1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
|
/* $Id: NEMR3Native-linux.cpp $ */
/** @file
* NEM - Native execution manager, native ring-3 Linux backend.
*/
/*
* Copyright (C) 2021-2022 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_NEM
#define VMCPU_INCL_CPUM_GST_CTX
#include <VBox/vmm/nem.h>
#include <VBox/vmm/iem.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/apic.h>
#include <VBox/vmm/pdm.h>
#include <VBox/vmm/trpm.h>
#include "NEMInternal.h"
#include <VBox/vmm/vmcc.h>
#include <iprt/alloca.h>
#include <iprt/string.h>
#include <iprt/system.h>
#include <iprt/x86.h>
#include <errno.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
/*
* Supply stuff missing from the kvm.h on the build box.
*/
#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */
# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
#endif
/**
* Worker for nemR3NativeInit that gets the hypervisor capabilities.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pErrInfo Where to always return error info.
*/
static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
{
AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
/*
* Capabilities.
*/
static const struct
{
const char *pszName;
int iCap;
uint32_t offNem : 24;
uint32_t cbNem : 3;
uint32_t fReqNonZero : 1;
uint32_t uReserved : 4;
} s_aCaps[] =
{
#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 }
#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */
CAP_ENTRY_ML(KVM_CAP_HLT),
CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
CAP_ENTRY__U(5),
CAP_ENTRY__L(KVM_CAP_VAPIC),
CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */
CAP_ENTRY__L(KVM_CAP_PIT),
CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
CAP_ENTRY__L(KVM_CAP_PV_MMU),
CAP_ENTRY__L(KVM_CAP_MP_STATE),
CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
CAP_ENTRY__U(17),
CAP_ENTRY__L(KVM_CAP_IOMMU),
CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */
CAP_ENTRY__L(KVM_CAP_USER_NMI),
#ifdef __KVM_HAVE_GUEST_DEBUG
CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
#endif
#ifdef __KVM_HAVE_PIT
CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
#endif
CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
CAP_ENTRY__U(27),
CAP_ENTRY__U(28),
CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */
#ifdef __KVM_HAVE_MCE
CAP_ENTRY__L(KVM_CAP_MCE),
#endif
CAP_ENTRY__L(KVM_CAP_IRQFD),
#ifdef __KVM_HAVE_PIT
CAP_ENTRY__L(KVM_CAP_PIT2),
#endif
CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
#ifdef __KVM_HAVE_PIT_STATE2
CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
#endif
CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
#ifdef __KVM_HAVE_XEN_HVM
CAP_ENTRY__L(KVM_CAP_XEN_HVM),
#endif
CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */
#ifdef __KVM_HAVE_VCPU_EVENTS
CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
#else
CAP_ENTRY_MU(41),
#endif
CAP_ENTRY__L(KVM_CAP_S390_PSW),
CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
CAP_ENTRY__L(KVM_CAP_HYPERV),
CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
#ifdef __KVM_HAVE_DEBUGREGS
CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */
#endif
CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
CAP_ENTRY__L(KVM_CAP_PPC_OSI),
CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
#ifdef __KVM_HAVE_XSAVE
CAP_ENTRY_ML(KVM_CAP_XSAVE),
#else
CAP_ENTRY_MU(55),
#endif
#ifdef __KVM_HAVE_XCRS
CAP_ENTRY_ML(KVM_CAP_XCRS),
#else
CAP_ENTRY_MU(56),
#endif
CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */
CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
CAP_ENTRY__L(KVM_CAP_PPC_SMT),
CAP_ENTRY__L(KVM_CAP_PPC_RMA),
CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
CAP_ENTRY__L(KVM_CAP_SW_TLB),
CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */
CAP_ENTRY__L(KVM_CAP_S390_GMAP),
CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
CAP_ENTRY__L(KVM_CAP_PCI_2_3),
CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
CAP_ENTRY__L(KVM_CAP_S390_COW),
CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */
CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
CAP_ENTRY__L(KVM_CAP_PPC_EPR),
CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */
CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */
CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */
CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
CAP_ENTRY__L(KVM_CAP_X86_SMM),
CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */
CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
CAP_ENTRY__L(KVM_CAP_S390_RI),
CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
CAP_ENTRY__L(KVM_CAP_X2APIC_API),
CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */
CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
CAP_ENTRY__L(KVM_CAP_PPC_HTM),
CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
CAP_ENTRY__L(KVM_CAP_MIPS_TE),
CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */
CAP_ENTRY__L(KVM_CAP_S390_AIS),
CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ),
CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */
CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
CAP_ENTRY__L(KVM_CAP_S390_BPB),
CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */
CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */
CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */
CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
CAP_ENTRY__L(KVM_CAP_HALT_POLL),
CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
CAP_ENTRY__L(KVM_CAP_LAST_CPU),
CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */
CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */
CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
CAP_ENTRY__L(KVM_CAP_PTP_KVM),
CAP_ENTRY__U(199),
CAP_ENTRY__U(200),
CAP_ENTRY__U(201),
CAP_ENTRY__U(202),
CAP_ENTRY__U(203),
CAP_ENTRY__U(204),
CAP_ENTRY__U(205),
CAP_ENTRY__U(206),
CAP_ENTRY__U(207),
CAP_ENTRY__U(208),
CAP_ENTRY__U(209),
CAP_ENTRY__U(210),
CAP_ENTRY__U(211),
CAP_ENTRY__U(212),
CAP_ENTRY__U(213),
CAP_ENTRY__U(214),
CAP_ENTRY__U(215),
CAP_ENTRY__U(216),
};
LogRel(("NEM: KVM capabilities (system):\n"));
int rcRet = VINF_SUCCESS;
for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
{
int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
if (rc >= 10)
LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
else if (rc >= 0)
LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc));
else
LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
switch (s_aCaps[i].cbNem)
{
case 0:
break;
case 1:
{
uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
*puValue = (uint8_t)rc;
AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
break;
}
case 2:
{
uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
*puValue = (uint16_t)rc;
AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
break;
}
case 4:
{
uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
*puValue = (uint32_t)rc;
AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
break;
}
default:
rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
AssertFailedReturn(rcRet);
}
/*
* Is a require non-zero entry zero or failing?
*/
if (s_aCaps[i].fReqNonZero && rc <= 0)
rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
"Required capability '%s' is missing!", s_aCaps[i].pszName);
}
/*
* Get per VCpu KVM_RUN MMAP area size.
*/
int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
if ((unsigned)rc < _64M)
{
pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
}
else if (rc < 0)
rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
else
rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
/*
* Init the slot ID bitmap.
*/
ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */
if (pVM->nem.s.cMaxMemSlots < _32K)
ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */
return rcRet;
}
/**
* Does the early setup of a KVM VM.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pErrInfo Where to always return error info.
*/
static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
{
AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
/*
* Enable user space MSRs and let us check everything KVM cannot handle.
* We will set up filtering later when ring-3 init has completed.
*/
struct kvm_enable_cap CapEn =
{
KVM_CAP_X86_USER_SPACE_MSR, 0,
{ KVM_MSR_EXIT_REASON_FILTER | KVM_MSR_EXIT_REASON_UNKNOWN | KVM_MSR_EXIT_REASON_INVAL, 0, 0, 0}
};
int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_ENABLE_CAP, &CapEn);
if (rcLnx == -1)
return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed to enable KVM_CAP_X86_USER_SPACE_MSR failed: %u", errno);
/*
* Create the VCpus.
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
/* Create it. */
pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
if (pVCpu->nem.s.fdVCpu < 0)
return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
/* Map the KVM_RUN area. */
pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
pVCpu->nem.s.fdVCpu, 0 /*offset*/);
if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "mmap failed for VCpu #%u: %d", idCpu, errno);
/* We want all x86 registers and events on each exit. */
pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
}
return VINF_SUCCESS;
}
/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */
static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
{
RT_NOREF(pVM, pvUser);
int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
AssertLogRelRC(rc);
return VINF_SUCCESS;
}
/**
* Try initialize the native API.
*
* This may only do part of the job, more can be done in
* nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param fFallback Whether we're in fallback mode or use-NEM mode. In
* the latter we'll fail if we cannot initialize.
* @param fForced Whether the HMForced flag is set and we should
* fail if we cannot initialize.
*/
int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
{
RT_NOREF(pVM, fFallback, fForced);
/*
* Some state init.
*/
pVM->nem.s.fdKvm = -1;
pVM->nem.s.fdVm = -1;
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
pNemCpu->fdVCpu = -1;
}
/*
* Error state.
* The error message will be non-empty on failure and 'rc' will be set too.
*/
RTERRINFOSTATIC ErrInfo;
PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
/*
* Open kvm subsystem so we can issue system ioctls.
*/
int rc;
int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
if (fdKvm >= 0)
{
pVM->nem.s.fdKvm = fdKvm;
/*
* Create an empty VM since it is recommended we check capabilities on
* the VM rather than the system descriptor.
*/
int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
if (fdVm >= 0)
{
pVM->nem.s.fdVm = fdVm;
/*
* Check capabilities.
*/
rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
if (RT_SUCCESS(rc))
{
/*
* Set up the VM (more on this later).
*/
rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
if (RT_SUCCESS(rc))
{
/*
* Set ourselves as the execution engine and make config adjustments.
*/
VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
Log(("NEM: Marked active!\n"));
PGMR3EnableNemMode(pVM);
/*
* Register release statistics
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn1Loop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-01-loop", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn2Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-02-loops", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn3Loops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-03-loops", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatFlushExitOnReturn4PlusLoops, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times a KVM_EXIT_IO or KVM_EXIT_MMIO was flushed before returning to EM", "/NEM/CPU%u/FlushExitOnReturn-04-to-7-loops", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
}
/*
* Success.
*/
return VINF_SUCCESS;
}
/*
* Bail out.
*/
}
close(fdVm);
pVM->nem.s.fdVm = -1;
}
else
rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
close(fdKvm);
pVM->nem.s.fdKvm = -1;
}
else if (errno == EACCES)
rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
else if (errno == ENOENT)
rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
else
rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
/*
* We only fail if in forced mode, otherwise just log the complaint and return.
*/
Assert(RTErrInfoIsSet(pErrInfo));
if ( (fForced || !fFallback)
&& pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
return VINF_SUCCESS;
}
/**
* This is called after CPUMR3Init is done.
*
* @returns VBox status code.
* @param pVM The VM handle..
*/
int nemR3NativeInitAfterCPUM(PVM pVM)
{
/*
* Validate sanity.
*/
AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
/** @todo */
return VINF_SUCCESS;
}
/**
* Update the CPUID leaves for a VCPU.
*
* The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
* everything when there really just are single bit changes. That said, it
* looks like KVM update the XCR/XSAVE related stuff as well as the APIC enabled
* bit(s), so it should suffice if we do this at startup, I hope.
*/
static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
{
uint32_t cLeaves = 0;
PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
pReq->nent = cLeaves;
pReq->padding = 0;
for (uint32_t i = 0; i < cLeaves; i++)
{
CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf, -1 /*f64BitMode*/,
&pReq->entries[i].eax,
&pReq->entries[i].ebx,
&pReq->entries[i].ecx,
&pReq->entries[i].edx);
pReq->entries[i].function = paLeaves[i].uLeaf;
pReq->entries[i].index = paLeaves[i].uSubLeaf;
pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
pReq->entries[i].padding[0] = 0;
pReq->entries[i].padding[1] = 0;
pReq->entries[i].padding[2] = 0;
}
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
return VINF_SUCCESS;
}
int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
{
/*
* Make RTThreadPoke work again (disabled for avoiding unnecessary
* critical section issues in ring-0).
*/
if (enmWhat == VMINITCOMPLETED_RING3)
VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
/*
* Configure CPUIDs after ring-3 init has been done.
*/
if (enmWhat == VMINITCOMPLETED_RING3)
{
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
AssertRCReturn(rc, rc);
}
}
/*
* Configure MSRs after ring-3 init is done.
*
* We only need to tell KVM which MSRs it can handle, as we already
* requested KVM_MSR_EXIT_REASON_FILTER, KVM_MSR_EXIT_REASON_UNKNOWN
* and KVM_MSR_EXIT_REASON_INVAL in nemR3LnxInitSetupVm, and here we
* will use KVM_MSR_FILTER_DEFAULT_DENY. So, all MSRs w/o a 1 in the
* bitmaps should be deferred to ring-3.
*/
if (enmWhat == VMINITCOMPLETED_RING3)
{
struct kvm_msr_filter MsrFilters = {0}; /* Structure with a couple of implicit paddings on 64-bit systems. */
MsrFilters.flags = KVM_MSR_FILTER_DEFAULT_DENY;
unsigned iRange = 0;
#define MSR_RANGE_BEGIN(a_uBase, a_uEnd, a_fFlags) \
AssertCompile(0x3000 <= KVM_MSR_FILTER_MAX_BITMAP_SIZE * 8); \
uint64_t RT_CONCAT(bm, a_uBase)[0x3000 / 64] = {0}; \
do { \
uint64_t * const pbm = RT_CONCAT(bm, a_uBase); \
uint32_t const uBase = UINT32_C(a_uBase); \
uint32_t const cMsrs = UINT32_C(a_uEnd) - UINT32_C(a_uBase); \
MsrFilters.ranges[iRange].base = UINT32_C(a_uBase); \
MsrFilters.ranges[iRange].nmsrs = cMsrs; \
MsrFilters.ranges[iRange].flags = (a_fFlags); \
MsrFilters.ranges[iRange].bitmap = (uint8_t *)&RT_CONCAT(bm, a_uBase)[0]
#define MSR_RANGE_ADD(a_Msr) \
do { Assert((uint32_t)(a_Msr) - uBase < cMsrs); ASMBitSet(pbm, (uint32_t)(a_Msr) - uBase); } while (0)
#define MSR_RANGE_END(a_cMinMsrs) \
/* optimize the range size before closing: */ \
uint32_t cBitmap = cMsrs / 64; \
while (cBitmap > ((a_cMinMsrs) + 63 / 64) && pbm[cBitmap - 1] == 0) \
cBitmap -= 1; \
MsrFilters.ranges[iRange].nmsrs = cBitmap * 64; \
iRange++; \
} while (0)
/* 1st Intel range: 0000_0000 to 0000_3000. */
MSR_RANGE_BEGIN(0x00000000, 0x00003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
MSR_RANGE_ADD(MSR_IA32_TSC);
MSR_RANGE_ADD(MSR_IA32_SYSENTER_CS);
MSR_RANGE_ADD(MSR_IA32_SYSENTER_ESP);
MSR_RANGE_ADD(MSR_IA32_SYSENTER_EIP);
MSR_RANGE_ADD(MSR_IA32_CR_PAT);
/** @todo more? */
MSR_RANGE_END(64);
/* 1st AMD range: c000_0000 to c000_3000 */
MSR_RANGE_BEGIN(0xc0000000, 0xc0003000, KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE);
MSR_RANGE_ADD(MSR_K6_EFER);
MSR_RANGE_ADD(MSR_K6_STAR);
MSR_RANGE_ADD(MSR_K8_GS_BASE);
MSR_RANGE_ADD(MSR_K8_KERNEL_GS_BASE);
MSR_RANGE_ADD(MSR_K8_LSTAR);
MSR_RANGE_ADD(MSR_K8_CSTAR);
MSR_RANGE_ADD(MSR_K8_SF_MASK);
MSR_RANGE_ADD(MSR_K8_TSC_AUX);
/** @todo add more? */
MSR_RANGE_END(64);
/** @todo Specify other ranges too? Like hyper-V and KVM to make sure we get
* the MSR requests instead of KVM. */
int rcLnx = ioctl(pVM->nem.s.fdVm, KVM_X86_SET_MSR_FILTER, &MsrFilters);
if (rcLnx == -1)
return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
"Failed to enable KVM_X86_SET_MSR_FILTER failed: %u", errno);
}
return VINF_SUCCESS;
}
int nemR3NativeTerm(PVM pVM)
{
/*
* Per-cpu data
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
if (pVCpu->nem.s.fdVCpu != -1)
{
close(pVCpu->nem.s.fdVCpu);
pVCpu->nem.s.fdVCpu = -1;
}
if (pVCpu->nem.s.pRun)
{
munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
pVCpu->nem.s.pRun = NULL;
}
}
/*
* Global data.
*/
if (pVM->nem.s.fdVm != -1)
{
close(pVM->nem.s.fdVm);
pVM->nem.s.fdVm = -1;
}
if (pVM->nem.s.fdKvm != -1)
{
close(pVM->nem.s.fdKvm);
pVM->nem.s.fdKvm = -1;
}
return VINF_SUCCESS;
}
/**
* VM reset notification.
*
* @param pVM The cross context VM structure.
*/
void nemR3NativeReset(PVM pVM)
{
RT_NOREF(pVM);
}
/**
* Reset CPU due to INIT IPI or hot (un)plugging.
*
* @param pVCpu The cross context virtual CPU structure of the CPU being
* reset.
* @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
*/
void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
{
RT_NOREF(pVCpu, fInitIpi);
}
/*********************************************************************************************************************************
* Memory management *
*********************************************************************************************************************************/
/**
* Allocates a memory slot ID.
*
* @returns Slot ID on success, UINT16_MAX on failure.
*/
static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
{
/* Use the hint first. */
uint16_t idHint = pVM->nem.s.idPrevSlot;
if (idHint < _32K - 1)
{
int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
Assert(idx < _32K);
if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
return pVM->nem.s.idPrevSlot = (uint16_t)idx;
}
/*
* Search the whole map from the start.
*/
int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
Assert(idx < _32K);
if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
return pVM->nem.s.idPrevSlot = (uint16_t)idx;
Assert(idx < 0 /*shouldn't trigger unless there is a race */);
return UINT16_MAX; /* caller is expected to assert. */
}
/**
* Frees a memory slot ID
*/
static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
{
if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
{ /*likely*/ }
else
AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
uint8_t *pu2State, uint32_t *puNemRange)
{
uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
struct kvm_userspace_memory_region Region;
Region.slot = idSlot;
Region.flags = 0;
Region.guest_phys_addr = GCPhys;
Region.memory_size = cb;
Region.userspace_addr = (uintptr_t)pvR3;
int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
if (rc == 0)
{
*pu2State = 0;
*puNemRange = idSlot;
return VINF_SUCCESS;
}
LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
nemR3LnxMemSlotIdFree(pVM, idSlot);
return VERR_NEM_MAP_PAGES_FAILED;
}
VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
{
RT_NOREF(pVM);
return true;
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
{
Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
RT_NOREF(pvRam);
if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
{
/** @todo implement splitting and whatnot of ranges if we want to be 100%
* conforming (just modify RAM registrations in MM.cpp to test). */
AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
VERR_NEM_MAP_PAGES_FAILED);
}
/*
* Register MMIO2.
*/
if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
{
AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
struct kvm_userspace_memory_region Region;
Region.slot = idSlot;
Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
Region.guest_phys_addr = GCPhys;
Region.memory_size = cb;
Region.userspace_addr = (uintptr_t)pvMmio2;
int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
if (rc == 0)
{
*pu2State = 0;
*puNemRange = idSlot;
Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
GCPhys, cb, fFlags, pvMmio2, idSlot));
return VINF_SUCCESS;
}
nemR3LnxMemSlotIdFree(pVM, idSlot);
AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
VERR_NEM_MAP_PAGES_FAILED);
}
/* MMIO, don't care. */
*pu2State = 0;
*puNemRange = UINT32_MAX;
return VINF_SUCCESS;
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
void *pvRam, void *pvMmio2, uint32_t *puNemRange)
{
RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
return VINF_SUCCESS;
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
{
Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
{
/** @todo implement splitting and whatnot of ranges if we want to be 100%
* conforming (just modify RAM registrations in MM.cpp to test). */
AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
VERR_NEM_UNMAP_PAGES_FAILED);
}
if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
{
uint32_t const idSlot = *puNemRange;
AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
struct kvm_userspace_memory_region Region;
Region.slot = idSlot;
Region.flags = 0;
Region.guest_phys_addr = GCPhys;
Region.memory_size = 0; /* this deregisters it. */
Region.userspace_addr = (uintptr_t)pvMmio2;
int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
if (rc == 0)
{
if (pu2State)
*pu2State = 0;
*puNemRange = UINT32_MAX;
nemR3LnxMemSlotIdFree(pVM, idSlot);
return VINF_SUCCESS;
}
AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
VERR_NEM_UNMAP_PAGES_FAILED);
}
if (pu2State)
*pu2State = UINT8_MAX;
return VINF_SUCCESS;
}
VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
void *pvBitmap, size_t cbBitmap)
{
AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
RT_NOREF(GCPhys, cbBitmap);
struct kvm_dirty_log DirtyLog;
DirtyLog.slot = uNemRange;
DirtyLog.padding1 = 0;
DirtyLog.dirty_bitmap = pvBitmap;
int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
return VINF_SUCCESS;
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
uint8_t *pu2State, uint32_t *puNemRange)
{
Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
*pu2State = UINT8_MAX;
/* Don't support puttint ROM where there is already RAM. For
now just shuffle the registrations till it works... */
AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
VERR_NEM_MAP_PAGES_FAILED);
/** @todo figure out how to do shadow ROMs. */
/*
* We only allocate a slot number here in case we need to use it to
* fend of physical handler fun.
*/
uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
*pu2State = 0;
*puNemRange = idSlot;
Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
GCPhys, cb, fFlags, pvPages, idSlot));
RT_NOREF(GCPhys, cb, fFlags, pvPages);
return VINF_SUCCESS;
}
VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
{
Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
uint32_t const idSlot = *puNemRange;
AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
*pu2State = UINT8_MAX;
/*
* Do the actual setting of the user pages here now that we've
* got a valid pvPages (typically isn't available during the early
* notification, unless we're replacing RAM).
*/
struct kvm_userspace_memory_region Region;
Region.slot = idSlot;
Region.flags = 0;
Region.guest_phys_addr = GCPhys;
Region.memory_size = cb;
Region.userspace_addr = (uintptr_t)pvPages;
int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
if (rc == 0)
{
*pu2State = 0;
Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
GCPhys, cb, fFlags, pvPages, idSlot));
return VINF_SUCCESS;
}
AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
VERR_NEM_MAP_PAGES_FAILED);
}
VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
{
Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
RT_NOREF(pVCpu, fEnabled);
}
VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
RTR3PTR pvMemR3, uint8_t *pu2State)
{
Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
*pu2State = UINT8_MAX;
RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
}
void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
{
Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
RT_NOREF(pVM, enmKind, GCPhys, cb);
}
void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
{
Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
}
int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
PGMPAGETYPE enmType, uint8_t *pu2State)
{
Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
GCPhys, HCPhys, fPageProt, enmType, *pu2State));
RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
return VINF_SUCCESS;
}
VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
PGMPAGETYPE enmType, uint8_t *pu2State)
{
Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
GCPhys, HCPhys, fPageProt, enmType, *pu2State));
Assert(VM_IS_NEM_ENABLED(pVM));
RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
}
VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
{
Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
Assert(VM_IS_NEM_ENABLED(pVM));
RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
}
/*********************************************************************************************************************************
* CPU State *
*********************************************************************************************************************************/
/**
* Worker that imports selected state from KVM.
*/
static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
{
fWhat &= pVCpu->cpum.GstCtx.fExtrn;
if (!fWhat)
return VINF_SUCCESS;
/*
* Stuff that goes into kvm_run::s.regs.regs:
*/
if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
{
if (fWhat & CPUMCTX_EXTRN_RIP)
pCtx->rip = pRun->s.regs.regs.rip;
if (fWhat & CPUMCTX_EXTRN_RFLAGS)
pCtx->rflags.u = pRun->s.regs.regs.rflags;
if (fWhat & CPUMCTX_EXTRN_RAX)
pCtx->rax = pRun->s.regs.regs.rax;
if (fWhat & CPUMCTX_EXTRN_RCX)
pCtx->rcx = pRun->s.regs.regs.rcx;
if (fWhat & CPUMCTX_EXTRN_RDX)
pCtx->rdx = pRun->s.regs.regs.rdx;
if (fWhat & CPUMCTX_EXTRN_RBX)
pCtx->rbx = pRun->s.regs.regs.rbx;
if (fWhat & CPUMCTX_EXTRN_RSP)
pCtx->rsp = pRun->s.regs.regs.rsp;
if (fWhat & CPUMCTX_EXTRN_RBP)
pCtx->rbp = pRun->s.regs.regs.rbp;
if (fWhat & CPUMCTX_EXTRN_RSI)
pCtx->rsi = pRun->s.regs.regs.rsi;
if (fWhat & CPUMCTX_EXTRN_RDI)
pCtx->rdi = pRun->s.regs.regs.rdi;
if (fWhat & CPUMCTX_EXTRN_R8_R15)
{
pCtx->r8 = pRun->s.regs.regs.r8;
pCtx->r9 = pRun->s.regs.regs.r9;
pCtx->r10 = pRun->s.regs.regs.r10;
pCtx->r11 = pRun->s.regs.regs.r11;
pCtx->r12 = pRun->s.regs.regs.r12;
pCtx->r13 = pRun->s.regs.regs.r13;
pCtx->r14 = pRun->s.regs.regs.r14;
pCtx->r15 = pRun->s.regs.regs.r15;
}
}
/*
* Stuff that goes into kvm_run::s.regs.sregs.
*
* Note! The apic_base can be ignored because we gets all MSR writes to it
* and VBox always keeps the correct value.
*/
bool fMaybeChangedMode = false;
bool fUpdateCr3 = false;
if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
| CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
{
/** @todo what about Attr.n.u4LimitHigh? */
#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
(a_CtxSeg).u64Base = (a_KvmSeg).base; \
(a_CtxSeg).u32Limit = (a_KvmSeg).limit; \
(a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
(a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \
(a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \
(a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \
(a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \
(a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \
(a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \
(a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \
(a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
(a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \
(a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \
CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
} while (0)
if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
{
if (fWhat & CPUMCTX_EXTRN_ES)
NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
if (fWhat & CPUMCTX_EXTRN_CS)
NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
if (fWhat & CPUMCTX_EXTRN_SS)
NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
if (fWhat & CPUMCTX_EXTRN_DS)
NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
if (fWhat & CPUMCTX_EXTRN_FS)
NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
if (fWhat & CPUMCTX_EXTRN_GS)
NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
}
if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
{
if (fWhat & CPUMCTX_EXTRN_GDTR)
{
pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base;
pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit;
}
if (fWhat & CPUMCTX_EXTRN_IDTR)
{
pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base;
pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit;
}
if (fWhat & CPUMCTX_EXTRN_LDTR)
NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
if (fWhat & CPUMCTX_EXTRN_TR)
NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
}
if (fWhat & CPUMCTX_EXTRN_CR_MASK)
{
if (fWhat & CPUMCTX_EXTRN_CR0)
{
if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
{
CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
fMaybeChangedMode = true;
}
}
if (fWhat & CPUMCTX_EXTRN_CR2)
pCtx->cr2 = pRun->s.regs.sregs.cr2;
if (fWhat & CPUMCTX_EXTRN_CR3)
{
if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
{
CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
fUpdateCr3 = true;
}
}
if (fWhat & CPUMCTX_EXTRN_CR4)
{
if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
{
CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
fMaybeChangedMode = true;
}
}
}
if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
if (fWhat & CPUMCTX_EXTRN_EFER)
{
if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
{
Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
pCtx->msrEFER = pRun->s.regs.sregs.efer;
fMaybeChangedMode = true;
}
}
#undef NEM_LNX_IMPORT_SEG
}
/*
* Debug registers.
*/
if (fWhat & CPUMCTX_EXTRN_DR_MASK)
{
struct kvm_debugregs DbgRegs = {{0}};
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
{
pCtx->dr[0] = DbgRegs.db[0];
pCtx->dr[1] = DbgRegs.db[1];
pCtx->dr[2] = DbgRegs.db[2];
pCtx->dr[3] = DbgRegs.db[3];
}
if (fWhat & CPUMCTX_EXTRN_DR6)
pCtx->dr[6] = DbgRegs.dr6;
if (fWhat & CPUMCTX_EXTRN_DR7)
pCtx->dr[7] = DbgRegs.dr7;
}
/*
* FPU, SSE, AVX, ++.
*/
if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
{
if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
{
fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
}
if (fWhat & CPUMCTX_EXTRN_XCRx)
{
struct kvm_xcrs Xcrs =
{ /*.nr_xcrs = */ 2,
/*.flags = */ 0,
/*.xcrs= */ {
{ /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
{ /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
}
};
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
pCtx->aXcr[0] = Xcrs.xcrs[0].value;
pCtx->aXcr[1] = Xcrs.xcrs[1].value;
}
}
/*
* MSRs.
*/
if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
| CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
{
union
{
struct kvm_msrs Core;
uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
} uBuf;
uint64_t *pauDsts[32];
uint32_t iMsr = 0;
PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
#define ADD_MSR(a_Msr, a_uValue) do { \
Assert(iMsr < 32); \
uBuf.Core.entries[iMsr].index = (a_Msr); \
uBuf.Core.entries[iMsr].reserved = 0; \
uBuf.Core.entries[iMsr].data = UINT64_MAX; \
pauDsts[iMsr] = &(a_uValue); \
iMsr += 1; \
} while (0)
if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
{
ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
}
if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
{
ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
}
if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
{
ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
/** @todo What do we _have_ to add here?
* We also have: Mttr*, MiscEnable, FeatureControl. */
}
uBuf.Core.pad = 0;
uBuf.Core.nmsrs = iMsr;
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
AssertMsgReturn(rc == (int)iMsr,
("rc=%d iMsr=%d (->%#x) errno=%d\n",
rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
VERR_NEM_IPE_3);
while (iMsr-- > 0)
*pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
#undef ADD_MSR
}
/*
* Interruptibility state and pending interrupts.
*/
if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
{
fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
struct kvm_vcpu_events KvmEvents = {0};
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_STI),
pVCpu->cpum.GstCtx.rip);
CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
if (KvmEvents.interrupt.injected)
{
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
}
Assert(KvmEvents.nmi.injected == 0);
Assert(KvmEvents.nmi.pending == 0);
}
/*
* Update the external mask.
*/
pCtx->fExtrn &= ~fWhat;
pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
pVCpu->cpum.GstCtx.fExtrn = 0;
/*
* We sometimes need to update PGM on the guest status.
*/
if (!fMaybeChangedMode && !fUpdateCr3)
{ /* likely */ }
else
{
/*
* Make sure we got all the state PGM might need.
*/
Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
{
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
{
if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
{
CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
fMaybeChangedMode = true;
}
}
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
{
if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
{
CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
fUpdateCr3 = true;
}
}
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
{
if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
{
CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
fMaybeChangedMode = true;
}
}
if (fWhat & CPUMCTX_EXTRN_EFER)
{
if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
{
Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
pCtx->msrEFER = pRun->s.regs.sregs.efer;
fMaybeChangedMode = true;
}
}
pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
pVCpu->cpum.GstCtx.fExtrn = 0;
}
/*
* Notify PGM about the changes.
*/
if (fMaybeChangedMode)
{
int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4,
pVCpu->cpum.GstCtx.msrEFER, false /*fForce*/);
AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
}
if (fUpdateCr3)
{
int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
if (rc == VINF_SUCCESS)
{ /* likely */ }
else
AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
}
}
return VINF_SUCCESS;
}
/**
* Interface for importing state on demand (used by IEM).
*
* @returns VBox status code.
* @param pVCpu The cross context CPU structure.
* @param fWhat What to import, CPUMCTX_EXTRN_XXX.
*/
VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
{
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
}
/**
* Exports state to KVM.
*/
static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
{
uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
/*
* Stuff that goes into kvm_run::s.regs.regs:
*/
if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
{
if (fExtrn & CPUMCTX_EXTRN_RIP)
pRun->s.regs.regs.rip = pCtx->rip;
if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
pRun->s.regs.regs.rflags = pCtx->rflags.u;
if (fExtrn & CPUMCTX_EXTRN_RAX)
pRun->s.regs.regs.rax = pCtx->rax;
if (fExtrn & CPUMCTX_EXTRN_RCX)
pRun->s.regs.regs.rcx = pCtx->rcx;
if (fExtrn & CPUMCTX_EXTRN_RDX)
pRun->s.regs.regs.rdx = pCtx->rdx;
if (fExtrn & CPUMCTX_EXTRN_RBX)
pRun->s.regs.regs.rbx = pCtx->rbx;
if (fExtrn & CPUMCTX_EXTRN_RSP)
pRun->s.regs.regs.rsp = pCtx->rsp;
if (fExtrn & CPUMCTX_EXTRN_RBP)
pRun->s.regs.regs.rbp = pCtx->rbp;
if (fExtrn & CPUMCTX_EXTRN_RSI)
pRun->s.regs.regs.rsi = pCtx->rsi;
if (fExtrn & CPUMCTX_EXTRN_RDI)
pRun->s.regs.regs.rdi = pCtx->rdi;
if (fExtrn & CPUMCTX_EXTRN_R8_R15)
{
pRun->s.regs.regs.r8 = pCtx->r8;
pRun->s.regs.regs.r9 = pCtx->r9;
pRun->s.regs.regs.r10 = pCtx->r10;
pRun->s.regs.regs.r11 = pCtx->r11;
pRun->s.regs.regs.r12 = pCtx->r12;
pRun->s.regs.regs.r13 = pCtx->r13;
pRun->s.regs.regs.r14 = pCtx->r14;
pRun->s.regs.regs.r15 = pCtx->r15;
}
pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
}
/*
* Stuff that goes into kvm_run::s.regs.sregs:
*
* The APIC base register updating is a little suboptimal... But at least
* VBox always has the right base register value, so it's one directional.
*/
uint64_t const uApicBase = APICGetBaseMsrNoCheck(pVCpu);
if ( (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
| CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
|| uApicBase != pVCpu->nem.s.uKvmApicBase)
{
if ((pVCpu->nem.s.uKvmApicBase ^ uApicBase) & MSR_IA32_APICBASE_EN)
Log(("NEM/%u: APICBASE_EN changed %#010RX64 -> %#010RX64\n", pVCpu->idCpu, pVCpu->nem.s.uKvmApicBase, uApicBase));
pRun->s.regs.sregs.apic_base = uApicBase;
pVCpu->nem.s.uKvmApicBase = uApicBase;
if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu);
#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
(a_KvmSeg).base = (a_CtxSeg).u64Base; \
(a_KvmSeg).limit = (a_CtxSeg).u32Limit; \
(a_KvmSeg).selector = (a_CtxSeg).Sel; \
(a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \
(a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \
(a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \
(a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \
(a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \
(a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \
(a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \
(a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \
(a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
(a_KvmSeg).padding = 0; \
} while (0)
if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
{
if (fExtrn & CPUMCTX_EXTRN_ES)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
if (fExtrn & CPUMCTX_EXTRN_CS)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
if (fExtrn & CPUMCTX_EXTRN_SS)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
if (fExtrn & CPUMCTX_EXTRN_DS)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
if (fExtrn & CPUMCTX_EXTRN_FS)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
if (fExtrn & CPUMCTX_EXTRN_GS)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
}
if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
{
if (fExtrn & CPUMCTX_EXTRN_GDTR)
{
pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt;
pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
pRun->s.regs.sregs.gdt.padding[0] = 0;
pRun->s.regs.sregs.gdt.padding[1] = 0;
pRun->s.regs.sregs.gdt.padding[2] = 0;
}
if (fExtrn & CPUMCTX_EXTRN_IDTR)
{
pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt;
pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
pRun->s.regs.sregs.idt.padding[0] = 0;
pRun->s.regs.sregs.idt.padding[1] = 0;
pRun->s.regs.sregs.idt.padding[2] = 0;
}
if (fExtrn & CPUMCTX_EXTRN_LDTR)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
if (fExtrn & CPUMCTX_EXTRN_TR)
NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
}
if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
{
if (fExtrn & CPUMCTX_EXTRN_CR0)
pRun->s.regs.sregs.cr0 = pCtx->cr0;
if (fExtrn & CPUMCTX_EXTRN_CR2)
pRun->s.regs.sregs.cr2 = pCtx->cr2;
if (fExtrn & CPUMCTX_EXTRN_CR3)
pRun->s.regs.sregs.cr3 = pCtx->cr3;
if (fExtrn & CPUMCTX_EXTRN_CR4)
pRun->s.regs.sregs.cr4 = pCtx->cr4;
}
if (fExtrn & CPUMCTX_EXTRN_EFER)
pRun->s.regs.sregs.efer = pCtx->msrEFER;
RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
}
/*
* Debug registers.
*/
if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
{
struct kvm_debugregs DbgRegs = {{0}};
if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
{
/* Partial debug state, we must get DbgRegs first so we can merge: */
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
}
if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
{
DbgRegs.db[0] = pCtx->dr[0];
DbgRegs.db[1] = pCtx->dr[1];
DbgRegs.db[2] = pCtx->dr[2];
DbgRegs.db[3] = pCtx->dr[3];
}
if (fExtrn & CPUMCTX_EXTRN_DR6)
DbgRegs.dr6 = pCtx->dr[6];
if (fExtrn & CPUMCTX_EXTRN_DR7)
DbgRegs.dr7 = pCtx->dr[7];
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
}
/*
* FPU, SSE, AVX, ++.
*/
if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
{
if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
{
/** @todo could IEM just grab state partial control in some situations? */
Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
== (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
}
if (fExtrn & CPUMCTX_EXTRN_XCRx)
{
struct kvm_xcrs Xcrs =
{ /*.nr_xcrs = */ 2,
/*.flags = */ 0,
/*.xcrs= */ {
{ /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
{ /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
}
};
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
}
}
/*
* MSRs.
*/
if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
| CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
{
union
{
struct kvm_msrs Core;
uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
} uBuf;
uint32_t iMsr = 0;
PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
#define ADD_MSR(a_Msr, a_uValue) do { \
Assert(iMsr < 32); \
uBuf.Core.entries[iMsr].index = (a_Msr); \
uBuf.Core.entries[iMsr].reserved = 0; \
uBuf.Core.entries[iMsr].data = (a_uValue); \
iMsr += 1; \
} while (0)
if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
{
ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
}
if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
{
ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
}
if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
{
ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
/** @todo What do we _have_ to add here?
* We also have: Mttr*, MiscEnable, FeatureControl. */
}
uBuf.Core.pad = 0;
uBuf.Core.nmsrs = iMsr;
int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
AssertMsgReturn(rc == (int)iMsr,
("rc=%d iMsr=%d (->%#x) errno=%d\n",
rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
VERR_NEM_IPE_3);
}
/*
* Interruptibility state.
*
* Note! This I/O control function sets most fields passed in, so when
* raising an interrupt, NMI, SMI or exception, this must be done
* by the code doing the rasing or we'll overwrite it here.
*/
if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
{
Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
== (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
struct kvm_vcpu_events KvmEvents = {0};
KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
{ /* probably likely */ }
else
KvmEvents.interrupt.shadow = (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0)
| (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0);
/* No flag - this is updated unconditionally. */
KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
if (TRPMHasTrap(pVCpu))
{
TRPMEVENT enmType = TRPM_32BIT_HACK;
uint8_t bTrapNo = 0;
TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
if ( enmType == TRPM_HARDWARE_INT
|| enmType == TRPM_SOFTWARE_INT)
{
KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT;
KvmEvents.interrupt.nr = bTrapNo;
KvmEvents.interrupt.injected = 1;
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
TRPMResetTrap(pVCpu);
}
else
AssertFailed();
}
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
}
/*
* KVM now owns all the state.
*/
pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
RT_NOREF(pVM);
return VINF_SUCCESS;
}
/**
* Query the CPU tick counter and optionally the TSC_AUX MSR value.
*
* @returns VBox status code.
* @param pVCpu The cross context CPU structure.
* @param pcTicks Where to return the CPU tick count.
* @param puAux Where to return the TSC_AUX register value.
*/
VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
{
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
// KVM_GET_CLOCK?
RT_NOREF(pVCpu, pcTicks, puAux);
return VINF_SUCCESS;
}
/**
* Resumes CPU clock (TSC) on all virtual CPUs.
*
* This is called by TM when the VM is started, restored, resumed or similar.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param pVCpu The cross context CPU structure of the calling EMT.
* @param uPausedTscValue The TSC value at the time of pausing.
*/
VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
{
// KVM_SET_CLOCK?
RT_NOREF(pVM, pVCpu, uPausedTscValue);
return VINF_SUCCESS;
}
VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
{
RT_NOREF(pVM);
return NEM_FEAT_F_NESTED_PAGING
| NEM_FEAT_F_FULL_GST_EXEC
| NEM_FEAT_F_XSAVE_XRSTOR;
}
/*********************************************************************************************************************************
* Execution *
*********************************************************************************************************************************/
VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
{
/*
* Only execute when the A20 gate is enabled as I cannot immediately
* spot any A20 support in KVM.
*/
RT_NOREF(pVM);
Assert(VM_IS_NEM_ENABLED(pVM));
return PGMPhysIsA20Enabled(pVCpu);
}
bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
{
NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
return false;
}
void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
{
int rc = RTThreadPoke(pVCpu->hThread);
LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
AssertRC(rc);
RT_NOREF(pVM, fFlags);
}
DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
{
RT_NOREF(pVM, fUseDebugLoop);
return false;
}
DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
{
RT_NOREF(pVM, pVCpu, fUseDebugLoop);
return false;
}
/**
* Deals with pending interrupt FFs prior to executing guest code.
*/
static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
{
RT_NOREF_PV(pVM);
/*
* Do not doing anything if TRPM has something pending already as we can
* only inject one event per KVM_RUN call. This can only happend if we
* can directly from the loop in EM, so the inhibit bits must be internal.
*/
if (!TRPMHasTrap(pVCpu))
{ /* semi likely */ }
else
{
Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
return VINF_SUCCESS;
}
/*
* First update APIC. We ASSUME this won't need TPR/CR8.
*/
if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
{
APICUpdatePendingInterrupts(pVCpu);
if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
| VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
return VINF_SUCCESS;
}
/*
* We don't currently implement SMIs.
*/
AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
/*
* In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
* are tied together with interrupt and NMI delivery, so we must get and
* synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
* If we don't we may lose the interrupt/NMI we marked pending here when the
* state is exported again before execution.
*/
struct kvm_vcpu_events KvmEvents = {0};
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
KvmEvents.interrupt.shadow = !CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx) ? 0
: (CPUMIsInInterruptShadowAfterSs() ? KVM_X86_SHADOW_INT_MOV_SS : 0)
| (CPUMIsInInterruptShadowAfterSti() ? KVM_X86_SHADOW_INT_STI : 0);
else
CPUMUpdateInterruptShadowSsStiEx(&pVCpu->cpum.GstCtx,
RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_SS),
RT_BOOL(KvmEvents.interrupt.shadow & KVM_X86_SHADOW_INT_MOV_STI),
pRun->s.regs.regs.rip);
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
KvmEvents.nmi.masked = CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx);
else
CPUMUpdateInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx, KvmEvents.nmi.masked != 0);
/* KVM will own the INT + NMI inhibit state soon: */
pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
| CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
/*
* NMI? Try deliver it first.
*/
if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
{
#if 0
int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
#else
KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
KvmEvents.nmi.pending = 1;
#endif
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
}
/*
* APIC or PIC interrupt?
*/
if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
{
if (pRun->s.regs.regs.rflags & X86_EFL_IF)
{
if (KvmEvents.interrupt.shadow == 0)
{
/*
* If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
* work correctly.
*/
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
uint8_t bInterrupt;
int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
if (RT_SUCCESS(rc))
{
Assert(KvmEvents.interrupt.injected == false);
#if 0
int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
#else
KvmEvents.interrupt.nr = bInterrupt;
KvmEvents.interrupt.soft = false;
KvmEvents.interrupt.injected = true;
#endif
Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags.u));
}
else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
else
Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
}
else
{
pRun->request_interrupt_window = 1;
Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
}
}
else
{
pRun->request_interrupt_window = 1;
Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
}
}
/*
* Now, update the state.
*/
/** @todo skip when possible... */
rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
return VINF_SUCCESS;
}
/**
* Handles KVM_EXIT_INTERNAL_ERROR.
*/
static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
{
Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
/*
* Deal with each suberror, returning if we don't want IEM to handle it.
*/
switch (pRun->internal.suberror)
{
case KVM_INTERNAL_ERROR_EMULATION:
{
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_EMULATION),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
break;
}
case KVM_INTERNAL_ERROR_SIMUL_EX:
case KVM_INTERNAL_ERROR_DELIVERY_EV:
case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
default:
{
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERNAL_ERROR_FATAL),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
const char *pszName;
switch (pRun->internal.suberror)
{
case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
default: pszName = "unknown"; break;
}
LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
return VERR_NEM_IPE_0;
}
}
/*
* Execute instruction in IEM and try get on with it.
*/
Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
| CPUMCTX_EXTRN_INHIBIT_NMI,
&pVCpu->cpum.GstCtx, pRun);
if (RT_SUCCESS(rcStrict))
rcStrict = IEMExecOne(pVCpu);
return rcStrict;
}
/**
* Handles KVM_EXIT_IO.
*/
static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
{
/*
* Input validation.
*/
Assert(pRun->io.count > 0);
Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
/*
* We cannot easily act on the exit history here, because the I/O port
* exit is stateful and the instruction will be completed in the next
* KVM_RUN call. There seems no way to avoid this.
*/
EMHistoryAddExit(pVCpu,
pRun->io.count == 1
? ( pRun->io.direction == KVM_EXIT_IO_IN
? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
: EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
: ( pRun->io.direction == KVM_EXIT_IO_IN
? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
: EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
/*
* Do the requested job.
*/
VBOXSTRICTRC rcStrict;
RTPTRUNION uPtrData;
uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
if (pRun->io.count == 1)
{
if (pRun->io.direction == KVM_EXIT_IO_IN)
{
uint32_t uValue = 0;
rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
if (IOM_SUCCESS(rcStrict))
{
if (pRun->io.size == 4)
*uPtrData.pu32 = uValue;
else if (pRun->io.size == 2)
*uPtrData.pu16 = (uint16_t)uValue;
else
*uPtrData.pu8 = (uint8_t)uValue;
}
}
else
{
uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
: pRun->io.size == 2 ? *uPtrData.pu16
: *uPtrData.pu8;
rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
}
}
else
{
uint32_t cTransfers = pRun->io.count;
if (pRun->io.direction == KVM_EXIT_IO_IN)
{
rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
}
else
{
rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
}
Assert(cTransfers == 0);
}
return rcStrict;
}
/**
* Handles KVM_EXIT_MMIO.
*/
static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
{
/*
* Input validation.
*/
Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
Assert(pRun->mmio.is_write <= 1);
/*
* We cannot easily act on the exit history here, because the MMIO port
* exit is stateful and the instruction will be completed in the next
* KVM_RUN call. There seems no way to circumvent this.
*/
EMHistoryAddExit(pVCpu,
pRun->mmio.is_write
? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
: EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
/*
* Do the requested job.
*/
VBOXSTRICTRC rcStrict;
if (pRun->mmio.is_write)
{
rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
}
else
{
rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
}
return rcStrict;
}
/**
* Handles KVM_EXIT_RDMSR
*/
static VBOXSTRICTRC nemHCLnxHandleExitRdMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
{
/*
* Input validation.
*/
Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
|| pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
|| pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
/*
* We cannot easily act on the exit history here, because the MSR exit is
* stateful and the instruction will be completed in the next KVM_RUN call.
* There seems no way to circumvent this.
*/
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_READ),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
/*
* Do the requested job.
*/
uint64_t uValue = 0;
VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pRun->msr.index, &uValue);
pRun->msr.data = uValue;
if (rcStrict != VERR_CPUM_RAISE_GP_0)
{
Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason=%#x) -> %#RX64 rcStrict=%Rrc\n", pVCpu->idCpu,
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
pRun->msr.error = 0;
}
else
{
Log3(("MsrRead/%u: %04x:%08RX64: msr=%#010x (reason%#x)-> %#RX64 rcStrict=#GP!\n", pVCpu->idCpu,
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.reason, uValue));
pRun->msr.error = 1;
rcStrict = VINF_SUCCESS;
}
return rcStrict;
}
/**
* Handles KVM_EXIT_WRMSR
*/
static VBOXSTRICTRC nemHCLnxHandleExitWrMsr(PVMCPUCC pVCpu, struct kvm_run *pRun)
{
/*
* Input validation.
*/
Assert( pRun->msr.reason == KVM_MSR_EXIT_REASON_INVAL
|| pRun->msr.reason == KVM_MSR_EXIT_REASON_UNKNOWN
|| pRun->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
/*
* We cannot easily act on the exit history here, because the MSR exit is
* stateful and the instruction will be completed in the next KVM_RUN call.
* There seems no way to circumvent this.
*/
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MSR_WRITE),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
/*
* Do the requested job.
*/
VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pRun->msr.index, pRun->msr.data);
if (rcStrict != VERR_CPUM_RAISE_GP_0)
{
Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason=%#x) -> rcStrict=%Rrc\n", pVCpu->idCpu,
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason, VBOXSTRICTRC_VAL(rcStrict) ));
pRun->msr.error = 0;
}
else
{
Log3(("MsrWrite/%u: %04x:%08RX64: msr=%#010x := %#RX64 (reason%#x)-> rcStrict=#GP!\n", pVCpu->idCpu,
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->msr.index, pRun->msr.data, pRun->msr.reason));
pRun->msr.error = 1;
rcStrict = VINF_SUCCESS;
}
return rcStrict;
}
static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun, bool *pfStatefulExit)
{
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
switch (pRun->exit_reason)
{
case KVM_EXIT_EXCEPTION:
AssertFailed();
break;
case KVM_EXIT_IO:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
*pfStatefulExit = true;
return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
case KVM_EXIT_MMIO:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
*pfStatefulExit = true;
return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
case KVM_EXIT_IRQ_WINDOW_OPEN:
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTTERRUPT_WINDOW),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
pRun->request_interrupt_window = 0;
return VINF_SUCCESS;
case KVM_EXIT_SET_TPR:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
AssertFailed();
break;
case KVM_EXIT_TPR_ACCESS:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
AssertFailed();
break;
case KVM_EXIT_X86_RDMSR:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
*pfStatefulExit = true;
return nemHCLnxHandleExitRdMsr(pVCpu, pRun);
case KVM_EXIT_X86_WRMSR:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
*pfStatefulExit = true;
return nemHCLnxHandleExitWrMsr(pVCpu, pRun);
case KVM_EXIT_HLT:
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_HALT),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
Log5(("Halt/%u\n", pVCpu->idCpu));
return VINF_EM_HALT;
case KVM_EXIT_INTR: /* EINTR */
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_INTERRUPTED),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
Log5(("Intr/%u\n", pVCpu->idCpu));
return VINF_SUCCESS;
case KVM_EXIT_HYPERCALL:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
AssertFailed();
break;
case KVM_EXIT_DEBUG:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
AssertFailed();
break;
case KVM_EXIT_SYSTEM_EVENT:
AssertFailed();
break;
case KVM_EXIT_IOAPIC_EOI:
AssertFailed();
break;
case KVM_EXIT_HYPERV:
AssertFailed();
break;
case KVM_EXIT_DIRTY_RING_FULL:
AssertFailed();
break;
case KVM_EXIT_AP_RESET_HOLD:
AssertFailed();
break;
case KVM_EXIT_X86_BUS_LOCK:
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
AssertFailed();
break;
case KVM_EXIT_SHUTDOWN:
AssertFailed();
break;
case KVM_EXIT_FAIL_ENTRY:
LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_FAILED_ENTRY),
pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
return VERR_NEM_IPE_1;
case KVM_EXIT_INTERNAL_ERROR:
/* we're counting sub-reasons inside the function. */
return nemR3LnxHandleInternalError(pVCpu, pRun);
/*
* Foreign and unknowns.
*/
case KVM_EXIT_NMI:
AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_EPR:
AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_WATCHDOG:
AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_ARM_NISV:
AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_S390_STSI:
AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_S390_TSCH:
AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_OSI:
AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_PAPR_HCALL:
AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_S390_UCONTROL:
AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_DCR:
AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_S390_SIEIC:
AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_S390_RESET:
AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_UNKNOWN:
AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
case KVM_EXIT_XEN:
AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
default:
AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
}
RT_NOREF(pVM, pVCpu, pRun);
return VERR_NOT_IMPLEMENTED;
}
VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
{
/*
* Try switch to NEM runloop state.
*/
if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
{ /* likely */ }
else
{
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
return VINF_SUCCESS;
}
/*
* The run loop.
*/
struct kvm_run * const pRun = pVCpu->nem.s.pRun;
const bool fSingleStepping = DBGFIsStepping(pVCpu);
VBOXSTRICTRC rcStrict = VINF_SUCCESS;
bool fStatefulExit = false; /* For MMIO and IO exits. */
for (unsigned iLoop = 0;; iLoop++)
{
/*
* Pending interrupts or such? Need to check and deal with this prior
* to the state syncing.
*/
if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
| VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
{
/* Try inject interrupt. */
rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
if (rcStrict == VINF_SUCCESS)
{ /* likely */ }
else
{
LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
break;
}
}
/*
* Do not execute in KVM if the A20 isn't enabled.
*/
if (PGMPhysIsA20Enabled(pVCpu))
{ /* likely */ }
else
{
rcStrict = VINF_EM_RESCHEDULE_REM;
LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
break;
}
/*
* Ensure KVM has the whole state.
*/
if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
{
int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
AssertRCReturn(rc2, rc2);
}
/*
* Poll timers and run for a bit.
*
* With the VID approach (ring-0 or ring-3) we can specify a timeout here,
* so we take the time of the next timer event and uses that as a deadline.
* The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
*/
/** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
* the whole polling job when timers have changed... */
uint64_t offDeltaIgnored;
uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
&& !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
{
if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
{
LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
!!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
TMNotifyStartOfExecution(pVM, pVCpu);
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
#ifdef LOG_ENABLED
if (LogIsFlowEnabled())
{
struct kvm_mp_state MpState = {UINT32_MAX};
ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
}
#endif
fStatefulExit = false;
if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
{
/*
* Deal with the exit.
*/
rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
if (rcStrict == VINF_SUCCESS)
{ /* hopefully likely */ }
else
{
LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
break;
}
}
else
{
int rc2 = RTErrConvertFromErrno(errno);
AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
}
/*
* If no relevant FFs are pending, loop.
*/
if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
&& !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
{ /* likely */ }
else
{
/** @todo Try handle pending flags, not just return to EM loops. Take care
* not to set important RCs here unless we've handled an exit. */
LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
break;
}
}
else
{
LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
break;
}
}
else
{
LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
break;
}
} /* the run loop */
/*
* If the last exit was stateful, commit the state we provided before
* returning to the EM loop so we have a consistent state and can safely
* be rescheduled and whatnot. This may require us to make multiple runs
* for larger MMIO and I/O operations. Sigh^3.
*
* Note! There is no 'ing way to reset the kernel side completion callback
* for these stateful i/o exits. Very annoying interface.
*/
/** @todo check how this works with string I/O and string MMIO. */
if (fStatefulExit && RT_SUCCESS(rcStrict))
{
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn);
uint32_t const uOrgExit = pRun->exit_reason;
for (uint32_t i = 0; ; i++)
{
pRun->immediate_exit = 1;
int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
Log(("NEM/%u: Flushed stateful exit -> %d/%d exit_reason=%d\n", pVCpu->idCpu, rcLnx, errno, pRun->exit_reason));
if (rcLnx == -1 && errno == EINTR)
{
switch (i)
{
case 0: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn1Loop); break;
case 1: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn2Loops); break;
case 2: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn3Loops); break;
default: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatFlushExitOnReturn4PlusLoops); break;
}
break;
}
AssertLogRelMsgBreakStmt(rcLnx == 0 && pRun->exit_reason == uOrgExit,
("rcLnx=%d errno=%d exit_reason=%d uOrgExit=%d\n", rcLnx, errno, pRun->exit_reason, uOrgExit),
rcStrict = VERR_NEM_IPE_6);
VBOXSTRICTRC rcStrict2 = nemHCLnxHandleExit(pVM, pVCpu, pRun, &fStatefulExit);
if (rcStrict2 == VINF_SUCCESS || rcStrict2 == rcStrict)
{ /* likely */ }
else if (RT_FAILURE(rcStrict2))
{
rcStrict = rcStrict2;
break;
}
else
{
AssertLogRelMsgBreakStmt(rcStrict == VINF_SUCCESS,
("rcStrict=%Rrc rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict), VBOXSTRICTRC_VAL(rcStrict2)),
rcStrict = VERR_NEM_IPE_7);
rcStrict = rcStrict2;
}
}
pRun->immediate_exit = 0;
}
/*
* If the CPU is running, make sure to stop it before we try sync back the
* state and return to EM. We don't sync back the whole state if we can help it.
*/
if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
{
/* Try anticipate what we might need. */
uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
| IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
|| RT_FAILURE(rcStrict))
fImport = CPUMCTX_EXTRN_ALL;
# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|| rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
# endif
else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
| VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
if (pVCpu->cpum.GstCtx.fExtrn & fImport)
{
int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
if (RT_SUCCESS(rc2))
pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
else if (RT_SUCCESS(rcStrict))
rcStrict = rc2;
if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
pVCpu->cpum.GstCtx.fExtrn = 0;
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
}
else
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
}
else
{
pVCpu->cpum.GstCtx.fExtrn = 0;
STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
}
LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
return rcStrict;
}
/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
*
* This is using KVM.
*
*/
|