1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
/* $Id: keyboard.c $ */
/** @file
* VBox/Frontends/Common - X11 keyboard handler library.
*/
/* This code is originally from the Wine project. */
/*
* X11 keyboard driver
*
* Copyright 1993 Bob Amstadt
* Copyright 1996 Albrecht Kleine
* Copyright 1997 David Faure
* Copyright 1998 Morten Welinder
* Copyright 1998 Ulrich Weigand
* Copyright 1999 Ove K�ven
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
* other than GPL or LGPL is available it will apply instead, Oracle elects to use only
* the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
* a choice of LGPL license versions is made available with the language indicating
* that LGPLv2 or any later version may be used, or where a choice of which version
* of the LGPL is applied is otherwise unspecified.
*/
#include <X11/Xatom.h>
#include <X11/keysym.h>
#include <X11/XKBlib.h>
#include <X11/Xlib.h>
#include <X11/Xresource.h>
#include <X11/Xutil.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <VBox/VBoxKeyboard.h>
/* VBoxKeyboard uses the deprecated XKeycodeToKeysym(3) API, but uses it safely.
*/
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#define KEYC2SCAN_SIZE 256
/**
* Array containing the current mapping of keycodes to scan codes, detected
* using the keyboard layout algorithm in X11DRV_InitKeyboardByLayout.
*/
static unsigned keyc2scan[KEYC2SCAN_SIZE];
/** Whether to output basic debugging information to standard output */
static int log_kb_1 = 0;
/** Whether to output verbose debugging information to standard output */
static int log_kb_2 = 0;
/** Output basic debugging information if wished */
#define LOG_KB_1(a) \
do { \
if (log_kb_1) { \
printf a; \
} \
} while (0)
/** Output verbose debugging information if wished */
#define LOG_KB_2(a) \
do { \
if (log_kb_2) { \
printf a; \
} \
} while (0)
/** Keyboard layout tables for guessing the current keyboard layout. */
#include "keyboard-tables.h"
/** Tables of keycode to scan code mappings for well-known keyboard types. */
#include "keyboard-types.h"
/**
* Translate a keycode in a key event to a scan code. If the keycode maps
* to a key symbol which is in the same place on all PC keyboards, look it
* up by symbol in one of our hard-coded translation tables. It it maps to
* a symbol which can be in a different place on different PC keyboards, look
* it up by keycode using either the lookup table which we constructed
* earlier, or using a hard-coded table if we know what type of keyboard is
* in use.
*
* @returns the scan code number, with 0x100 added for extended scan codes
* @param code the X11 key code to be looked up
*/
unsigned X11DRV_KeyEvent(Display *display, KeyCode code)
{
unsigned scan;
KeySym keysym = XKeycodeToKeysym(display, code, 0);
scan = 0;
if (keyc2scan[code] == 0 && keysym != 0)
{
if ((keysym >> 8) == 0xFF) /* non-character key */
scan = nonchar_key_scan[keysym & 0xff];
else if ((keysym >> 8) == 0x1008FF) /* XFree86 vendor keys */
scan = xfree86_vendor_key_scan[keysym & 0xff];
else if ((keysym >> 8) == 0x1005FF) /* Sun keys */
scan = sun_key_scan[keysym & 0xff];
else if (keysym == 0x20) /* Spacebar */
scan = 0x39;
else if (keysym == 0xFE03) /* ISO level3 shift, aka AltGr */
scan = 0x138;
else if (keysym == 0xFE11) /* ISO level5 shift, R-Ctrl on */
scan = 0x11d; /* Canadian multilingual layout */
}
if (keyc2scan[code])
scan = keyc2scan[code];
return scan;
}
/**
* Called from X11DRV_InitKeyboardByLayout
* See the comments for that function for a description what this function
* does.
*
* @returns an index into the table of keyboard layouts, or 0 if absolutely
* nothing fits
* @param display pointer to the X11 display handle
* @param min_keycode the lowest value in use as a keycode on this server
* @param max_keycode the highest value in use as a keycode on this server
*/
static int
X11DRV_KEYBOARD_DetectLayout (Display *display, unsigned min_keycode,
unsigned max_keycode)
{
/** Counter variable for iterating through the keyboard layout tables. */
unsigned current;
/** The best candidate so far for the layout. */
unsigned kbd_layout = 0;
/** The number of matching keys in the current best candidate layout. */
unsigned max_score = 0;
/** The number of changes of scan-code direction in the current
best candidate. */
unsigned max_seq = 0;
/** Table for the current keycode to keysym mapping. */
char ckey[256][2];
/** Counter variable representing a keycode */
unsigned keyc;
/* Fill in our keycode to keysym mapping table. */
memset( ckey, 0, sizeof(ckey) );
for (keyc = min_keycode; keyc <= max_keycode; keyc++) {
/* get data for keycodes from X server */
KeySym keysym = XKeycodeToKeysym (display, keyc, 0);
/* We leave keycodes which will definitely not be in the lookup tables
marked with 0 so that we know that we know not to look them up when
we scan the tables. */
if ( (0xFF != (keysym >> 8)) /* Non-character key */
&& (0x1008FF != (keysym >> 8)) /* XFree86 vendor keys */
&& (0x1005FF != (keysym >> 8)) /* Sun keys */
&& (0x20 != keysym) /* Spacebar */
&& (0xFE03 != keysym) /* ISO level3 shift, aka AltGr */
) {
ckey[keyc][0] = keysym & 0xFF;
ckey[keyc][1] = XKeycodeToKeysym(display, keyc, 1) & 0xFF;
}
}
/* Now scan the lookup tables, looking for one that is as close as
possible to our current keycode to keysym mapping. */
for (current = 0; main_key_tab[current].comment; current++) {
/** How many keys have matched so far in this layout? */
unsigned match = 0;
/** How many keys have not changed the direction? */
unsigned seq = 0;
/** Pointer to the layout we are currently comparing against. */
const char (*lkey)[MAIN_LEN][2] = main_key_tab[current].key;
/** For detecting dvorak layouts - in which direction do the server's
keycodes seem to be running? We count the number of times that
this direction changes as an additional hint as to how likely this
layout is to be the right one. */
int direction = 1;
/** The keycode of the last key that we matched. This is used to
determine the direction that the keycodes are running in. */
int pkey = -1;
LOG_KB_2(("Attempting to match against \"%s\"\n", main_key_tab[current].comment));
for (keyc = min_keycode; keyc <= max_keycode; keyc++) {
if (0 != ckey[keyc][0]) {
/** The candidate key in the current layout for this keycode. */
int key;
/** Does this key match? */
int ok = 0;
/* search for a match in layout table */
for (key = 0; (key < MAIN_LEN) && (0 == ok); key++) {
if ( ((*lkey)[key][0] == ckey[keyc][0])
&& ((*lkey)[key][1] == ckey[keyc][1])
) {
ok = 1;
}
}
/* count the matches and mismatches */
if (0 != ok) {
match++;
/* How well in sequence are the keys? For dvorak layouts. */
if (key > pkey) {
if (1 == direction) {
++seq;
} else {
direction = -1;
}
}
if (key < pkey) {
if (1 != direction) {
++seq;
} else {
direction = 1;
}
}
pkey = key;
} else {
#ifdef DEBUG
/* print spaces instead of \0's */
char str[3] = " ";
if ((ckey[keyc][0] > 32) && (ckey[keyc][0] < 127)) {
str[0] = ckey[keyc][0];
}
if ((ckey[keyc][0] > 32) && (ckey[keyc][0] < 127)) {
str[0] = ckey[keyc][0];
}
LOG_KB_2(("Mismatch for keycode %u, keysym \"%s\" (0x%.2hx 0x%.2hx)\n",
keyc, str, ckey[keyc][0], ckey[keyc][1]));
#endif /* DEBUG defined */
}
}
}
LOG_KB_2(("Matches=%u, seq=%u\n", match, seq));
if ( (match > max_score)
|| ((match == max_score) && (seq > max_seq))
) {
/* best match so far */
kbd_layout = current;
max_score = match;
max_seq = seq;
}
}
/* we're done, report results if necessary */
LOG_KB_1(("Detected layout is \"%s\", matches=%u, seq=%u\n",
main_key_tab[kbd_layout].comment, max_score, max_seq));
return kbd_layout;
}
/**
* Initialise the X11 keyboard driver by building up a table to convert X11
* keycodes to scan codes using a heuristic based on comparing the current
* keyboard map to known international keyboard layouts.
* The basic idea is to examine each key in the current layout to see which
* characters it produces in its normal and its "shifted" state, and to look
* for known keyboard layouts which it could belong to. We then guess the
* current layout based on the number of matches we find.
* One difficulty with this approach is so-called Dvorak layouts, which are
* identical to non-Dvorak layouts, but with the keys in a different order.
* To deal with this, we compare the different candidate layouts to see in
* which one the X11 keycodes would be most sequential and hope that they
* really are arranged more or less sequentially.
*
* The actual detection of the current layout is done in the sub-function
* X11DRV_KEYBOARD_DetectLayout. Once we have determined the layout, since we
* know which PC scan code corresponds to each key in the layout, we can use
* this information to associate the scan code with an X11 keycode, which is
* what the rest of this function does.
*
* @warning not re-entrant
* @returns 1 if the layout found was optimal, 0 if it was not. This is
* for diagnostic purposes
* @param display a pointer to the X11 display
*/
static unsigned
X11DRV_InitKeyboardByLayout(Display *display)
{
KeySym keysym;
unsigned scan;
int keyc, keyn;
const char (*lkey)[MAIN_LEN][2];
int min_keycode, max_keycode;
int kbd_layout;
unsigned matches = 0, entries = 0;
/* Should we log to standard output? */
if (NULL != getenv("LOG_KB_PRIMARY")) {
log_kb_1 = 1;
}
if (NULL != getenv("LOG_KB_SECONDARY")) {
log_kb_1 = 1;
log_kb_2 = 1;
}
XDisplayKeycodes(display, &min_keycode, &max_keycode);
/* according to the space this function is guaranteed to never return
* values for min_keycode < 8 and values for max_keycode > 255 */
if (min_keycode < 0)
min_keycode = 0;
if (max_keycode > 255)
max_keycode = 255;
/* Detect the keyboard layout */
kbd_layout = X11DRV_KEYBOARD_DetectLayout(display, min_keycode,
max_keycode);
lkey = main_key_tab[kbd_layout].key;
/* Now build a conversion array :
* keycode -> scancode + extended */
for (keyc = min_keycode; keyc <= max_keycode; keyc++)
{
keysym = XKeycodeToKeysym(display, keyc, 0);
scan = 0;
if (keysym) /* otherwise, keycode not used */
{
/* Skip over keysyms which we look up on the fly */
if ( (0xFF != (keysym >> 8)) /* Non-character key */
&& (0x1008FF != (keysym >> 8)) /* XFree86 vendor keys */
&& (0x1005FF != (keysym >> 8)) /* Sun keys */
&& (0x20 != keysym) /* Spacebar */
&& (0xFE03 != keysym) /* ISO level3 shift, aka AltGr */
) {
unsigned found = 0;
/* we seem to need to search the layout-dependent scancodes */
char unshifted = keysym & 0xFF;
char shifted = XKeycodeToKeysym(display, keyc, 1) & 0xFF;
/* find a key which matches */
for (keyn = 0; (0 == found) && (keyn<MAIN_LEN); keyn++) {
if ( ((*lkey)[keyn][0] == unshifted)
&& ((*lkey)[keyn][1] == shifted)
) {
found = 1;
}
}
if (0 != found) {
/* got it */
scan = main_key_scan[keyn - 1];
/* We keep track of the number of keys that we found a
* match for to see if the layout is optimal or not.
* We ignore the 102nd key though (key number 48), since
* not all keyboards have it. */
if (keyn != 48)
++matches;
}
if (0 == scan) {
/* print spaces instead of \0's */
char str[3] = " ";
if ((unshifted > 32) && (unshifted < 127)) {
str[0] = unshifted;
}
if ((shifted > 32) && (shifted < 127)) {
str[1] = shifted;
}
LOG_KB_1(("No match found for keycode %d, keysym \"%s\" (0x%x 0x%x)\n",
keyc, str, unshifted, shifted));
} else if ((keyc > 8) && (keyc < 97) && (keyc - scan != 8)) {
/* print spaces instead of \0's */
char str[3] = " ";
if ((unshifted > 32) && (unshifted < 127)) {
str[0] = unshifted;
}
if ((shifted > 32) && (shifted < 127)) {
str[1] = shifted;
}
LOG_KB_1(("Warning - keycode %d, keysym \"%s\" (0x%x 0x%x) was matched to scancode %u\n",
keyc, str, unshifted, shifted, scan));
}
}
}
keyc2scan[keyc] = scan;
} /* for */
/* Did we find a match for all keys in the layout? Count them first.
* Note that we skip the 102nd key, so that owners of 101 key keyboards
* don't get bogus messages about bad matches. */
for (entries = 0, keyn = 0; keyn < MAIN_LEN; ++keyn) {
if ( (0 != (*lkey)[keyn][0])
&& (0 != (*lkey)[keyn][1])
&& (keyn != 47) /* don't count the 102nd key */
) {
++entries;
}
}
LOG_KB_1(("Finished mapping keyboard, matches=%u, entries=%u (excluding 102nd key)\n", matches, entries));
if (matches != entries)
{
return 0;
}
return 1;
}
static int checkHostKeycode(unsigned hostCode, unsigned targetCode)
{
if (!targetCode)
return 0;
if (hostCode && hostCode != targetCode)
return 0;
return 1;
}
static int compKBMaps(const keyboard_type *pHost, const keyboard_type *pTarget)
{
if ( !pHost->lctrl && !pHost->capslock && !pHost->lshift && !pHost->tab
&& !pHost->esc && !pHost->enter && !pHost->up && !pHost->down
&& !pHost->left && !pHost->right && !pHost->f1 && !pHost->f2
&& !pHost->f3 && !pHost->f4 && !pHost->f5 && !pHost->f6 && !pHost->f7
&& !pHost->f8)
return 0;
/* This test is for the people who like to swap control and caps lock */
if ( ( !checkHostKeycode(pHost->lctrl, pTarget->lctrl)
|| !checkHostKeycode(pHost->capslock, pTarget->capslock))
&& ( !checkHostKeycode(pHost->lctrl, pTarget->capslock)
|| !checkHostKeycode(pHost->capslock, pTarget->lctrl)))
return 0;
if ( !checkHostKeycode(pHost->lshift, pTarget->lshift)
|| !checkHostKeycode(pHost->tab, pTarget->tab)
|| !checkHostKeycode(pHost->esc, pTarget->esc)
|| !checkHostKeycode(pHost->enter, pTarget->enter)
|| !checkHostKeycode(pHost->up, pTarget->up)
|| !checkHostKeycode(pHost->down, pTarget->down)
|| !checkHostKeycode(pHost->left, pTarget->left)
|| !checkHostKeycode(pHost->right, pTarget->right)
|| !checkHostKeycode(pHost->f1, pTarget->f1)
|| !checkHostKeycode(pHost->f2, pTarget->f2)
|| !checkHostKeycode(pHost->f3, pTarget->f3)
|| !checkHostKeycode(pHost->f4, pTarget->f4)
|| !checkHostKeycode(pHost->f5, pTarget->f5)
|| !checkHostKeycode(pHost->f6, pTarget->f6)
|| !checkHostKeycode(pHost->f7, pTarget->f7)
|| !checkHostKeycode(pHost->f8, pTarget->f8))
return 0;
return 1;
}
static int findHostKBInList(const keyboard_type *pHost,
const keyboard_type *pList, int cList)
{
int i = 0;
for (; i < cList; ++i)
if (compKBMaps(pHost, &pList[i]))
return i;
return -1;
}
#ifdef DEBUG
static void testFindHostKB(void)
{
keyboard_type hostBasic =
{ NULL, 1 /* lctrl */, 2, 3, 4, 5, 6, 7 /* up */, 8, 9, 10, 11 /* F1 */,
12, 13, 14, 15, 16, 17, 18 };
keyboard_type hostSwapCtrlCaps =
{ NULL, 3 /* lctrl */, 2, 1, 4, 5, 6, 7 /* up */, 8, 9, 10, 11 /* F1 */,
12, 13, 14, 15, 16, 17, 18 };
keyboard_type hostEmpty =
{ NULL, 0 /* lctrl */, 0, 0, 0, 0, 0, 0 /* up */, 0, 0, 0, 0 /* F1 */,
0, 0, 0, 0, 0, 0, 0 };
keyboard_type hostNearlyEmpty =
{ NULL, 1 /* lctrl */, 0, 0, 0, 0, 0, 0 /* up */, 0, 0, 0, 0 /* F1 */,
0, 0, 0, 0, 0, 0, 18 };
keyboard_type hostNearlyRight =
{ NULL, 20 /* lctrl */, 2, 3, 4, 5, 6, 7 /* up */, 8, 9, 10, 11 /* F1 */,
12, 13, 14, 15, 16, 17, 18 };
keyboard_type targetList[] = {
{ NULL, 18 /* lctrl */, 17, 16, 15, 14, 13, 12 /* up */, 11, 10, 9,
8 /* F1 */, 7, 6, 5, 4, 3, 2, 1 },
{ NULL, 1 /* lctrl */, 2, 3, 4, 5, 6, 7 /* up */, 8, 9, 10,
11 /* F1 */, 12, 13, 14, 15, 16, 17, 18 }
};
/* As we don't have assertions here, just printf. This should *really*
* never happen. */
if ( hostBasic.f8 != 18 || hostSwapCtrlCaps.f8 != 18
|| hostNearlyEmpty.f8 != 18 || hostNearlyRight.f8 != 18
|| targetList[0].f8 != 1 || targetList[1].f8 != 18)
printf("ERROR: testFindHostKB: bad structures\n");
if (findHostKBInList(&hostBasic, targetList, 2) != 1)
printf("ERROR: findHostKBInList failed to find a target in a list\n");
if (findHostKBInList(&hostSwapCtrlCaps, targetList, 2) != 1)
printf("ERROR: findHostKBInList failed on a ctrl-caps swapped map\n");
if (findHostKBInList(&hostEmpty, targetList, 2) != -1)
printf("ERROR: findHostKBInList accepted an empty host map\n");
if (findHostKBInList(&hostNearlyEmpty, targetList, 2) != 1)
printf("ERROR: findHostKBInList failed on a partly empty host map\n");
if (findHostKBInList(&hostNearlyRight, targetList, 2) != -1)
printf("ERROR: findHostKBInList failed to fail a wrong host map\n");
}
#endif
static unsigned
X11DRV_InitKeyboardByType(Display *display)
{
keyboard_type hostKB;
int cMap;
hostKB.lctrl = XKeysymToKeycode(display, XK_Control_L);
hostKB.capslock = XKeysymToKeycode(display, XK_Caps_Lock);
hostKB.lshift = XKeysymToKeycode(display, XK_Shift_L);
hostKB.tab = XKeysymToKeycode(display, XK_Tab);
hostKB.esc = XKeysymToKeycode(display, XK_Escape);
hostKB.enter = XKeysymToKeycode(display, XK_Return);
hostKB.up = XKeysymToKeycode(display, XK_Up);
hostKB.down = XKeysymToKeycode(display, XK_Down);
hostKB.left = XKeysymToKeycode(display, XK_Left);
hostKB.right = XKeysymToKeycode(display, XK_Right);
hostKB.f1 = XKeysymToKeycode(display, XK_F1);
hostKB.f2 = XKeysymToKeycode(display, XK_F2);
hostKB.f3 = XKeysymToKeycode(display, XK_F3);
hostKB.f4 = XKeysymToKeycode(display, XK_F4);
hostKB.f5 = XKeysymToKeycode(display, XK_F5);
hostKB.f6 = XKeysymToKeycode(display, XK_F6);
hostKB.f7 = XKeysymToKeycode(display, XK_F7);
hostKB.f8 = XKeysymToKeycode(display, XK_F8);
#ifdef DEBUG
testFindHostKB();
#endif
cMap = findHostKBInList(&hostKB, main_keyboard_type_list,
sizeof(main_keyboard_type_list)
/ sizeof(main_keyboard_type_list[0]));
#ifdef DEBUG
/* Assertion */
if (sizeof(keyc2scan) != sizeof(main_keyboard_type_scans[cMap]))
{
printf("ERROR: keyc2scan array size doesn't match main_keyboard_type_scans[]!\n");
return 0;
}
#endif
if (cMap >= 0)
{
memcpy(keyc2scan, main_keyboard_type_scans[cMap], sizeof(keyc2scan));
return 1;
}
return 0;
}
/**
* Checks for the XKB extension, and if it is found initialises the X11 keycode
* to XT scan code mapping by looking at the XKB names for each keycode. As it
* turns out that XKB can return an empty list we make sure that the list holds
* enough data to be useful to us.
*/
static unsigned
X11DRV_InitKeyboardByXkb(Display *pDisplay)
{
int major = XkbMajorVersion, minor = XkbMinorVersion;
XkbDescPtr pKBDesc;
unsigned cFound = 0;
if (!XkbLibraryVersion(&major, &minor))
return 0;
if (!XkbQueryExtension(pDisplay, NULL, NULL, &major, &minor, NULL))
return 0;
pKBDesc = XkbGetKeyboard(pDisplay, XkbAllComponentsMask, XkbUseCoreKbd);
if (!pKBDesc)
return 0;
if (XkbGetNames(pDisplay, XkbKeyNamesMask, pKBDesc) != Success)
return 0;
{
unsigned i, j;
memset(keyc2scan, 0, sizeof(keyc2scan));
for (i = pKBDesc->min_key_code; i < pKBDesc->max_key_code; ++i)
for (j = 0; j < sizeof(xkbMap) / sizeof(xkbMap[0]); ++j)
if (!memcmp(xkbMap[j].cszName,
&pKBDesc->names->keys->name[i * XKB_NAME_SIZE],
XKB_NAME_SIZE))
{
keyc2scan[i] = xkbMap[j].uScan;
++cFound;
break;
}
}
XkbFreeNames(pKBDesc, XkbKeyNamesMask, True);
XkbFreeKeyboard(pKBDesc, XkbAllComponentsMask, True);
return cFound >= 45 ? 1 : 0;
}
/**
* Initialise the X11 keyboard driver by finding which X11 keycodes correspond
* to which PC scan codes. If the keyboard being used is not a PC keyboard,
* the X11 keycodes will be mapped to the scan codes which the equivalent keys
* on a PC keyboard would use.
*
* We use two algorithms to try to determine the mapping. See the comments
* attached to the two algorithm functions (X11DRV_InitKeyboardByLayout and
* X11DRV_InitKeyboardByType) for descriptions of the algorithms used. Both
* functions tell us on return whether they think that they have correctly
* determined the mapping. If both functions claim to have determined the
* mapping correctly, we prefer the second (ByType). However, if neither does
* then we prefer the first (ByLayout), as it produces a fuzzy result which is
* still likely to be partially correct.
*
* @warning not re-entrant
* @returns 1 if the layout found was optimal, 0 if it was not. This is
* for diagnostic purposes
* @param display a pointer to the X11 display
* @param byLayoutOK diagnostic - set to one if detection by layout
* succeeded, and to 0 otherwise
* @param byTypeOK diagnostic - set to one if detection by type
* succeeded, and to 0 otherwise
* @param byXkbOK diagnostic - set to one if detection using XKB
* succeeded, and to 0 otherwise
* @param remapScancode array of tuples that remap the keycode (first
* part) to a scancode (second part)
* @note Xkb takes precedence over byType takes precedence over byLayout,
* for anyone who wants to log information about which method is in
* use. byLayout is the fallback, as it is likely to be partly usable
* even if it doesn't initialise correctly.
*/
unsigned X11DRV_InitKeyboard(Display *display, unsigned *byLayoutOK,
unsigned *byTypeOK, unsigned *byXkbOK,
int (*remapScancodes)[2])
{
unsigned byLayout, byType, byXkb;
byLayout = X11DRV_InitKeyboardByLayout(display);
if (byLayoutOK)
*byLayoutOK = byLayout;
byType = X11DRV_InitKeyboardByType(display);
if (byTypeOK)
*byTypeOK = byType;
byXkb = X11DRV_InitKeyboardByXkb(display);
if (byXkbOK)
*byXkbOK = byXkb;
/* Fall back to the one which did work. */
if (!byXkb)
{
if (byType)
X11DRV_InitKeyboardByType(display);
else
X11DRV_InitKeyboardByLayout(display);
}
/* Remap keycodes after initialization. Remapping stops after an
identity mapping is seen */
if (remapScancodes != NULL)
for (; (*remapScancodes)[0] != (*remapScancodes)[1]; remapScancodes++)
keyc2scan[(*remapScancodes)[0]] = (*remapScancodes)[1];
return (byLayout || byType || byXkb) ? 1 : 0;
}
/**
* Returns the keycode to scancode array
*/
unsigned *X11DRV_getKeyc2scan(void)
{
return keyc2scan;
}
|