1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/*
* Copyright (C) 2006-2022 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
* --------------------------------------------------------------------
*
* This code is based on:
*
* ROM BIOS for use with Bochs/Plex86/QEMU emulation environment
*
* Copyright (C) 2002 MandrakeSoft S.A.
*
* MandrakeSoft S.A.
* 43, rue d'Aboukir
* 75002 Paris - France
* http://www.linux-mandrake.com/
* http://www.mandrakesoft.com/
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/*
* Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
* other than GPL or LGPL is available it will apply instead, Oracle elects to use only
* the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
* a choice of LGPL license versions is made available with the language indicating
* that LGPLv2 or any later version may be used, or where a choice of which version
* of the LGPL is applied is otherwise unspecified.
*/
#include <stdint.h>
#include "biosint.h"
#include "inlines.h"
#if DEBUG_INT1A
# define BX_DEBUG_INT1A(...) BX_DEBUG(__VA_ARGS__)
#else
# define BX_DEBUG_INT1A(...)
#endif
// for access to RAM area which is used by interrupt vectors
// and BIOS Data Area
typedef struct {
uint8_t filler1[0x400];
uint8_t filler2[0x6c];
uint16_t ticks_low;
uint16_t ticks_high;
uint8_t midnight_flag;
} bios_data_t;
#define BiosData ((bios_data_t __far *) 0)
void init_rtc(void)
{
outb_cmos(0x0a, 0x26);
outb_cmos(0x0b, 0x02);
inb_cmos(0x0c);
inb_cmos(0x0d);
}
bx_bool rtc_updating(void)
{
// This function checks to see if the update-in-progress bit
// is set in CMOS Status Register A. If not, it returns 0.
// If it is set, it tries to wait until there is a transition
// to 0, and will return 0 if such a transition occurs. A 1
// is returned only after timing out. The maximum period
// that this bit should be set is constrained to 244useconds.
// The count I use below guarantees coverage or more than
// this time, with any reasonable IPS setting.
uint16_t iter;
iter = 25000;
while (--iter != 0) {
if ( (inb_cmos(0x0a) & 0x80) == 0 )
return 0;
}
return 1; // update-in-progress never transitioned to 0
}
extern void eoi_both_pics(void); /* in assembly code */
#pragma aux eoi_both_pics "*";
void call_int_4a(void);
#pragma aux call_int_4a = "int 4Ah";
void BIOSCALL int70_function(pusha_regs_t regs, uint16_t ds, uint16_t es, iret_addr_t iret_addr)
{
// INT 70h: IRQ 8 - CMOS RTC interrupt from periodic or alarm modes
uint8_t registerB = 0, registerC = 0;
// Check which modes are enabled and have occurred.
registerB = inb_cmos( 0xB );
registerC = inb_cmos( 0xC );
if( ( registerB & 0x60 ) != 0 ) {
if( ( registerC & 0x20 ) != 0 ) {
// Handle Alarm Interrupt.
int_enable();
call_int_4a();
int_disable();
}
if( ( registerC & 0x40 ) != 0 ) {
// Handle Periodic Interrupt.
if( read_byte( 0x40, 0xA0 ) != 0 ) {
// Wait Interval (Int 15, AH=83 or AH=86) active.
uint32_t time;
time = read_dword( 0x40, 0x9C ); // Time left in microseconds.
if( time < 0x3D1 ) {
// Done waiting.
uint16_t segment, offset;
segment = read_word( 0x40, 0x98 );
offset = read_word( 0x40, 0x9A );
write_byte( 0x40, 0xA0, 0 ); // Turn off status byte.
outb_cmos( 0xB, registerB & 0x37 ); // Clear the Periodic Interrupt.
write_byte( segment, offset, read_byte(segment, offset) | 0x80 ); // Write to specified flag byte.
} else {
// Continue waiting.
time -= 0x3D1;
write_dword( 0x40, 0x9C, time );
}
}
}
}
eoi_both_pics();
}
/// @todo the coding style WRT register access is totally inconsistent
// in the following routines
void BIOSCALL int1a_function(pusha_regs_t regs, uint16_t ds, uint16_t es, iret_addr_t iret_addr)
{
uint8_t val8;
BX_DEBUG_INT1A("int1a: AX=%04x BX=%04x CX=%04x DX=%04x DS=%04x\n",
regs.u.r16.ax, regs.u.r16.bx, regs.u.r16.cx, regs.u.r16.dx, ds);
int_enable();
switch (regs.u.r8.ah) {
case 0: // get current clock count
int_disable();
regs.u.r16.cx = BiosData->ticks_high;
regs.u.r16.dx = BiosData->ticks_low;
regs.u.r8.al = BiosData->midnight_flag;
BiosData->midnight_flag = 0; // reset flag
int_enable();
// AH already 0
ClearCF(iret_addr.flags); // OK
break;
case 1: // Set Current Clock Count
int_disable();
BiosData->ticks_high = regs.u.r16.cx;
BiosData->ticks_low = regs.u.r16.dx;
BiosData->midnight_flag = 0; // reset flag
int_enable();
regs.u.r8.ah = 0;
ClearCF(iret_addr.flags); // OK
break;
case 2: // Read CMOS Time
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.dh = inb_cmos(0x00); // Seconds
regs.u.r8.cl = inb_cmos(0x02); // Minutes
regs.u.r8.ch = inb_cmos(0x04); // Hours
regs.u.r8.dl = inb_cmos(0x0b) & 0x01; // Stat Reg B
regs.u.r8.ah = 0;
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 3: // Set CMOS Time
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x00, regs.u.r8.dh); // Seconds
outb_cmos(0x02, regs.u.r8.cl); // Minutes
outb_cmos(0x04, regs.u.r8.ch); // Hours
// Set Daylight Savings time enabled bit to requested value
val8 = (inb_cmos(0x0b) & 0x60) | 0x02 | (regs.u.r8.dl & 0x01);
// (reg B already selected)
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 4: // Read CMOS Date
regs.u.r8.ah = 0;
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.cl = inb_cmos(0x09); // Year
regs.u.r8.dh = inb_cmos(0x08); // Month
regs.u.r8.dl = inb_cmos(0x07); // Day of Month
regs.u.r8.ch = inb_cmos(0x32); // Century
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 5: // Set CMOS Date
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
init_rtc();
SetCF(iret_addr.flags);
break;
}
outb_cmos(0x09, regs.u.r8.cl); // Year
outb_cmos(0x08, regs.u.r8.dh); // Month
outb_cmos(0x07, regs.u.r8.dl); // Day of Month
outb_cmos(0x32, regs.u.r8.ch); // Century
val8 = inb_cmos(0x0b) & 0x7f; // clear halt-clock bit
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // AL = val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 6: // Set Alarm Time in CMOS
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
val8 = inb_cmos(0x0b); // Get Status Reg B
regs.u.r16.ax = 0;
if (val8 & 0x20) {
// Alarm interrupt enabled already
SetCF(iret_addr.flags); // Error: alarm in use
break;
}
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x01, regs.u.r8.dh); // Seconds alarm
outb_cmos(0x03, regs.u.r8.cl); // Minutes alarm
outb_cmos(0x05, regs.u.r8.ch); // Hours alarm
outb(0xa1, inb(0xa1) & 0xfe); // enable IRQ 8
// enable Status Reg B alarm bit, clear halt clock bit
outb_cmos(0x0b, (val8 & 0x7f) | 0x20);
ClearCF(iret_addr.flags); // OK
break;
case 7: // Turn off Alarm
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
val8 = inb_cmos(0x0b); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
outb_cmos(0x0b, val8 & 0x57); // disable alarm bit
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
default:
BX_DEBUG_INT1A("int1a: AX=%04x unsupported\n", regs.u.r16.ax);
SetCF(iret_addr.flags); // Unsupported
}
}
|