summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp4546
1 files changed, 4546 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp b/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp
new file mode 100644
index 00000000..c2a31a2a
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp
@@ -0,0 +1,4546 @@
+/* $Id: NEMR3Native-darwin.cpp $ */
+/** @file
+ * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
+ *
+ * Log group 2: Exit logging.
+ * Log group 3: Log context on exit.
+ * Log group 5: Ring-3 memory management
+ */
+
+/*
+ * Copyright (C) 2020-2022 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_NEM
+#define VMCPU_INCL_CPUM_GST_CTX
+#define CPUM_WITH_NONCONST_HOST_FEATURES /* required for initializing parts of the g_CpumHostFeatures structure here. */
+#include <VBox/vmm/nem.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/apic.h>
+#include <VBox/vmm/pdm.h>
+#include <VBox/vmm/hm.h>
+#include <VBox/vmm/hm_vmx.h>
+#include <VBox/vmm/dbgftrace.h>
+#include <VBox/vmm/gcm.h>
+#include "VMXInternal.h"
+#include "NEMInternal.h"
+#include <VBox/vmm/vmcc.h>
+#include "dtrace/VBoxVMM.h"
+
+#include <iprt/asm.h>
+#include <iprt/ldr.h>
+#include <iprt/mem.h>
+#include <iprt/path.h>
+#include <iprt/string.h>
+#include <iprt/system.h>
+#include <iprt/utf16.h>
+
+#include <mach/mach_time.h>
+#include <mach/kern_return.h>
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/* No nested hwvirt (for now). */
+#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
+# undef VBOX_WITH_NESTED_HWVIRT_VMX
+#endif
+
+
+/** @name HV return codes.
+ * @{ */
+/** Operation was successful. */
+#define HV_SUCCESS 0
+/** An error occurred during operation. */
+#define HV_ERROR 0xfae94001
+/** The operation could not be completed right now, try again. */
+#define HV_BUSY 0xfae94002
+/** One of the parameters passed wis invalid. */
+#define HV_BAD_ARGUMENT 0xfae94003
+/** Not enough resources left to fulfill the operation. */
+#define HV_NO_RESOURCES 0xfae94005
+/** The device could not be found. */
+#define HV_NO_DEVICE 0xfae94006
+/** The operation is not supportd on this platform with this configuration. */
+#define HV_UNSUPPORTED 0xfae94007
+/** @} */
+
+
+/** @name HV memory protection flags.
+ * @{ */
+/** Memory is readable. */
+#define HV_MEMORY_READ RT_BIT_64(0)
+/** Memory is writeable. */
+#define HV_MEMORY_WRITE RT_BIT_64(1)
+/** Memory is executable. */
+#define HV_MEMORY_EXEC RT_BIT_64(2)
+/** @} */
+
+
+/** @name HV shadow VMCS protection flags.
+ * @{ */
+/** Shadow VMCS field is not accessible. */
+#define HV_SHADOW_VMCS_NONE 0
+/** Shadow VMCS fild is readable. */
+#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
+/** Shadow VMCS field is writeable. */
+#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
+/** @} */
+
+
+/** Default VM creation flags. */
+#define HV_VM_DEFAULT 0
+/** Default guest address space creation flags. */
+#define HV_VM_SPACE_DEFAULT 0
+/** Default vCPU creation flags. */
+#define HV_VCPU_DEFAULT 0
+
+#define HV_DEADLINE_FOREVER UINT64_MAX
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+
+/** HV return code type. */
+typedef uint32_t hv_return_t;
+/** HV capability bitmask. */
+typedef uint64_t hv_capability_t;
+/** Option bitmask type when creating a VM. */
+typedef uint64_t hv_vm_options_t;
+/** Option bitmask when creating a vCPU. */
+typedef uint64_t hv_vcpu_options_t;
+/** HV memory protection flags type. */
+typedef uint64_t hv_memory_flags_t;
+/** Shadow VMCS protection flags. */
+typedef uint64_t hv_shadow_flags_t;
+/** Guest physical address type. */
+typedef uint64_t hv_gpaddr_t;
+
+
+/**
+ * VMX Capability enumeration.
+ */
+typedef enum
+{
+ HV_VMX_CAP_PINBASED = 0,
+ HV_VMX_CAP_PROCBASED,
+ HV_VMX_CAP_PROCBASED2,
+ HV_VMX_CAP_ENTRY,
+ HV_VMX_CAP_EXIT,
+ HV_VMX_CAP_BASIC, /* Since 11.0 */
+ HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
+ HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
+ HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
+ HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
+ HV_VMX_CAP_MISC, /* Since 11.0 */
+ HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
+ HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
+ HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
+ HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
+ HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
+ HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
+ HV_VMX_CAP_PREEMPTION_TIMER = 32
+} hv_vmx_capability_t;
+
+
+/**
+ * MSR information.
+ */
+typedef enum
+{
+ HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES = 0,
+ HV_VMX_INFO_MSR_IA32_PERF_CAPABILITIES,
+ HV_VMX_VALID_MSR_IA32_PERFEVNTSEL,
+ HV_VMX_VALID_MSR_IA32_FIXED_CTR_CTRL,
+ HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_CTRL,
+ HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_STATUS,
+ HV_VMX_VALID_MSR_IA32_DEBUGCTL,
+ HV_VMX_VALID_MSR_IA32_SPEC_CTRL,
+ HV_VMX_NEED_MSR_IA32_SPEC_CTRL
+} hv_vmx_msr_info_t;
+
+
+/**
+ * HV x86 register enumeration.
+ */
+typedef enum
+{
+ HV_X86_RIP = 0,
+ HV_X86_RFLAGS,
+ HV_X86_RAX,
+ HV_X86_RCX,
+ HV_X86_RDX,
+ HV_X86_RBX,
+ HV_X86_RSI,
+ HV_X86_RDI,
+ HV_X86_RSP,
+ HV_X86_RBP,
+ HV_X86_R8,
+ HV_X86_R9,
+ HV_X86_R10,
+ HV_X86_R11,
+ HV_X86_R12,
+ HV_X86_R13,
+ HV_X86_R14,
+ HV_X86_R15,
+ HV_X86_CS,
+ HV_X86_SS,
+ HV_X86_DS,
+ HV_X86_ES,
+ HV_X86_FS,
+ HV_X86_GS,
+ HV_X86_IDT_BASE,
+ HV_X86_IDT_LIMIT,
+ HV_X86_GDT_BASE,
+ HV_X86_GDT_LIMIT,
+ HV_X86_LDTR,
+ HV_X86_LDT_BASE,
+ HV_X86_LDT_LIMIT,
+ HV_X86_LDT_AR,
+ HV_X86_TR,
+ HV_X86_TSS_BASE,
+ HV_X86_TSS_LIMIT,
+ HV_X86_TSS_AR,
+ HV_X86_CR0,
+ HV_X86_CR1,
+ HV_X86_CR2,
+ HV_X86_CR3,
+ HV_X86_CR4,
+ HV_X86_DR0,
+ HV_X86_DR1,
+ HV_X86_DR2,
+ HV_X86_DR3,
+ HV_X86_DR4,
+ HV_X86_DR5,
+ HV_X86_DR6,
+ HV_X86_DR7,
+ HV_X86_TPR,
+ HV_X86_XCR0,
+ HV_X86_REGISTERS_MAX
+} hv_x86_reg_t;
+
+
+/** MSR permission flags type. */
+typedef uint32_t hv_msr_flags_t;
+/** MSR can't be accessed. */
+#define HV_MSR_NONE 0
+/** MSR is readable by the guest. */
+#define HV_MSR_READ RT_BIT(0)
+/** MSR is writeable by the guest. */
+#define HV_MSR_WRITE RT_BIT(1)
+
+
+typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
+typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
+typedef hv_return_t FN_HV_VM_DESTROY(void);
+typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
+typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
+typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
+typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
+typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
+typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
+typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
+typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
+typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
+
+typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
+typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
+typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
+typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
+typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
+typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
+typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
+typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
+typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
+typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
+typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
+typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
+typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
+typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
+typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
+typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
+
+typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
+typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
+
+typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
+typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
+typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
+
+typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
+typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
+
+/* Since 11.0 */
+typedef hv_return_t FN_HV_VMX_GET_MSR_INFO(hv_vmx_msr_info_t field, uint64_t *value);
+typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
+typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
+typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+static void nemR3DarwinVmcsDump(PVMCPU pVCpu);
+
+/** NEM_DARWIN_PAGE_STATE_XXX names. */
+NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
+/** MSRs. */
+static SUPHWVIRTMSRS g_HmMsrs;
+/** VMX: Set if swapping EFER is supported. */
+static bool g_fHmVmxSupportsVmcsEfer = false;
+/** @name APIs imported from Hypervisor.framework.
+ * @{ */
+static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
+static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
+static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
+static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
+static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
+static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
+static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
+static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
+static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
+static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
+static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
+static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
+
+static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
+static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
+static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
+static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
+static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
+static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
+static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
+static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
+static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
+static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
+static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
+static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
+static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
+static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
+static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
+static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
+
+static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
+static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
+static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
+static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
+static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
+static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
+static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
+
+static FN_HV_VMX_GET_MSR_INFO *g_pfnHvVmxGetMsrInfo = NULL; /* Since 11.0 */
+static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
+static FN_HV_VCPU_ENABLE_MANAGED_MSR *g_pfnHvVCpuEnableManagedMsr = NULL; /* Since 11.0 */
+static FN_HV_VCPU_SET_MSR_ACCESS *g_pfnHvVCpuSetMsrAccess = NULL; /* Since 11.0 */
+/** @} */
+
+
+/**
+ * Import instructions.
+ */
+static const struct
+{
+ bool fOptional; /**< Set if import is optional. */
+ void **ppfn; /**< The function pointer variable. */
+ const char *pszName; /**< The function name. */
+} g_aImports[] =
+{
+#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
+ NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
+
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
+ NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmxGetMsrInfo, hv_vmx_get_msr_info),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVCpuEnableManagedMsr, hv_vcpu_enable_managed_msr),
+ NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetMsrAccess, hv_vcpu_set_msr_access)
+#undef NEM_DARWIN_IMPORT
+};
+
+
+/*
+ * Let the preprocessor alias the APIs to import variables for better autocompletion.
+ */
+#ifndef IN_SLICKEDIT
+# define hv_capability g_pfnHvCapability
+# define hv_vm_create g_pfnHvVmCreate
+# define hv_vm_destroy g_pfnHvVmDestroy
+# define hv_vm_space_create g_pfnHvVmSpaceCreate
+# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
+# define hv_vm_map g_pfnHvVmMap
+# define hv_vm_unmap g_pfnHvVmUnmap
+# define hv_vm_protect g_pfnHvVmProtect
+# define hv_vm_map_space g_pfnHvVmMapSpace
+# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
+# define hv_vm_protect_space g_pfnHvVmProtectSpace
+# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
+
+# define hv_vcpu_create g_pfnHvVCpuCreate
+# define hv_vcpu_destroy g_pfnHvVCpuDestroy
+# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
+# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
+# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
+# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
+# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
+# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
+# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
+# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
+# define hv_vcpu_flush g_pfnHvVCpuFlush
+# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
+# define hv_vcpu_run g_pfnHvVCpuRun
+# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
+# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
+# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
+
+# define hv_vmx_read_capability g_pfnHvVmxReadCapability
+# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
+# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
+# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
+# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
+# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
+# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
+
+# define hv_vmx_get_msr_info g_pfnHvVmxGetMsrInfo
+# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
+# define hv_vcpu_enable_managed_msr g_pfnHvVCpuEnableManagedMsr
+# define hv_vcpu_set_msr_access g_pfnHvVCpuSetMsrAccess
+#endif
+
+static const struct
+{
+ uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
+ const char *pszVmcsField; /**< The VMCS field name. */
+ bool f64Bit;
+} g_aVmcsFieldsCap[] =
+{
+#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
+#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
+
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
+ NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
+ NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
+ NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
+#undef NEM_DARWIN_VMCS64_FIELD_CAP
+#undef NEM_DARWIN_VMCS32_FIELD_CAP
+};
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
+
+
+/**
+ * Converts a HV return code to a VBox status code.
+ *
+ * @returns VBox status code.
+ * @param hrc The HV return code to convert.
+ */
+DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
+{
+ if (hrc == HV_SUCCESS)
+ return VINF_SUCCESS;
+
+ switch (hrc)
+ {
+ case HV_ERROR: return VERR_INVALID_STATE;
+ case HV_BUSY: return VERR_RESOURCE_BUSY;
+ case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
+ case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
+ case HV_NO_DEVICE: return VERR_NOT_FOUND;
+ case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
+ }
+
+ return VERR_IPE_UNEXPECTED_STATUS;
+}
+
+
+/**
+ * Unmaps the given guest physical address range (page aligned).
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The guest physical address to start unmapping at.
+ * @param cb The size of the range to unmap in bytes.
+ * @param pu2State Where to store the new state of the unmappd page, optional.
+ */
+DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
+{
+ if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
+ {
+ Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
+ *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
+ return VINF_SUCCESS;
+ }
+
+ LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
+ hv_return_t hrc;
+ if (pVM->nem.s.fCreatedAsid)
+ hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, cb);
+ else
+ hrc = hv_vm_unmap(GCPhys, cb);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ {
+ STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
+ if (pu2State)
+ *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
+ Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+ STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
+ LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
+ GCPhys, hrc));
+ return VERR_NEM_IPE_6;
+}
+
+
+/**
+ * Maps a given guest physical address range backed by the given memory with the given
+ * protection flags.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The guest physical address to start mapping.
+ * @param pvRam The R3 pointer of the memory to back the range with.
+ * @param cb The size of the range, page aligned.
+ * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
+ * @param pu2State Where to store the state for the new page, optional.
+ */
+DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
+{
+ LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
+
+ Assert(fPageProt != NEM_PAGE_PROT_NONE);
+
+ hv_memory_flags_t fHvMemProt = 0;
+ if (fPageProt & NEM_PAGE_PROT_READ)
+ fHvMemProt |= HV_MEMORY_READ;
+ if (fPageProt & NEM_PAGE_PROT_WRITE)
+ fHvMemProt |= HV_MEMORY_WRITE;
+ if (fPageProt & NEM_PAGE_PROT_EXECUTE)
+ fHvMemProt |= HV_MEMORY_EXEC;
+
+ hv_return_t hrc;
+ if (pVM->nem.s.fCreatedAsid)
+ hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
+ else
+ hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
+ if (hrc == HV_SUCCESS)
+ {
+ if (pu2State)
+ *pu2State = (fPageProt & NEM_PAGE_PROT_WRITE)
+ ? NEM_DARWIN_PAGE_STATE_WRITABLE
+ : NEM_DARWIN_PAGE_STATE_READABLE;
+ return VINF_SUCCESS;
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+#if 0 /* unused */
+DECLINLINE(int) nemR3DarwinProtectPage(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt)
+{
+ hv_memory_flags_t fHvMemProt = 0;
+ if (fPageProt & NEM_PAGE_PROT_READ)
+ fHvMemProt |= HV_MEMORY_READ;
+ if (fPageProt & NEM_PAGE_PROT_WRITE)
+ fHvMemProt |= HV_MEMORY_WRITE;
+ if (fPageProt & NEM_PAGE_PROT_EXECUTE)
+ fHvMemProt |= HV_MEMORY_EXEC;
+
+ hv_return_t hrc;
+ if (pVM->nem.s.fCreatedAsid)
+ hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
+ else
+ hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+#endif
+
+DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
+{
+ PGMPAGEMAPLOCK Lock;
+ int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
+ if (RT_SUCCESS(rc))
+ PGMPhysReleasePageMappingLock(pVM, &Lock);
+ return rc;
+}
+
+
+DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
+{
+ PGMPAGEMAPLOCK Lock;
+ int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
+ if (RT_SUCCESS(rc))
+ PGMPhysReleasePageMappingLock(pVM, &Lock);
+ return rc;
+}
+
+
+#ifdef LOG_ENABLED
+/**
+ * Logs the current CPU state.
+ */
+static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
+{
+ if (LogIs3Enabled())
+ {
+#if 0
+ char szRegs[4096];
+ DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
+ "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
+ "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
+ "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
+ "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
+ "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
+ "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
+ "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
+ "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
+ "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
+ "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
+ "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
+ "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
+ "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
+ "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
+ "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
+ "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
+ " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
+ " efer=%016VR{efer}\n"
+ " pat=%016VR{pat}\n"
+ " sf_mask=%016VR{sf_mask}\n"
+ "krnl_gs_base=%016VR{krnl_gs_base}\n"
+ " lstar=%016VR{lstar}\n"
+ " star=%016VR{star} cstar=%016VR{cstar}\n"
+ "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
+ );
+
+ char szInstr[256];
+ DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
+ DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
+ szInstr, sizeof(szInstr), NULL);
+ Log3(("%s%s\n", szRegs, szInstr));
+#else
+ RT_NOREF(pVM, pVCpu);
+#endif
+ }
+}
+#endif /* LOG_ENABLED */
+
+
+DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
+{
+ uint64_t u64Data;
+ hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ {
+ *pData = (uint16_t)u64Data;
+ return VINF_SUCCESS;
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
+{
+ uint64_t u64Data;
+ hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ {
+ *pData = (uint32_t)u64Data;
+ return VINF_SUCCESS;
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
+{
+ hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
+{
+ hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
+{
+ hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
+{
+ hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
+{
+ hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+#if 0 /*unused*/
+DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
+{
+ hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+#endif
+
+static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
+{
+#define READ_GREG(a_GReg, a_Value) \
+ do \
+ { \
+ hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define READ_VMCS_FIELD(a_Field, a_Value) \
+ do \
+ { \
+ hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define READ_VMCS16_FIELD(a_Field, a_Value) \
+ do \
+ { \
+ uint64_t u64Data; \
+ hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { (a_Value) = (uint16_t)u64Data; } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define READ_VMCS32_FIELD(a_Field, a_Value) \
+ do \
+ { \
+ uint64_t u64Data; \
+ hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { (a_Value) = (uint32_t)u64Data; } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define READ_MSR(a_Msr, a_Value) \
+ do \
+ { \
+ hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ AssertFailedReturn(VERR_INTERNAL_ERROR); \
+ } while(0)
+
+ STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
+
+ RT_NOREF(pVM);
+ fWhat &= pVCpu->cpum.GstCtx.fExtrn;
+
+ if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
+ vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
+
+ /* GPRs */
+ hv_return_t hrc;
+ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_RAX)
+ READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
+ if (fWhat & CPUMCTX_EXTRN_RCX)
+ READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
+ if (fWhat & CPUMCTX_EXTRN_RDX)
+ READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
+ if (fWhat & CPUMCTX_EXTRN_RBX)
+ READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
+ if (fWhat & CPUMCTX_EXTRN_RSP)
+ READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
+ if (fWhat & CPUMCTX_EXTRN_RBP)
+ READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
+ if (fWhat & CPUMCTX_EXTRN_RSI)
+ READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
+ if (fWhat & CPUMCTX_EXTRN_RDI)
+ READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
+ if (fWhat & CPUMCTX_EXTRN_R8_R15)
+ {
+ READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
+ READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
+ READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
+ READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
+ READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
+ READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
+ READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
+ READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
+ }
+ }
+
+ /* RIP & Flags */
+ if (fWhat & CPUMCTX_EXTRN_RIP)
+ READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
+ if (fWhat & CPUMCTX_EXTRN_RFLAGS)
+ {
+ uint64_t fRFlagsTmp = 0;
+ READ_GREG(HV_X86_RFLAGS, fRFlagsTmp);
+ pVCpu->cpum.GstCtx.rflags.u = fRFlagsTmp;
+ }
+
+ /* Segments */
+#define READ_SEG(a_SReg, a_enmName) \
+ do { \
+ READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
+ READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
+ READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
+ READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
+ (a_SReg).ValidSel = (a_SReg).Sel; \
+ } while (0)
+ if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_ES)
+ READ_SEG(pVCpu->cpum.GstCtx.es, ES);
+ if (fWhat & CPUMCTX_EXTRN_CS)
+ READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
+ if (fWhat & CPUMCTX_EXTRN_SS)
+ READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
+ if (fWhat & CPUMCTX_EXTRN_DS)
+ READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
+ if (fWhat & CPUMCTX_EXTRN_FS)
+ READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
+ if (fWhat & CPUMCTX_EXTRN_GS)
+ READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
+ }
+
+ /* Descriptor tables and the task segment. */
+ if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fWhat & CPUMCTX_EXTRN_LDTR)
+ READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
+
+ if (fWhat & CPUMCTX_EXTRN_TR)
+ {
+ /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
+ avoid to trigger sanity assertions around the code, always fix this. */
+ READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
+ switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
+ {
+ case X86_SEL_TYPE_SYS_386_TSS_BUSY:
+ case X86_SEL_TYPE_SYS_286_TSS_BUSY:
+ break;
+ case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
+ pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
+ break;
+ case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
+ pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
+ break;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_IDTR)
+ {
+ READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
+ READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
+ }
+ if (fWhat & CPUMCTX_EXTRN_GDTR)
+ {
+ READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
+ READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
+ }
+ }
+
+ /* Control registers. */
+ bool fMaybeChangedMode = false;
+ bool fUpdateCr3 = false;
+ if (fWhat & CPUMCTX_EXTRN_CR_MASK)
+ {
+ uint64_t u64CrTmp = 0;
+
+ if (fWhat & CPUMCTX_EXTRN_CR0)
+ {
+ READ_GREG(HV_X86_CR0, u64CrTmp);
+ if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
+ {
+ CPUMSetGuestCR0(pVCpu, u64CrTmp);
+ fMaybeChangedMode = true;
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR2)
+ READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
+ if (fWhat & CPUMCTX_EXTRN_CR3)
+ {
+ READ_GREG(HV_X86_CR3, u64CrTmp);
+ if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
+ {
+ CPUMSetGuestCR3(pVCpu, u64CrTmp);
+ fUpdateCr3 = true;
+ }
+
+ /*
+ * If the guest is in PAE mode, sync back the PDPE's into the guest state.
+ * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
+ */
+ if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
+ {
+ X86PDPE aPaePdpes[4];
+ READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
+ READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
+ READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
+ READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
+ if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
+ {
+ memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
+ fUpdateCr3 = true;
+ }
+ }
+ }
+ if (fWhat & CPUMCTX_EXTRN_CR4)
+ {
+ READ_GREG(HV_X86_CR4, u64CrTmp);
+ u64CrTmp &= ~VMX_V_CR4_FIXED0;
+
+ if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
+ {
+ CPUMSetGuestCR4(pVCpu, u64CrTmp);
+ fMaybeChangedMode = true;
+ }
+ }
+ }
+
+#if 0 /* Always done. */
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ {
+ uint64_t u64Cr8 = 0;
+
+ READ_GREG(HV_X86_TPR, u64Cr8);
+ APICSetTpr(pVCpu, u64Cr8 << 4);
+ }
+#endif
+
+ if (fWhat & CPUMCTX_EXTRN_XCRx)
+ READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
+
+ /* Debug registers. */
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ {
+ uint64_t u64Dr7;
+ READ_GREG(HV_X86_DR7, u64Dr7);
+ if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
+ CPUMSetGuestDR7(pVCpu, u64Dr7);
+ pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ uint64_t u64DrTmp;
+
+ READ_GREG(HV_X86_DR0, u64DrTmp);
+ if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
+ CPUMSetGuestDR0(pVCpu, u64DrTmp);
+ READ_GREG(HV_X86_DR1, u64DrTmp);
+ if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
+ CPUMSetGuestDR1(pVCpu, u64DrTmp);
+ READ_GREG(HV_X86_DR2, u64DrTmp);
+ if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
+ CPUMSetGuestDR2(pVCpu, u64DrTmp);
+ READ_GREG(HV_X86_DR3, u64DrTmp);
+ if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
+ CPUMSetGuestDR3(pVCpu, u64DrTmp);
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ {
+ uint64_t u64Dr6;
+ READ_GREG(HV_X86_DR6, u64Dr6);
+ if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
+ CPUMSetGuestDR6(pVCpu, u64Dr6);
+ }
+
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
+ {
+ hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
+ if (hrc == HV_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
+ return nemR3DarwinHvSts2Rc(hrc);
+ }
+ }
+
+ /* MSRs */
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ {
+ uint64_t u64Efer;
+
+ READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
+ if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
+ {
+ Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
+ if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
+ PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
+ pVCpu->cpum.GstCtx.msrEFER = u64Efer;
+ fMaybeChangedMode = true;
+ }
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ uint64_t u64Tmp;
+ READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
+ pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
+ READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
+ pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
+ READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
+ pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
+ READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
+ READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
+ READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
+ }
+ if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
+ {
+ PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+ READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
+ }
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ /* Last Branch Record. */
+ if (pVM->nem.s.fLbr)
+ {
+ PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
+ uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
+ uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
+ uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
+ uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
+ Assert(cLbrStack <= 32);
+ for (uint32_t i = 0; i < cLbrStack; i++)
+ {
+ READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
+
+ /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
+ if (idToIpMsrStart != 0)
+ READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
+ if (idInfoMsrStart != 0)
+ READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
+ }
+
+ READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
+
+ if (pVM->nem.s.idLerFromIpMsr)
+ READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
+ if (pVM->nem.s.idLerToIpMsr)
+ READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
+ }
+ }
+
+ /* Almost done, just update extrn flags and maybe change PGM mode. */
+ pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+
+#ifdef LOG_ENABLED
+ nemR3DarwinLogState(pVM, pVCpu);
+#endif
+
+ /* Typical. */
+ if (!fMaybeChangedMode && !fUpdateCr3)
+ {
+ STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Slow.
+ */
+ if (fMaybeChangedMode)
+ {
+ int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
+ false /* fForce */);
+ AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
+ }
+
+ if (fUpdateCr3)
+ {
+ int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
+ if (rc == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
+ }
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
+
+ return VINF_SUCCESS;
+#undef READ_GREG
+#undef READ_VMCS_FIELD
+#undef READ_VMCS32_FIELD
+#undef READ_SEG
+#undef READ_MSR
+}
+
+
+/**
+ * State to pass between vmxHCExitEptViolation
+ * and nemR3DarwinHandleMemoryAccessPageCheckerCallback.
+ */
+typedef struct NEMHCDARWINHMACPCCSTATE
+{
+ /** Input: Write access. */
+ bool fWriteAccess;
+ /** Output: Set if we did something. */
+ bool fDidSomething;
+ /** Output: Set it we should resume. */
+ bool fCanResume;
+} NEMHCDARWINHMACPCCSTATE;
+
+/**
+ * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
+ * Worker for vmxHCExitEptViolation; pvUser points to a
+ * NEMHCDARWINHMACPCCSTATE structure. }
+ */
+static DECLCALLBACK(int)
+nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
+{
+ RT_NOREF(pVCpu);
+
+ NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
+ pState->fDidSomething = false;
+ pState->fCanResume = false;
+
+ uint8_t u2State = pInfo->u2NemState;
+
+ /*
+ * Consolidate current page state with actual page protection and access type.
+ * We don't really consider downgrades here, as they shouldn't happen.
+ */
+ switch (u2State)
+ {
+ case NEM_DARWIN_PAGE_STATE_UNMAPPED:
+ case NEM_DARWIN_PAGE_STATE_NOT_SET:
+ {
+ if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
+ {
+ Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+ /* Don't bother remapping it if it's a write request to a non-writable page. */
+ if ( pState->fWriteAccess
+ && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
+ {
+ Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+
+ int rc = VINF_SUCCESS;
+ if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ {
+ void *pvPage;
+ rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhys, &pvPage);
+ if (RT_SUCCESS(rc))
+ rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
+ }
+ else if (pInfo->fNemProt & NEM_PAGE_PROT_READ)
+ {
+ const void *pvPage;
+ rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
+ if (RT_SUCCESS(rc))
+ rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
+ }
+ else /* Only EXECUTE doesn't work. */
+ AssertReleaseFailed();
+
+ pInfo->u2NemState = u2State;
+ Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
+ GCPhys, g_apszPageStates[u2State], rc));
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ return rc;
+ }
+ case NEM_DARWIN_PAGE_STATE_READABLE:
+ if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
+ {
+ pState->fCanResume = true;
+ Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+ break;
+
+ case NEM_DARWIN_PAGE_STATE_WRITABLE:
+ if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
+ {
+ pState->fCanResume = true;
+ if (pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_WRITABLE)
+ Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: Spurious EPT fault\n", GCPhys));
+ return VINF_SUCCESS;
+ }
+ break;
+
+ default:
+ AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
+ }
+
+ /* Unmap and restart the instruction. */
+ int rc = nemR3DarwinUnmap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE, &u2State);
+ if (RT_SUCCESS(rc))
+ {
+ pInfo->u2NemState = u2State;
+ pState->fDidSomething = true;
+ pState->fCanResume = true;
+ Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
+ return VINF_SUCCESS;
+ }
+
+ LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhys=%RGp %s rc=%Rrc\n",
+ GCPhys, g_apszPageStates[u2State], rc));
+ return VERR_NEM_UNMAP_PAGES_FAILED;
+}
+
+
+DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
+{
+ RT_NOREF(pVM);
+ return true;
+}
+
+
+DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
+{
+ RT_NOREF(pVM);
+ return true;
+}
+
+
+DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
+{
+ RT_NOREF(pVM);
+ return false;
+}
+
+
+#if 0 /* unused */
+DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
+{
+ RT_NOREF(pVM);
+ return false;
+}
+#endif
+
+
+/*
+ * Instantiate the code we share with ring-0.
+ */
+#define IN_NEM_DARWIN
+//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
+//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
+//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
+#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
+#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
+
+#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
+#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
+#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
+#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
+
+#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
+#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
+#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
+#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
+
+#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
+#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
+#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
+#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
+
+#include "../VMMAll/VMXAllTemplate.cpp.h"
+
+#undef VMX_VMCS_WRITE_16
+#undef VMX_VMCS_WRITE_32
+#undef VMX_VMCS_WRITE_64
+#undef VMX_VMCS_WRITE_NW
+
+#undef VMX_VMCS_READ_16
+#undef VMX_VMCS_READ_32
+#undef VMX_VMCS_READ_64
+#undef VMX_VMCS_READ_NW
+
+#undef VM_IS_VMX_PREEMPT_TIMER_USED
+#undef VM_IS_VMX_NESTED_PAGING
+#undef VM_IS_VMX_UNRESTRICTED_GUEST
+#undef VCPU_2_VMXSTATS
+#undef VCPU_2_VMXSTATE
+
+
+/**
+ * Exports the guest GP registers to HV for execution.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ */
+static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
+{
+#define WRITE_GREG(a_GReg, a_Value) \
+ do \
+ { \
+ hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+
+ uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
+ if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
+ {
+ if (fCtxChanged & HM_CHANGED_GUEST_RAX)
+ WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
+ if (fCtxChanged & HM_CHANGED_GUEST_RCX)
+ WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
+ if (fCtxChanged & HM_CHANGED_GUEST_RDX)
+ WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
+ if (fCtxChanged & HM_CHANGED_GUEST_RBX)
+ WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
+ if (fCtxChanged & HM_CHANGED_GUEST_RSP)
+ WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
+ if (fCtxChanged & HM_CHANGED_GUEST_RBP)
+ WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
+ if (fCtxChanged & HM_CHANGED_GUEST_RSI)
+ WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
+ if (fCtxChanged & HM_CHANGED_GUEST_RDI)
+ WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
+ if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
+ {
+ WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
+ WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
+ WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
+ WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
+ WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
+ WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
+ WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
+ WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
+ }
+
+ if (fCtxChanged & HM_CHANGED_GUEST_CR2)
+ {
+ WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
+ }
+
+ return VINF_SUCCESS;
+#undef WRITE_GREG
+}
+
+
+/**
+ * Exports the guest debug registers into the guest-state applying any hypervisor
+ * debug related states (hardware breakpoints from the debugger, etc.).
+ *
+ * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient The VMX-transient structure.
+ */
+static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
+
+#ifdef VBOX_STRICT
+ /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
+ if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
+ {
+ /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
+ Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
+ Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
+ }
+#endif
+
+ bool fSteppingDB = false;
+ bool fInterceptMovDRx = false;
+ uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
+ if (pVCpu->nem.s.fSingleInstruction)
+ {
+ /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
+ if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
+ {
+ uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
+ Assert(fSteppingDB == false);
+ }
+ else
+ {
+ pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
+ pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
+ pVCpu->nem.s.fClearTrapFlag = true;
+ fSteppingDB = true;
+ }
+ }
+
+ uint64_t u64GuestDr7;
+ if ( fSteppingDB
+ || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
+ {
+ /*
+ * Use the combined guest and host DRx values found in the hypervisor register set
+ * because the hypervisor debugger has breakpoints active or someone is single stepping
+ * on the host side without a monitor trap flag.
+ *
+ * Note! DBGF expects a clean DR6 state before executing guest code.
+ */
+ if (!CPUMIsHyperDebugStateActive(pVCpu))
+ {
+ /*
+ * Make sure the hypervisor values are up to date.
+ */
+ CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
+
+ CPUMR3NemActivateHyperDebugState(pVCpu);
+
+ Assert(CPUMIsHyperDebugStateActive(pVCpu));
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+ }
+
+ /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
+ u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
+ pVCpu->nem.s.fUsingHyperDR7 = true;
+ fInterceptMovDRx = true;
+ }
+ else
+ {
+ /*
+ * If the guest has enabled debug registers, we need to load them prior to
+ * executing guest code so they'll trigger at the right time.
+ */
+ HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
+ if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
+ {
+ if (!CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ CPUMR3NemActivateGuestDebugState(pVCpu);
+
+ Assert(CPUMIsGuestDebugStateActive(pVCpu));
+ Assert(!CPUMIsHyperDebugStateActive(pVCpu));
+ }
+ Assert(!fInterceptMovDRx);
+ }
+ else if (!CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ /*
+ * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
+ * must intercept #DB in order to maintain a correct DR6 guest value, and
+ * because we need to intercept it to prevent nested #DBs from hanging the
+ * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
+ */
+ fInterceptMovDRx = true;
+ }
+
+ /* Update DR7 with the actual guest value. */
+ u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
+ pVCpu->nem.s.fUsingHyperDR7 = false;
+ }
+
+ if (fInterceptMovDRx)
+ uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
+ else
+ uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
+
+ /*
+ * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
+ * monitor-trap flag and update our cache.
+ */
+ if (uProcCtls != pVmcsInfo->u32ProcCtls)
+ {
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
+ AssertRC(rc);
+ pVmcsInfo->u32ProcCtls = uProcCtls;
+ }
+
+ /*
+ * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
+ * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
+ *
+ * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
+ */
+ if (fSteppingDB)
+ {
+ Assert(pVCpu->nem.s.fSingleInstruction);
+ Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
+
+ uint32_t fIntrState = 0;
+ int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
+ AssertRC(rc);
+
+ if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
+ {
+ fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
+ rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
+ AssertRC(rc);
+ }
+ }
+
+ /*
+ * Store status of the shared guest/host debug state at the time of VM-entry.
+ */
+ pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
+ pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
+ *
+ * @returns Bitmask of HM changed flags.
+ * @param fCpumExtrn The CPUM extern bitmask.
+ */
+static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
+{
+ uint64_t fHmChanged = 0;
+
+ /* Invert to gt a mask of things which are kept in CPUM. */
+ uint64_t fCpumIntern = ~fCpumExtrn;
+
+ if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
+ {
+ if (fCpumIntern & CPUMCTX_EXTRN_RAX)
+ fHmChanged |= HM_CHANGED_GUEST_RAX;
+ if (fCpumIntern & CPUMCTX_EXTRN_RCX)
+ fHmChanged |= HM_CHANGED_GUEST_RCX;
+ if (fCpumIntern & CPUMCTX_EXTRN_RDX)
+ fHmChanged |= HM_CHANGED_GUEST_RDX;
+ if (fCpumIntern & CPUMCTX_EXTRN_RBX)
+ fHmChanged |= HM_CHANGED_GUEST_RBX;
+ if (fCpumIntern & CPUMCTX_EXTRN_RSP)
+ fHmChanged |= HM_CHANGED_GUEST_RSP;
+ if (fCpumIntern & CPUMCTX_EXTRN_RBP)
+ fHmChanged |= HM_CHANGED_GUEST_RBP;
+ if (fCpumIntern & CPUMCTX_EXTRN_RSI)
+ fHmChanged |= HM_CHANGED_GUEST_RSI;
+ if (fCpumIntern & CPUMCTX_EXTRN_RDI)
+ fHmChanged |= HM_CHANGED_GUEST_RDI;
+ if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
+ fHmChanged |= HM_CHANGED_GUEST_R8_R15;
+ }
+
+ /* RIP & Flags */
+ if (fCpumIntern & CPUMCTX_EXTRN_RIP)
+ fHmChanged |= HM_CHANGED_GUEST_RIP;
+ if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
+ fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
+
+ /* Segments */
+ if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
+ {
+ if (fCpumIntern & CPUMCTX_EXTRN_ES)
+ fHmChanged |= HM_CHANGED_GUEST_ES;
+ if (fCpumIntern & CPUMCTX_EXTRN_CS)
+ fHmChanged |= HM_CHANGED_GUEST_CS;
+ if (fCpumIntern & CPUMCTX_EXTRN_SS)
+ fHmChanged |= HM_CHANGED_GUEST_SS;
+ if (fCpumIntern & CPUMCTX_EXTRN_DS)
+ fHmChanged |= HM_CHANGED_GUEST_DS;
+ if (fCpumIntern & CPUMCTX_EXTRN_FS)
+ fHmChanged |= HM_CHANGED_GUEST_FS;
+ if (fCpumIntern & CPUMCTX_EXTRN_GS)
+ fHmChanged |= HM_CHANGED_GUEST_GS;
+ }
+
+ /* Descriptor tables & task segment. */
+ if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
+ {
+ if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
+ fHmChanged |= HM_CHANGED_GUEST_LDTR;
+ if (fCpumIntern & CPUMCTX_EXTRN_TR)
+ fHmChanged |= HM_CHANGED_GUEST_TR;
+ if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
+ fHmChanged |= HM_CHANGED_GUEST_IDTR;
+ if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
+ fHmChanged |= HM_CHANGED_GUEST_GDTR;
+ }
+
+ /* Control registers. */
+ if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
+ {
+ if (fCpumIntern & CPUMCTX_EXTRN_CR0)
+ fHmChanged |= HM_CHANGED_GUEST_CR0;
+ if (fCpumIntern & CPUMCTX_EXTRN_CR2)
+ fHmChanged |= HM_CHANGED_GUEST_CR2;
+ if (fCpumIntern & CPUMCTX_EXTRN_CR3)
+ fHmChanged |= HM_CHANGED_GUEST_CR3;
+ if (fCpumIntern & CPUMCTX_EXTRN_CR4)
+ fHmChanged |= HM_CHANGED_GUEST_CR4;
+ }
+ if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
+ fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
+
+ /* Debug registers. */
+ if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
+ fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
+ if (fCpumIntern & CPUMCTX_EXTRN_DR6)
+ fHmChanged |= HM_CHANGED_GUEST_DR6;
+ if (fCpumIntern & CPUMCTX_EXTRN_DR7)
+ fHmChanged |= HM_CHANGED_GUEST_DR7;
+
+ /* Floating point state. */
+ if (fCpumIntern & CPUMCTX_EXTRN_X87)
+ fHmChanged |= HM_CHANGED_GUEST_X87;
+ if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
+ fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
+ if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
+ fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
+ if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
+ fHmChanged |= HM_CHANGED_GUEST_XCRx;
+
+ /* MSRs */
+ if (fCpumIntern & CPUMCTX_EXTRN_EFER)
+ fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
+ if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
+ if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
+ if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
+ if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
+ fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
+ if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
+ fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
+
+ return fHmChanged;
+}
+
+
+/**
+ * Exports the guest state to HV for execution.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pVmxTransient The transient VMX structure.
+ */
+static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+#define WRITE_GREG(a_GReg, a_Value) \
+ do \
+ { \
+ hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define WRITE_VMCS_FIELD(a_Field, a_Value) \
+ do \
+ { \
+ hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ return VERR_INTERNAL_ERROR; \
+ } while(0)
+#define WRITE_MSR(a_Msr, a_Value) \
+ do \
+ { \
+ hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
+ if (RT_LIKELY(hrc == HV_SUCCESS)) \
+ { /* likely */ } \
+ else \
+ AssertFailedReturn(VERR_INTERNAL_ERROR); \
+ } while(0)
+
+ RT_NOREF(pVM);
+
+#ifdef LOG_ENABLED
+ nemR3DarwinLogState(pVM, pVCpu);
+#endif
+
+ STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
+
+ uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
+ if (!fWhat)
+ return VINF_SUCCESS;
+
+ pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
+
+ int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = nemR3DarwinExportGuestGprs(pVCpu);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
+ if (rcStrict == VINF_SUCCESS)
+ { /* likely */ }
+ else
+ {
+ Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
+ return VBOXSTRICTRC_VAL(rcStrict);
+ }
+
+ rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
+ vmxHCExportGuestRip(pVCpu);
+ //vmxHCExportGuestRsp(pVCpu);
+ vmxHCExportGuestRflags(pVCpu, pVmxTransient);
+
+ rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
+ AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
+
+ if (fWhat & CPUMCTX_EXTRN_XCRx)
+ {
+ WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
+ }
+
+ if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
+ {
+ Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
+ vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
+
+ rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
+ AssertRC(rc);
+
+ WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
+ }
+
+ /* Debug registers. */
+ if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
+ {
+ WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
+ WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
+ WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
+ WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR6)
+ {
+ WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
+ }
+ if (fWhat & CPUMCTX_EXTRN_DR7)
+ {
+ WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
+ }
+
+ if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
+ {
+ hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
+ if (hrc == HV_SUCCESS)
+ { /* likely */ }
+ else
+ return nemR3DarwinHvSts2Rc(hrc);
+
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
+ }
+
+ /* MSRs */
+ if (fWhat & CPUMCTX_EXTRN_EFER)
+ {
+ WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
+ }
+ if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
+ {
+ WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
+ {
+ WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
+ WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
+ WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
+ }
+ if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
+ {
+ WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
+ WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
+ WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
+ WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
+ }
+ if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
+ {
+ PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
+
+ WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
+ }
+ if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
+ {
+ /* Last Branch Record. */
+ if (pVM->nem.s.fLbr)
+ {
+ PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
+ uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
+ uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
+ uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
+ uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
+ Assert(cLbrStack <= 32);
+ for (uint32_t i = 0; i < cLbrStack; i++)
+ {
+ WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
+
+ /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
+ if (idToIpMsrStart != 0)
+ WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
+ if (idInfoMsrStart != 0)
+ WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
+ }
+
+ WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
+ if (pVM->nem.s.idLerFromIpMsr)
+ WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
+ if (pVM->nem.s.idLerToIpMsr)
+ WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
+ }
+
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
+ }
+
+ hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
+ hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
+
+ pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
+
+ /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( HM_CHANGED_GUEST_HWVIRT
+ | HM_CHANGED_VMX_GUEST_AUTO_MSRS
+ | HM_CHANGED_VMX_GUEST_LAZY_MSRS
+ | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
+
+ STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
+ return VINF_SUCCESS;
+#undef WRITE_GREG
+#undef WRITE_VMCS_FIELD
+}
+
+
+/**
+ * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
+ *
+ * @returns VBox strict status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pVmxTransient The transient VMX structure.
+ */
+DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ uint32_t uExitReason;
+ int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
+ AssertRC(rc);
+ pVmxTransient->fVmcsFieldsRead = 0;
+ pVmxTransient->fIsNestedGuest = false;
+ pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
+ pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
+
+ if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
+ AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
+ pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
+ VERR_NEM_IPE_0);
+
+ /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
+ * when handling exits). */
+ /*
+ * Note! What is being fetched here must match the default value for the
+ * a_fDonePostExit parameter of vmxHCImportGuestState exactly!
+ */
+ rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
+ AssertRCReturn(rc, rc);
+
+ STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles an exit from hv_vcpu_run().
+ *
+ * @returns VBox strict status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pVmxTransient The transient VMX structure.
+ */
+static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+#ifndef HMVMX_USE_FUNCTION_TABLE
+ return vmxHCHandleExit(pVCpu, pVmxTransient);
+#else
+ return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
+#endif
+}
+
+
+/**
+ * Handles an exit from hv_vcpu_run() - debug runloop variant.
+ *
+ * @returns VBox strict status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ * @param pVmxTransient The transient VMX structure.
+ * @param pDbgState The debug state structure.
+ */
+static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
+{
+ int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
+}
+
+
+/**
+ * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
+ *
+ * @returns VBox status code.
+ * @param fForced Whether the HMForced flag is set and we should
+ * fail if we cannot initialize.
+ * @param pErrInfo Where to always return error info.
+ */
+static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
+{
+ RTLDRMOD hMod = NIL_RTLDRMOD;
+ static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
+
+ int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
+ if (RT_SUCCESS(rc))
+ {
+ for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
+ {
+ int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
+ if (RT_SUCCESS(rc2))
+ {
+ if (g_aImports[i].fOptional)
+ LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
+ g_aImports[i].pszName));
+ }
+ else
+ {
+ *g_aImports[i].ppfn = NULL;
+
+ LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
+ g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
+ g_aImports[i].pszName, rc2));
+ if (!g_aImports[i].fOptional)
+ {
+ if (RTErrInfoIsSet(pErrInfo))
+ RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
+ else
+ rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
+ Assert(RT_FAILURE(rc));
+ }
+ }
+ }
+ if (RT_SUCCESS(rc))
+ {
+ Assert(!RTErrInfoIsSet(pErrInfo));
+ }
+
+ RTLdrClose(hMod);
+ }
+ else
+ {
+ RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
+ rc = VERR_NEM_INIT_FAILED;
+ }
+
+ return rc;
+}
+
+
+/**
+ * Read and initialize the global capabilities supported by this CPU.
+ *
+ * @returns VBox status code.
+ */
+static int nemR3DarwinCapsInit(void)
+{
+ RT_ZERO(g_HmMsrs);
+
+ hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
+ if (hrc == HV_SUCCESS)
+ {
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
+ if (hrc == HV_SUCCESS)
+ {
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
+ if ( hrc == HV_SUCCESS
+ && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
+ {
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
+ if (hrc == HV_SUCCESS)
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
+ }
+ }
+ else
+ {
+ /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
+ g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
+ g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
+ g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
+ g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
+ hrc = HV_SUCCESS;
+ }
+ }
+
+ if ( hrc == HV_SUCCESS
+ && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ {
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
+
+ if ( hrc == HV_SUCCESS
+ && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
+ {
+ hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
+ if (hrc != HV_SUCCESS)
+ hrc = HV_SUCCESS; /* Probably just outdated OS. */
+ }
+
+ g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
+ }
+
+ if (hrc == HV_SUCCESS)
+ {
+ /*
+ * Check for EFER swapping support.
+ */
+ g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
+ //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
+ //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
+ }
+
+ /*
+ * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure.
+ * This is only available with 11.0+ (BigSur) as the required API is only available there,
+ * we could in theory initialize this when creating the EMTs using hv_vcpu_read_msr() but
+ * the required vCPU handle is created after CPUM was initialized which is too late.
+ * Given that the majority of users is on 11.0 and later we don't care for now.
+ */
+ if ( hrc == HV_SUCCESS
+ && hv_vmx_get_msr_info)
+ {
+ g_CpumHostFeatures.s.fArchRdclNo = 0;
+ g_CpumHostFeatures.s.fArchIbrsAll = 0;
+ g_CpumHostFeatures.s.fArchRsbOverride = 0;
+ g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = 0;
+ g_CpumHostFeatures.s.fArchMdsNo = 0;
+ uint32_t const cStdRange = ASMCpuId_EAX(0);
+ if ( RTX86IsValidStdRange(cStdRange)
+ && cStdRange >= 7)
+ {
+ uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1);
+ uint32_t fStdExtFeaturesEdx;
+ ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx);
+ if ( (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
+ && (fStdFeaturesEdx & X86_CPUID_FEATURE_EDX_MSR))
+ {
+ uint64_t fArchVal;
+ hrc = hv_vmx_get_msr_info(HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES, &fArchVal);
+ if (hrc == HV_SUCCESS)
+ {
+ g_CpumHostFeatures.s.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
+ g_CpumHostFeatures.s.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
+ g_CpumHostFeatures.s.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
+ g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
+ g_CpumHostFeatures.s.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO);
+ }
+ }
+ else
+ g_CpumHostFeatures.s.fArchCap = 0;
+ }
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+/**
+ * Sets up the LBR MSR ranges based on the host CPU.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ *
+ * @sa hmR0VmxSetupLbrMsrRange
+ */
+static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
+{
+ Assert(pVM->nem.s.fLbr);
+ uint32_t idLbrFromIpMsrFirst;
+ uint32_t idLbrFromIpMsrLast;
+ uint32_t idLbrToIpMsrFirst;
+ uint32_t idLbrToIpMsrLast;
+ uint32_t idLbrInfoMsrFirst;
+ uint32_t idLbrInfoMsrLast;
+ uint32_t idLbrTosMsr;
+ uint32_t idLbrSelectMsr;
+ uint32_t idLerFromIpMsr;
+ uint32_t idLerToIpMsr;
+
+ /*
+ * Determine the LBR MSRs supported for this host CPU family and model.
+ *
+ * See Intel spec. 17.4.8 "LBR Stack".
+ * See Intel "Model-Specific Registers" spec.
+ */
+ uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
+ | g_CpumHostFeatures.s.uModel;
+ switch (uFamilyModel)
+ {
+ case 0x0f01: case 0x0f02:
+ idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
+ idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
+ idLbrToIpMsrFirst = 0x0;
+ idLbrToIpMsrLast = 0x0;
+ idLbrInfoMsrFirst = 0x0;
+ idLbrInfoMsrLast = 0x0;
+ idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
+ idLbrSelectMsr = 0x0;
+ idLerFromIpMsr = 0x0;
+ idLerToIpMsr = 0x0;
+ break;
+
+ case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
+ case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
+ case 0x066a: case 0x066c: case 0x067d: case 0x067e:
+ idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
+ idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
+ idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
+ idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
+ idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
+ idLbrInfoMsrLast = MSR_LASTBRANCH_31_INFO;
+ idLbrTosMsr = MSR_LASTBRANCH_TOS;
+ idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
+ idLerFromIpMsr = MSR_LER_FROM_IP;
+ idLerToIpMsr = MSR_LER_TO_IP;
+ break;
+
+ case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
+ case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
+ case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
+ case 0x062e: case 0x0625: case 0x062c: case 0x062f:
+ idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
+ idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
+ idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
+ idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
+ idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
+ idLbrInfoMsrLast = MSR_LASTBRANCH_15_INFO;
+ idLbrTosMsr = MSR_LASTBRANCH_TOS;
+ idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
+ idLerFromIpMsr = MSR_LER_FROM_IP;
+ idLerToIpMsr = MSR_LER_TO_IP;
+ break;
+
+ case 0x0617: case 0x061d: case 0x060f:
+ idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
+ idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
+ idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
+ idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
+ idLbrInfoMsrFirst = 0x0;
+ idLbrInfoMsrLast = 0x0;
+ idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
+ idLbrSelectMsr = 0x0;
+ idLerFromIpMsr = 0x0;
+ idLerToIpMsr = 0x0;
+ break;
+
+ /* Atom and related microarchitectures we don't care about:
+ case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
+ case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
+ case 0x0636: */
+ /* All other CPUs: */
+ default:
+ {
+ LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
+ VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+ }
+
+ /*
+ * Validate.
+ */
+ uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
+ PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
+ AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
+ == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
+ AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
+ == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
+ if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
+ {
+ LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
+ VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+ NOREF(pVCpu0);
+
+ /*
+ * Update the LBR info. to the VM struct. for use later.
+ */
+ pVM->nem.s.idLbrTosMsr = idLbrTosMsr;
+ pVM->nem.s.idLbrSelectMsr = idLbrSelectMsr;
+
+ pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
+ pVM->nem.s.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
+
+ pVM->nem.s.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
+ pVM->nem.s.idLbrToIpMsrLast = idLbrToIpMsrLast;
+
+ pVM->nem.s.idLbrInfoMsrFirst = idLbrInfoMsrFirst;
+ pVM->nem.s.idLbrInfoMsrLast = idLbrInfoMsrLast;
+
+ pVM->nem.s.idLerFromIpMsr = idLerFromIpMsr;
+ pVM->nem.s.idLerToIpMsr = idLerToIpMsr;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up pin-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
+ uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
+
+ if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
+ fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
+
+#if 0 /** @todo Use preemption timer */
+ /* Enable the VMX-preemption timer. */
+ if (pVM->hmr0.s.vmx.fUsePreemptTimer)
+ {
+ Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
+ fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
+ }
+
+ /* Enable posted-interrupt processing. */
+ if (pVM->hm.s.fPostedIntrs)
+ {
+ Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
+ Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
+ fVal |= VMX_PIN_CTLS_POSTED_INT;
+ }
+#endif
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
+ pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
+ AssertRC(rc);
+ pVmcsInfo->u32PinCtls = fVal;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up secondary processor-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ /* WBINVD causes a VM-exit. */
+ if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
+ fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
+
+ /* Enable the INVPCID instruction if we expose it to the guest and is supported
+ by the hardware. Without this, guest executing INVPCID would cause a #UD. */
+ if ( pVM->cpum.ro.GuestFeatures.fInvpcid
+ && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
+ fVal |= VMX_PROC_CTLS2_INVPCID;
+
+#if 0 /** @todo */
+ /* Enable VPID. */
+ if (pVM->hmr0.s.vmx.fVpid)
+ fVal |= VMX_PROC_CTLS2_VPID;
+
+ if (pVM->hm.s.fVirtApicRegs)
+ {
+ /* Enable APIC-register virtualization. */
+ Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
+ fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
+
+ /* Enable virtual-interrupt delivery. */
+ Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
+ fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
+ }
+
+ /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
+ where the TPR shadow resides. */
+ /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
+ * done dynamically. */
+ if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
+ {
+ fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
+ hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
+ }
+#endif
+
+ /* Enable the RDTSCP instruction if we expose it to the guest and is supported
+ by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
+ if ( pVM->cpum.ro.GuestFeatures.fRdTscP
+ && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
+ fVal |= VMX_PROC_CTLS2_RDTSCP;
+
+ /* Enable Pause-Loop exiting. */
+ if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
+ && pVM->nem.s.cPleGapTicks
+ && pVM->nem.s.cPleWindowTicks)
+ {
+ fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
+
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks); AssertRC(rc);
+ rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks); AssertRC(rc);
+ }
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
+ pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
+ AssertRC(rc);
+ pVmcsInfo->u32ProcCtls2 = fVal;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Enables native access for the given MSR.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idMsr The MSR to enable native access for.
+ */
+static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
+{
+ hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
+ if (hrc == HV_SUCCESS)
+ return VINF_SUCCESS;
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+/**
+ * Sets the MSR to managed for the given vCPU allowing the guest to access it.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param idMsr The MSR to enable managed access for.
+ * @param fMsrPerm The MSR permissions flags.
+ */
+static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
+{
+ Assert(hv_vcpu_enable_managed_msr);
+
+ hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
+ if (hrc == HV_SUCCESS)
+ {
+ hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
+ if (hrc == HV_SUCCESS)
+ return VINF_SUCCESS;
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+/**
+ * Sets up the MSR permissions which don't change through the lifetime of the VM.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ RT_NOREF(pVmcsInfo);
+
+ /*
+ * The guest can access the following MSRs (read, write) without causing
+ * VM-exits; they are loaded/stored automatically using fields in the VMCS.
+ */
+ PVMCC pVM = pVCpu->CTX_SUFF(pVM);
+ int rc;
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
+
+ /*
+ * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
+ * associated with then. We never need to intercept access (writes need to be
+ * executed without causing a VM-exit, reads will #GP fault anyway).
+ *
+ * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
+ * read/write them. We swap the guest/host MSR value using the
+ * auto-load/store MSR area.
+ */
+ if (pVM->cpum.ro.GuestFeatures.fIbpb)
+ {
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
+ AssertRCReturn(rc, rc);
+ }
+#if 0 /* Doesn't work. */
+ if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
+ {
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
+ AssertRCReturn(rc, rc);
+ }
+#endif
+ if (pVM->cpum.ro.GuestFeatures.fIbrs)
+ {
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
+ AssertRCReturn(rc, rc);
+ }
+
+ /*
+ * Allow full read/write access for the following MSRs (mandatory for VT-x)
+ * required for 64-bit guests.
+ */
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
+
+ /* Required for enabling the RDTSCP instruction. */
+ rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
+
+ /* Last Branch Record. */
+ if (pVM->nem.s.fLbr)
+ {
+ uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
+ uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
+ uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
+ uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
+ Assert(cLbrStack <= 32);
+ for (uint32_t i = 0; i < cLbrStack; i++)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+
+ /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
+ if (idToIpMsrStart != 0)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+ }
+
+ if (idInfoMsrStart != 0)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+ }
+ }
+
+ rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+
+ if (pVM->nem.s.idLerFromIpMsr)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+ }
+
+ if (pVM->nem.s.idLerToIpMsr)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+ }
+
+ if (pVM->nem.s.idLbrSelectMsr)
+ {
+ rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
+ AssertRCReturn(rc, rc);
+ }
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Sets up processor-based VM-execution controls in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
+ uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
+
+ fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
+// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
+ | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
+ | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
+ | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
+ | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
+ | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
+
+#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
+ fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
+ | VMX_PROC_CTLS_CR3_STORE_EXIT;
+#endif
+
+ /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
+ if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
+ || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
+ {
+ pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
+ if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
+ fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
+
+ if ((fVal & fZap) != fVal)
+ {
+ LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
+ g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
+ pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
+ return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
+ AssertRC(rc);
+ pVmcsInfo->u32ProcCtls = fVal;
+
+ /* Set up MSR permissions that don't change through the lifetime of the VM. */
+ rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Set up secondary processor-based VM-execution controls
+ * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
+ */
+ Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
+ return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
+}
+
+
+/**
+ * Sets up miscellaneous (everything other than Pin, Processor and secondary
+ * Processor-based VM-execution) control fields in the VMCS.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ int rc = VINF_SUCCESS;
+ //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
+ if (RT_SUCCESS(rc))
+ {
+ uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
+ uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
+
+ rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
+ rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
+
+ pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
+ pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
+
+ if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
+ {
+ rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
+ AssertRC(rc);
+ }
+ return VINF_SUCCESS;
+ }
+ else
+ LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
+ return rc;
+}
+
+
+/**
+ * Sets up the initial exception bitmap in the VMCS based on static conditions.
+ *
+ * We shall setup those exception intercepts that don't change during the
+ * lifetime of the VM here. The rest are done dynamically while loading the
+ * guest state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmcsInfo The VMCS info. object.
+ */
+static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
+{
+ /*
+ * The following exceptions are always intercepted:
+ *
+ * #AC - To prevent the guest from hanging the CPU and for dealing with
+ * split-lock detecting host configs.
+ * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
+ * recursive #DBs can cause a CPU hang.
+ */
+ uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
+ | RT_BIT(X86_XCPT_DB);
+
+ /* Commit it to the VMCS. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
+ AssertRC(rc);
+
+ /* Update our cache of the exception bitmap. */
+ pVmcsInfo->u32XcptBitmap = uXcptBitmap;
+}
+
+
+/**
+ * Initialize the VMCS information field for the given vCPU.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the
+ * calling EMT.
+ */
+static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
+{
+ int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
+ if (RT_SUCCESS(rc))
+ {
+ rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
+ if (RT_SUCCESS(rc))
+ {
+ rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
+ if (RT_SUCCESS(rc))
+ {
+ rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
+ if (RT_SUCCESS(rc))
+ {
+ rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
+ if (RT_SUCCESS(rc))
+ {
+ nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
+ return VINF_SUCCESS;
+ }
+ LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
+ }
+ else
+ LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
+ }
+ else
+ LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
+ }
+ else
+ LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
+ }
+ else
+ LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
+
+ return rc;
+}
+
+
+/**
+ * Registers statistics for the given vCPU.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param idCpu The CPU ID.
+ * @param pNemCpu The NEM CPU structure.
+ */
+static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
+{
+#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
+ int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
+ AssertRC(rc); \
+ } while (0)
+#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
+ NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
+#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
+
+ PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;
+
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
+ NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
+
+ NEM_REG_COUNTER(&pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
+
+ NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
+ NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback, "/NEM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
+
+#ifdef VBOX_WITH_STATISTICS
+ NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
+ NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
+
+ for (int j = 0; j < MAX_EXITREASON_STAT; j++)
+ {
+ const char *pszExitName = HMGetVmxExitName(j);
+ if (pszExitName)
+ {
+ int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
+ STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
+ AssertRCReturn(rc, rc);
+ }
+ }
+#endif
+
+ return VINF_SUCCESS;
+
+#undef NEM_REG_COUNTER
+#undef NEM_REG_PROFILE
+#undef NEM_REG_STAT
+}
+
+
+/**
+ * Displays the HM Last-Branch-Record info. for the guest.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ NOREF(pszArgs);
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = pVM->apCpusR3[0];
+
+ Assert(pVM->nem.s.fLbr);
+
+ PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
+ uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
+
+ /** @todo r=ramshankar: The index technically varies depending on the CPU, but
+ * 0xf should cover everything we support thus far. Fix if necessary
+ * later. */
+ uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
+ if (idxTopOfStack > cLbrStack)
+ {
+ pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
+ idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
+ return;
+ }
+
+ /*
+ * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
+ */
+ pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
+ if (pVM->nem.s.idLerFromIpMsr)
+ pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
+ pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
+ uint32_t idxCurrent = idxTopOfStack;
+ Assert(idxTopOfStack < cLbrStack);
+ Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
+ Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
+ for (;;)
+ {
+ if (pVM->nem.s.idLbrToIpMsrFirst)
+ pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
+ pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
+ pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
+ pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
+ else
+ pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
+
+ idxCurrent = (idxCurrent - 1) % cLbrStack;
+ if (idxCurrent == idxTopOfStack)
+ break;
+ }
+}
+
+
+/**
+ * Try initialize the native API.
+ *
+ * This may only do part of the job, more can be done in
+ * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param fFallback Whether we're in fallback mode or use-NEM mode. In
+ * the latter we'll fail if we cannot initialize.
+ * @param fForced Whether the HMForced flag is set and we should
+ * fail if we cannot initialize.
+ */
+int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
+{
+ AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
+
+ /*
+ * Some state init.
+ */
+ PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
+
+ /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
+ * The pause-filter exiting gap in TSC ticks. When the number of ticks between
+ * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
+ * latest PAUSE instruction to be start of a new PAUSE loop.
+ */
+ int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
+ AssertRCReturn(rc, rc);
+
+ /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
+ * The pause-filter exiting window in TSC ticks. When the number of ticks
+ * between the current PAUSE instruction and first PAUSE of a loop exceeds
+ * VmxPleWindow, a VM-exit is triggered.
+ *
+ * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
+ */
+ rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
+ AssertRCReturn(rc, rc);
+
+ /** @cfgm{/NEM/VmxLbr, bool, false}
+ * Whether to enable LBR for the guest. This is disabled by default as it's only
+ * useful while debugging and enabling it causes a noticeable performance hit. */
+ rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Error state.
+ * The error message will be non-empty on failure and 'rc' will be set too.
+ */
+ RTERRINFOSTATIC ErrInfo;
+ PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
+ rc = nemR3DarwinLoadHv(fForced, pErrInfo);
+ if (RT_SUCCESS(rc))
+ {
+ if ( !hv_vcpu_enable_managed_msr
+ && pVM->nem.s.fLbr)
+ {
+ LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
+ pVM->nem.s.fLbr = false;
+ }
+
+ /*
+ * While hv_vcpu_run_until() is available starting with Catalina (10.15) it sometimes returns
+ * an error there for no obvious reasons and there is no indication as to why this happens
+ * and Apple doesn't document anything. Starting with BigSur (11.0) it appears to work correctly
+ * so pretend that hv_vcpu_run_until() doesn't exist on Catalina which can be determined by checking
+ * whether another method is available which was introduced with BigSur.
+ */
+ if (!hv_vmx_get_msr_info) /* Not available means this runs on < 11.0 */
+ hv_vcpu_run_until = NULL;
+
+ if (hv_vcpu_run_until)
+ {
+ struct mach_timebase_info TimeInfo;
+
+ if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
+ {
+ pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
+ LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
+ pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
+ }
+ else
+ hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
+ }
+
+ hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
+ if (hrc == HV_SUCCESS)
+ {
+ if (hv_vm_space_create)
+ {
+ hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
+ if (hrc == HV_SUCCESS)
+ {
+ LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
+ pVM->nem.s.fCreatedAsid = true;
+ }
+ else
+ LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
+ }
+ pVM->nem.s.fCreatedVm = true;
+
+ /* Register release statistics */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
+ PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
+ if (RT_LIKELY(pVmxStats))
+ {
+ pNemCpu->pVmxStats = pVmxStats;
+ rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
+ AssertRC(rc);
+ }
+ else
+ {
+ rc = VERR_NO_MEMORY;
+ break;
+ }
+ }
+
+ if (RT_SUCCESS(rc))
+ {
+ VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
+ Log(("NEM: Marked active!\n"));
+ PGMR3EnableNemMode(pVM);
+ }
+ }
+ else
+ rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
+ "hv_vm_create() failed: %#x", hrc);
+ }
+
+ /*
+ * We only fail if in forced mode, otherwise just log the complaint and return.
+ */
+ Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
+ if ( (fForced || !fFallback)
+ && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
+ return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
+
+ if (pVM->nem.s.fLbr)
+ {
+ rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
+ AssertRCReturn(rc, rc);
+ }
+
+ if (RTErrInfoIsSet(pErrInfo))
+ LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
+ *
+ * @returns VBox status code
+ * @param pVM The VM handle.
+ * @param pVCpu The vCPU handle.
+ * @param idCpu ID of the CPU to create.
+ */
+static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
+{
+ hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
+ if (hrc != HV_SUCCESS)
+ return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
+ "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
+
+ if (idCpu == 0)
+ {
+ /* First call initializs the MSR structure holding the capabilities of the host CPU. */
+ int rc = nemR3DarwinCapsInit();
+ AssertRCReturn(rc, rc);
+
+ if (hv_vmx_vcpu_get_cap_write_vmcs)
+ {
+ /* Log the VMCS field write capabilities. */
+ for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
+ {
+ uint64_t u64Allowed0 = 0;
+ uint64_t u64Allowed1 = 0;
+
+ hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
+ &u64Allowed0, &u64Allowed1);
+ if (hrc == HV_SUCCESS)
+ {
+ if (g_aVmcsFieldsCap[i].f64Bit)
+ LogRel(("NEM: %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
+ g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
+ else
+ LogRel(("NEM: %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
+ g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));
+
+ uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
+ for (uint32_t iBit = 0; iBit < cBits; iBit++)
+ {
+ bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
+ bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));
+
+ if (!fAllowed0 && !fAllowed1)
+ LogRel(("NEM: Bit %02u = Must NOT be set\n", iBit));
+ else if (!fAllowed0 && fAllowed1)
+ LogRel(("NEM: Bit %02u = Can be set or not be set\n", iBit));
+ else if (fAllowed0 && !fAllowed1)
+ LogRel(("NEM: Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
+ else if (fAllowed0 && fAllowed1)
+ LogRel(("NEM: Bit %02u = MUST be set\n", iBit));
+ else
+ AssertFailed();
+ }
+ }
+ else
+ LogRel(("NEM: %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
+ }
+ }
+ }
+
+ int rc = nemR3DarwinInitVmcs(pVCpu);
+ AssertRCReturn(rc, rc);
+
+ if (pVM->nem.s.fCreatedAsid)
+ {
+ hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
+ AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
+ }
+
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
+ *
+ * @returns VBox status code
+ * @param pVCpu The vCPU handle.
+ */
+static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
+{
+ hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
+ Assert(hrc == HV_SUCCESS);
+
+ hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
+ Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
+ *
+ * @returns VBox status code
+ * @param pVM The VM handle.
+ * @param pVCpu The vCPU handle.
+ */
+static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
+{
+ PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
+ uint32_t fVal = pVmcsInfo->u32ProcCtls;
+
+ /* Use TPR shadowing if supported by the CPU. */
+ if ( PDMHasApic(pVM)
+ && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
+ {
+ fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
+ /* CR8 writes cause a VM-exit based on TPR threshold. */
+ Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
+ Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
+ }
+ else
+ {
+ fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
+ | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
+ }
+
+ /* Commit it to the VMCS and update our cache. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
+ AssertRC(rc);
+ pVmcsInfo->u32ProcCtls = fVal;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * This is called after CPUMR3Init is done.
+ *
+ * @returns VBox status code.
+ * @param pVM The VM handle..
+ */
+int nemR3NativeInitAfterCPUM(PVM pVM)
+{
+ /*
+ * Validate sanity.
+ */
+ AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
+ AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
+
+ if (pVM->nem.s.fLbr)
+ {
+ int rc = nemR3DarwinSetupLbrMsrRange(pVM);
+ AssertRCReturn(rc, rc);
+ }
+
+ /*
+ * Setup the EMTs.
+ */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
+ if (RT_FAILURE(rc))
+ {
+ /* Rollback. */
+ while (idCpu--)
+ VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
+
+ return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
+ }
+ }
+
+ pVM->nem.s.fCreatedEmts = true;
+ return VINF_SUCCESS;
+}
+
+
+int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
+{
+ if (enmWhat == VMINITCOMPLETED_RING3)
+ {
+ /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
+ if (RT_FAILURE(rc))
+ return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+int nemR3NativeTerm(PVM pVM)
+{
+ /*
+ * Delete the VM.
+ */
+
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
+ {
+ PVMCPU pVCpu = pVM->apCpusR3[idCpu];
+
+ /*
+ * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
+ * API reference so I wouldn't have to decompile the kext to find this out but we are talking
+ * about Apple here unfortunately, API documentation is not their strong suit...
+ * Would have been of course even better to just automatically drop the address space reference when the vCPU
+ * gets destroyed.
+ */
+ hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
+ Assert(hrc == HV_SUCCESS);
+
+ /*
+ * Apple's documentation states that the vCPU should be destroyed
+ * on the thread running the vCPU but as all the other EMTs are gone
+ * at this point, destroying the VM would hang.
+ *
+ * We seem to be at luck here though as destroying apparently works
+ * from EMT(0) as well.
+ */
+ hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
+ Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
+
+ if (pVCpu->nem.s.pVmxStats)
+ {
+ RTMemFree(pVCpu->nem.s.pVmxStats);
+ pVCpu->nem.s.pVmxStats = NULL;
+ }
+ }
+
+ pVM->nem.s.fCreatedEmts = false;
+
+ if (pVM->nem.s.fCreatedAsid)
+ {
+ hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
+ Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
+ pVM->nem.s.fCreatedAsid = false;
+ }
+
+ if (pVM->nem.s.fCreatedVm)
+ {
+ hv_return_t hrc = hv_vm_destroy();
+ if (hrc != HV_SUCCESS)
+ LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
+
+ pVM->nem.s.fCreatedVm = false;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * VM reset notification.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void nemR3NativeReset(PVM pVM)
+{
+ RT_NOREF(pVM);
+}
+
+
+/**
+ * Reset CPU due to INIT IPI or hot (un)plugging.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the CPU being
+ * reset.
+ * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
+ */
+void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
+{
+ RT_NOREF(fInitIpi);
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+}
+
+
+/**
+ * Dumps the VMCS in response to a faild hv_vcpu_run{_until}() call.
+ *
+ * @returns nothing.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static void nemR3DarwinVmcsDump(PVMCPU pVCpu)
+{
+ static const struct
+ {
+ uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
+ const char *pszVmcsField; /**< The VMCS field name. */
+ bool f64Bit;
+ } s_aVmcsFieldsDump[] =
+ {
+ #define NEM_DARWIN_VMCSNW_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
+ #define NEM_DARWIN_VMCS64_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
+ #define NEM_DARWIN_VMCS32_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
+ #define NEM_DARWIN_VMCS16_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_VPID),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_EPTP_INDEX),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_ES_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_CS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_SS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_DS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_FS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_GS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_LDTR_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_TR_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_INTR_STATUS),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_PML_INDEX),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_ES_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_CS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_SS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_DS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_FS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_GS_SEL),
+ NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_TR_SEL),
+
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_FULL),
+ NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_HIGH),
+
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PIN_EXEC),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_CR3_TARGET_COUNT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_TPR_THRESHOLD),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC2),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_GAP),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_WINDOW),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_VM_INSTR_ERROR),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_REASON),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_INFO),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_LENGTH),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_INFO),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GDTR_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_IDTR_LIMIT),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_INT_STATE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ACTIVITY_STATE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SMBASE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SYSENTER_CS),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_PREEMPT_TIMER_VALUE),
+ NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_HOST_SYSENTER_CS),
+
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_MASK),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_MASK),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_READ_SHADOW),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_READ_SHADOW),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL0),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL1),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL2),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL3),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_EXIT_QUALIFICATION),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RCX),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RSI),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RDI),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RIP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_GUEST_LINEAR_ADDR),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR0),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR3),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR4),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_ES_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_FS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_LDTR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_TR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GDTR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_IDTR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DR7),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RSP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RIP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RFLAGS),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_ESP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_EIP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_S_CET),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SSP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR0),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR3),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR4),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_FS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GS_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_TR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GDTR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_IDTR_BASE),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_ESP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_EIP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RSP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RIP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_S_CET),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SSP),
+ NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR)
+ #undef NEM_DARWIN_VMCSNW_FIELD_DUMP
+ #undef NEM_DARWIN_VMCS64_FIELD_DUMP
+ #undef NEM_DARWIN_VMCS32_FIELD_DUMP
+ #undef NEM_DARWIN_VMCS16_FIELD_DUMP
+ };
+
+ for (uint32_t i = 0; i < RT_ELEMENTS(s_aVmcsFieldsDump); i++)
+ {
+ if (s_aVmcsFieldsDump[i].f64Bit)
+ {
+ uint64_t u64Val;
+ int rc = nemR3DarwinReadVmcs64(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u64Val);
+ if (RT_SUCCESS(rc))
+ LogRel(("NEM/VMCS: %040s: 0x%016RX64\n", s_aVmcsFieldsDump[i].pszVmcsField, u64Val));
+ else
+ LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
+ }
+ else
+ {
+ uint32_t u32Val;
+ int rc = nemR3DarwinReadVmcs32(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u32Val);
+ if (RT_SUCCESS(rc))
+ LogRel(("NEM/VMCS: %040s: 0x%08RX32\n", s_aVmcsFieldsDump[i].pszVmcsField, u32Val));
+ else
+ LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
+ }
+ }
+}
+
+
+/**
+ * Runs the guest once until an exit occurs.
+ *
+ * @returns HV status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient The transient VMX execution structure.
+ */
+static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
+{
+ TMNotifyStartOfExecution(pVM, pVCpu);
+
+ Assert(!pVCpu->nem.s.fCtxChanged);
+ hv_return_t hrc;
+ if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
+ hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
+ else
+ hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
+
+ TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
+
+ if (hrc != HV_SUCCESS)
+ nemR3DarwinVmcsDump(pVCpu);
+
+ /*
+ * Sync the TPR shadow with our APIC state.
+ */
+ if ( !pVmxTransient->fIsNestedGuest
+ && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
+ {
+ uint64_t u64Tpr;
+ hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
+ Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);
+
+ if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
+ {
+ int rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
+ AssertRC(rc);
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
+ }
+ }
+
+ return hrc;
+}
+
+
+/**
+ * Prepares the VM to run the guest.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pVmxTransient The VMX transient state.
+ * @param fSingleStepping Flag whether we run in single stepping mode.
+ */
+static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
+{
+ /*
+ * Check and process force flag actions, some of which might require us to go back to ring-3.
+ */
+ VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
+ if (rcStrict == VINF_SUCCESS)
+ { /*likely */ }
+ else
+ return rcStrict;
+
+ /*
+ * Do not execute in HV if the A20 isn't enabled.
+ */
+ if (PGMPhysIsA20Enabled(pVCpu))
+ { /* likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
+ return VINF_EM_RESCHEDULE_REM;
+ }
+
+ /*
+ * Evaluate events to be injected into the guest.
+ *
+ * Events in TRPM can be injected without inspecting the guest state.
+ * If any new events (interrupts/NMI) are pending currently, we try to set up the
+ * guest to cause a VM-exit the next time they are ready to receive the event.
+ */
+ if (TRPMHasTrap(pVCpu))
+ vmxHCTrpmTrapToPendingEvent(pVCpu);
+
+ uint32_t fIntrState;
+ rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, &fIntrState);
+
+ /*
+ * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
+ * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
+ * also result in triple-faulting the VM.
+ *
+ * With nested-guests, the above does not apply since unrestricted guest execution is a
+ * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
+ */
+ rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
+ if (RT_LIKELY(rcStrict == VINF_SUCCESS))
+ { /* likely */ }
+ else
+ return rcStrict;
+
+ int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
+ AssertRCReturn(rc, rc);
+
+ LogFlowFunc(("Running vCPU\n"));
+ pVCpu->nem.s.Event.fPending = false;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * The normal runloop (no debugging features enabled).
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
+{
+ /*
+ * The run loop.
+ *
+ * Current approach to state updating to use the sledgehammer and sync
+ * everything every time. This will be optimized later.
+ */
+ VMXTRANSIENT VmxTransient;
+ RT_ZERO(VmxTransient);
+ VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
+
+ /*
+ * Poll timers and run for a bit.
+ */
+ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
+ * the whole polling job when timers have changed... */
+ uint64_t offDeltaIgnored;
+ uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ for (unsigned iLoop = 0;; iLoop++)
+ {
+ rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+
+ hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
+ if (hrc == HV_SUCCESS)
+ {
+ /*
+ * Deal with the message.
+ */
+ rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
+ if (rcStrict == VINF_SUCCESS)
+ { /* hopefully likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+ }
+ else
+ {
+ AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
+ pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
+ VERR_NEM_IPE_0);
+ }
+ } /* the run loop */
+
+ return rcStrict;
+}
+
+
+/**
+ * Checks if any expensive dtrace probes are enabled and we should go to the
+ * debug loop.
+ *
+ * @returns true if we should use debug loop, false if not.
+ */
+static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
+{
+ /** @todo Check performance penalty when checking these over and over */
+ return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
+ | VBOXVMM_XCPT_DE_ENABLED()
+ | VBOXVMM_XCPT_DB_ENABLED()
+ | VBOXVMM_XCPT_BP_ENABLED()
+ | VBOXVMM_XCPT_OF_ENABLED()
+ | VBOXVMM_XCPT_BR_ENABLED()
+ | VBOXVMM_XCPT_UD_ENABLED()
+ | VBOXVMM_XCPT_NM_ENABLED()
+ | VBOXVMM_XCPT_DF_ENABLED()
+ | VBOXVMM_XCPT_TS_ENABLED()
+ | VBOXVMM_XCPT_NP_ENABLED()
+ | VBOXVMM_XCPT_SS_ENABLED()
+ | VBOXVMM_XCPT_GP_ENABLED()
+ | VBOXVMM_XCPT_PF_ENABLED()
+ | VBOXVMM_XCPT_MF_ENABLED()
+ | VBOXVMM_XCPT_AC_ENABLED()
+ | VBOXVMM_XCPT_XF_ENABLED()
+ | VBOXVMM_XCPT_VE_ENABLED()
+ | VBOXVMM_XCPT_SX_ENABLED()
+ | VBOXVMM_INT_SOFTWARE_ENABLED()
+ /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
+ ) != 0
+ || ( VBOXVMM_INSTR_HALT_ENABLED()
+ | VBOXVMM_INSTR_MWAIT_ENABLED()
+ | VBOXVMM_INSTR_MONITOR_ENABLED()
+ | VBOXVMM_INSTR_CPUID_ENABLED()
+ | VBOXVMM_INSTR_INVD_ENABLED()
+ | VBOXVMM_INSTR_WBINVD_ENABLED()
+ | VBOXVMM_INSTR_INVLPG_ENABLED()
+ | VBOXVMM_INSTR_RDTSC_ENABLED()
+ | VBOXVMM_INSTR_RDTSCP_ENABLED()
+ | VBOXVMM_INSTR_RDPMC_ENABLED()
+ | VBOXVMM_INSTR_RDMSR_ENABLED()
+ | VBOXVMM_INSTR_WRMSR_ENABLED()
+ | VBOXVMM_INSTR_CRX_READ_ENABLED()
+ | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
+ | VBOXVMM_INSTR_DRX_READ_ENABLED()
+ | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
+ | VBOXVMM_INSTR_PAUSE_ENABLED()
+ | VBOXVMM_INSTR_XSETBV_ENABLED()
+ | VBOXVMM_INSTR_SIDT_ENABLED()
+ | VBOXVMM_INSTR_LIDT_ENABLED()
+ | VBOXVMM_INSTR_SGDT_ENABLED()
+ | VBOXVMM_INSTR_LGDT_ENABLED()
+ | VBOXVMM_INSTR_SLDT_ENABLED()
+ | VBOXVMM_INSTR_LLDT_ENABLED()
+ | VBOXVMM_INSTR_STR_ENABLED()
+ | VBOXVMM_INSTR_LTR_ENABLED()
+ | VBOXVMM_INSTR_GETSEC_ENABLED()
+ | VBOXVMM_INSTR_RSM_ENABLED()
+ | VBOXVMM_INSTR_RDRAND_ENABLED()
+ | VBOXVMM_INSTR_RDSEED_ENABLED()
+ | VBOXVMM_INSTR_XSAVES_ENABLED()
+ | VBOXVMM_INSTR_XRSTORS_ENABLED()
+ | VBOXVMM_INSTR_VMM_CALL_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
+ | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
+ | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
+ | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
+ | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
+ ) != 0
+ || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
+ | VBOXVMM_EXIT_HALT_ENABLED()
+ | VBOXVMM_EXIT_MWAIT_ENABLED()
+ | VBOXVMM_EXIT_MONITOR_ENABLED()
+ | VBOXVMM_EXIT_CPUID_ENABLED()
+ | VBOXVMM_EXIT_INVD_ENABLED()
+ | VBOXVMM_EXIT_WBINVD_ENABLED()
+ | VBOXVMM_EXIT_INVLPG_ENABLED()
+ | VBOXVMM_EXIT_RDTSC_ENABLED()
+ | VBOXVMM_EXIT_RDTSCP_ENABLED()
+ | VBOXVMM_EXIT_RDPMC_ENABLED()
+ | VBOXVMM_EXIT_RDMSR_ENABLED()
+ | VBOXVMM_EXIT_WRMSR_ENABLED()
+ | VBOXVMM_EXIT_CRX_READ_ENABLED()
+ | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
+ | VBOXVMM_EXIT_DRX_READ_ENABLED()
+ | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
+ | VBOXVMM_EXIT_PAUSE_ENABLED()
+ | VBOXVMM_EXIT_XSETBV_ENABLED()
+ | VBOXVMM_EXIT_SIDT_ENABLED()
+ | VBOXVMM_EXIT_LIDT_ENABLED()
+ | VBOXVMM_EXIT_SGDT_ENABLED()
+ | VBOXVMM_EXIT_LGDT_ENABLED()
+ | VBOXVMM_EXIT_SLDT_ENABLED()
+ | VBOXVMM_EXIT_LLDT_ENABLED()
+ | VBOXVMM_EXIT_STR_ENABLED()
+ | VBOXVMM_EXIT_LTR_ENABLED()
+ | VBOXVMM_EXIT_GETSEC_ENABLED()
+ | VBOXVMM_EXIT_RSM_ENABLED()
+ | VBOXVMM_EXIT_RDRAND_ENABLED()
+ | VBOXVMM_EXIT_RDSEED_ENABLED()
+ | VBOXVMM_EXIT_XSAVES_ENABLED()
+ | VBOXVMM_EXIT_XRSTORS_ENABLED()
+ | VBOXVMM_EXIT_VMM_CALL_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
+ | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
+ | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
+ | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
+ | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
+ | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
+ | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
+ | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
+ | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
+ ) != 0;
+}
+
+
+/**
+ * The debug runloop.
+ *
+ * @returns Strict VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
+{
+ /*
+ * The run loop.
+ *
+ * Current approach to state updating to use the sledgehammer and sync
+ * everything every time. This will be optimized later.
+ */
+ VMXTRANSIENT VmxTransient;
+ RT_ZERO(VmxTransient);
+ VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
+
+ bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
+ pVCpu->nem.s.fSingleInstruction = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
+ pVCpu->nem.s.fDebugWantRdTscExit = false;
+ pVCpu->nem.s.fUsingDebugLoop = true;
+
+ /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
+ VMXRUNDBGSTATE DbgState;
+ vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
+ vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
+
+ /*
+ * Poll timers and run for a bit.
+ */
+ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
+ * the whole polling job when timers have changed... */
+ uint64_t offDeltaIgnored;
+ uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
+ VBOXSTRICTRC rcStrict = VINF_SUCCESS;
+ for (unsigned iLoop = 0;; iLoop++)
+ {
+ bool fStepping = pVCpu->nem.s.fSingleInstruction;
+
+ /* Set up VM-execution controls the next two can respond to. */
+ vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
+
+ rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
+ if (rcStrict != VINF_SUCCESS)
+ break;
+
+ /* Override any obnoxious code in the above call. */
+ vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
+
+ hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
+ if (hrc == HV_SUCCESS)
+ {
+ /*
+ * Deal with the message.
+ */
+ rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
+ if (rcStrict == VINF_SUCCESS)
+ { /* hopefully likely */ }
+ else
+ {
+ LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
+ break;
+ }
+
+ /*
+ * Stepping: Did the RIP change, if so, consider it a single step.
+ * Otherwise, make sure one of the TFs gets set.
+ */
+ if (fStepping)
+ {
+ int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
+ AssertRC(rc);
+ if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
+ || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
+ {
+ rcStrict = VINF_EM_DBG_STEPPED;
+ break;
+ }
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
+ }
+ }
+ else
+ {
+ AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
+ pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
+ VERR_NEM_IPE_0);
+ }
+ } /* the run loop */
+
+ /*
+ * Clear the X86_EFL_TF if necessary.
+ */
+ if (pVCpu->nem.s.fClearTrapFlag)
+ {
+ int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
+ AssertRC(rc);
+ pVCpu->nem.s.fClearTrapFlag = false;
+ pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
+ }
+
+ pVCpu->nem.s.fUsingDebugLoop = false;
+ pVCpu->nem.s.fDebugWantRdTscExit = false;
+ pVCpu->nem.s.fSingleInstruction = fSavedSingleInstruction;
+
+ /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
+ return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
+}
+
+
+VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
+{
+ LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
+#ifdef LOG_ENABLED
+ if (LogIs3Enabled())
+ nemR3DarwinLogState(pVM, pVCpu);
+#endif
+
+ AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
+
+ /*
+ * Try switch to NEM runloop state.
+ */
+ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
+ { /* likely */ }
+ else
+ {
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+ LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
+ return VINF_SUCCESS;
+ }
+
+ VBOXSTRICTRC rcStrict;
+ if ( !pVCpu->nem.s.fUseDebugLoop
+ && !nemR3DarwinAnyExpensiveProbesEnabled()
+ && !DBGFIsStepping(pVCpu)
+ && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
+ rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
+ else
+ rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
+
+ if (rcStrict == VINF_EM_RAW_TO_R3)
+ rcStrict = VINF_SUCCESS;
+
+ /*
+ * Convert any pending HM events back to TRPM due to premature exits.
+ *
+ * This is because execution may continue from IEM and we would need to inject
+ * the event from there (hence place it back in TRPM).
+ */
+ if (pVCpu->nem.s.Event.fPending)
+ {
+ vmxHCPendingEventToTrpmTrap(pVCpu);
+ Assert(!pVCpu->nem.s.Event.fPending);
+
+ /* Clear the events from the VMCS. */
+ int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
+ rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
+ }
+
+
+ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
+ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
+
+ if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
+ {
+ /* Try anticipate what we might need. */
+ uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
+ if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
+ || RT_FAILURE(rcStrict))
+ fImport = CPUMCTX_EXTRN_ALL;
+ else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
+ | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
+ fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
+
+ if (pVCpu->cpum.GstCtx.fExtrn & fImport)
+ {
+ /* Only import what is external currently. */
+ int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
+ if (RT_SUCCESS(rc2))
+ pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
+ else if (RT_SUCCESS(rcStrict))
+ rcStrict = rc2;
+ if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
+ {
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ }
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
+ }
+ else
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ }
+ else
+ {
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
+ pVCpu->cpum.GstCtx.fExtrn = 0;
+ ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
+ }
+
+ LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
+ pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
+ return rcStrict;
+}
+
+
+VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
+{
+ NOREF(pVM);
+ return PGMPhysIsA20Enabled(pVCpu);
+}
+
+
+bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
+{
+ VMCPU_ASSERT_EMT(pVCpu);
+ bool fOld = pVCpu->nem.s.fSingleInstruction;
+ pVCpu->nem.s.fSingleInstruction = fEnable;
+ pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
+ return fOld;
+}
+
+
+void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
+{
+ LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
+
+ RT_NOREF(pVM, fFlags);
+
+ hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
+ if (hrc != HV_SUCCESS)
+ LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
+}
+
+
+DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
+{
+ for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
+ !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
+ enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
+ fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
+
+ return fUseDebugLoop;
+}
+
+
+DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
+{
+ RT_NOREF(pVM, pVCpu);
+ return fUseDebugLoop;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
+ uint8_t *pu2State, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, puNemRange);
+
+ Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
+#if defined(VBOX_WITH_PGM_NEM_MODE)
+ if (pvR3)
+ {
+ int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
+ return VERR_NEM_MAP_PAGES_FAILED;
+ }
+ }
+ return VINF_SUCCESS;
+#else
+ RT_NOREF(pVM, GCPhys, cb, pvR3);
+ return VERR_NEM_MAP_PAGES_FAILED;
+#endif
+}
+
+
+VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
+{
+ RT_NOREF(pVM);
+ return false;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
+ void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, puNemRange, pvRam, fFlags);
+
+ Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
+ GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
+
+#if defined(VBOX_WITH_PGM_NEM_MODE)
+ /*
+ * Unmap the RAM we're replacing.
+ */
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
+ {
+ int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else if (pvMmio2)
+ LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
+ GCPhys, cb, fFlags, rc));
+ else
+ {
+ LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
+ GCPhys, cb, fFlags, rc));
+ return VERR_NEM_UNMAP_PAGES_FAILED;
+ }
+ }
+
+ /*
+ * Map MMIO2 if any.
+ */
+ if (pvMmio2)
+ {
+ Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
+ int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
+ GCPhys, cb, fFlags, pvMmio2, rc));
+ return VERR_NEM_MAP_PAGES_FAILED;
+ }
+ }
+ else
+ Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
+
+#else
+ RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
+ *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
+#endif
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
+ void *pvRam, void *pvMmio2, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
+ void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, puNemRange);
+
+ Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
+ GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
+
+ int rc = VINF_SUCCESS;
+#if defined(VBOX_WITH_PGM_NEM_MODE)
+ /*
+ * Unmap the MMIO2 pages.
+ */
+ /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
+ * we may have more stuff to unmap even in case of pure MMIO... */
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
+ {
+ rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
+ if (RT_FAILURE(rc))
+ {
+ LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
+ GCPhys, cb, fFlags, rc));
+ rc = VERR_NEM_UNMAP_PAGES_FAILED;
+ }
+ }
+
+ /* Ensure the page is masked as unmapped if relevant. */
+ Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);
+
+ /*
+ * Restore the RAM we replaced.
+ */
+ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
+ {
+ AssertPtr(pvRam);
+ rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
+ if (RT_SUCCESS(rc))
+ { /* likely */ }
+ else
+ {
+ LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
+ rc = VERR_NEM_MAP_PAGES_FAILED;
+ }
+ }
+
+ RT_NOREF(pvMmio2);
+#else
+ RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
+ if (pu2State)
+ *pu2State = UINT8_MAX;
+ rc = VERR_NEM_UNMAP_PAGES_FAILED;
+#endif
+ return rc;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
+ void *pvBitmap, size_t cbBitmap)
+{
+ RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
+ AssertFailed();
+ return VERR_NOT_IMPLEMENTED;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
+ uint8_t *pu2State, uint32_t *puNemRange)
+{
+ RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
+
+ Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
+ *pu2State = UINT8_MAX;
+ *puNemRange = 0;
+ return VINF_SUCCESS;
+}
+
+
+VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
+ uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
+{
+ Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
+ GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
+ *pu2State = UINT8_MAX;
+
+#if defined(VBOX_WITH_PGM_NEM_MODE)
+ /*
+ * (Re-)map readonly.
+ */
+ AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
+ int rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE, pu2State);
+ if (RT_FAILURE(rc))
+ {
+ LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
+ GCPhys, cb, pvPages, fFlags, rc));
+ return VERR_NEM_MAP_PAGES_FAILED;
+ }
+ RT_NOREF(fFlags, puNemRange);
+ return VINF_SUCCESS;
+#else
+ RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
+ return VERR_NEM_MAP_PAGES_FAILED;
+#endif
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
+ RTR3PTR pvMemR3, uint8_t *pu2State)
+{
+ RT_NOREF(pVM);
+
+ Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
+ GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
+
+ *pu2State = UINT8_MAX;
+#if defined(VBOX_WITH_PGM_NEM_MODE)
+ if (pvMemR3)
+ {
+ int rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
+ AssertLogRelMsgRC(rc, ("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
+ pvMemR3, GCPhys, cb, rc));
+ }
+ RT_NOREF(enmKind);
+#else
+ RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
+ AssertFailed();
+#endif
+}
+
+
+VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
+{
+ Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
+ RT_NOREF(pVCpu, fEnabled);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
+ NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
+}
+
+
+void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
+ RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
+{
+ Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
+ GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
+ NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
+}
+
+
+int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ RT_NOREF(HCPhys, fPageProt, enmType);
+
+ return nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
+ PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhys, fPageProt, enmType, *pu2State));
+ RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
+
+ nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
+}
+
+
+VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
+ RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
+{
+ Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
+ GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
+ RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
+
+ nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
+}
+
+
+/**
+ * Interface for importing state on demand (used by IEM).
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
+ */
+VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
+{
+ LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
+
+ return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
+}
+
+
+/**
+ * Query the CPU tick counter and optionally the TSC_AUX MSR value.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context CPU structure.
+ * @param pcTicks Where to return the CPU tick count.
+ * @param puAux Where to return the TSC_AUX register value.
+ */
+VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
+{
+ LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
+ STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
+
+ int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
+ if ( RT_SUCCESS(rc)
+ && puAux)
+ {
+ if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
+ {
+ uint64_t u64Aux;
+ rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
+ if (RT_SUCCESS(rc))
+ *puAux = (uint32_t)u64Aux;
+ }
+ else
+ *puAux = CPUMGetGuestTscAux(pVCpu);
+ }
+
+ return rc;
+}
+
+
+/**
+ * Resumes CPU clock (TSC) on all virtual CPUs.
+ *
+ * This is called by TM when the VM is started, restored, resumed or similar.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context CPU structure of the calling EMT.
+ * @param uPausedTscValue The TSC value at the time of pausing.
+ */
+VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
+{
+ LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
+ VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
+ AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
+
+ hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
+ if (RT_LIKELY(hrc == HV_SUCCESS))
+ {
+ ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
+ return VINF_SUCCESS;
+ }
+
+ return nemR3DarwinHvSts2Rc(hrc);
+}
+
+
+/**
+ * Returns features supported by the NEM backend.
+ *
+ * @returns Flags of features supported by the native NEM backend.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
+{
+ RT_NOREF(pVM);
+ /*
+ * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
+ * and unrestricted guest execution support so we can safely return these flags here always.
+ */
+ return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
+}
+
+
+/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
+ *
+ * @todo Add notes as the implementation progresses...
+ */
+