3).
+ * Conditional \#VMEXIT.
+ */
+HMSVM_EXIT_DECL hmR0SvmNestedExitXcptBP(PVMCPUCC pVCpu, PSVMTRANSIENT pSvmTransient)
+{
+ HMSVM_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pSvmTransient);
+ HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY(pVCpu, pSvmTransient);
+
+ SVMEVENT Event;
+ Event.u = 0;
+ Event.n.u1Valid = 1;
+ Event.n.u3Type = SVM_EVENT_EXCEPTION;
+ Event.n.u8Vector = X86_XCPT_BP;
+ hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
+ return VINF_SUCCESS;
+}
+#endif /* VBOX_WITH_NESTED_HWVIRT_SVM */
+
+/** @} */
+