1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
|
/* $Id: PGM.cpp $ */
/** @file
* PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
*/
/*
* Copyright (C) 2006-2022 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* SPDX-License-Identifier: GPL-3.0-only
*/
/** @page pg_pgm PGM - The Page Manager and Monitor
*
* @sa @ref grp_pgm
* @subpage pg_pgm_pool
* @subpage pg_pgm_phys
*
*
* @section sec_pgm_modes Paging Modes
*
* There are three memory contexts: Host Context (HC), Guest Context (GC)
* and intermediate context. When talking about paging HC can also be referred
* to as "host paging", and GC referred to as "shadow paging".
*
* We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
* is defined by the host operating system. The mode used in the shadow paging mode
* depends on the host paging mode and what the mode the guest is currently in. The
* following relation between the two is defined:
*
* @verbatim
Host > 32-bit | PAE | AMD64 |
Guest | | | |
==v================================
32-bit 32-bit PAE PAE
-------|--------|--------|--------|
PAE PAE PAE PAE
-------|--------|--------|--------|
AMD64 AMD64 AMD64 AMD64
-------|--------|--------|--------| @endverbatim
*
* All configuration except those in the diagonal (upper left) are expected to
* require special effort from the switcher (i.e. a bit slower).
*
*
*
*
* @section sec_pgm_shw The Shadow Memory Context
*
*
* [..]
*
* Because of guest context mappings requires PDPT and PML4 entries to allow
* writing on AMD64, the two upper levels will have fixed flags whatever the
* guest is thinking of using there. So, when shadowing the PD level we will
* calculate the effective flags of PD and all the higher levels. In legacy
* PAE mode this only applies to the PWT and PCD bits (the rest are
* ignored/reserved/MBZ). We will ignore those bits for the present.
*
*
*
* @section sec_pgm_int The Intermediate Memory Context
*
* The world switch goes thru an intermediate memory context which purpose it is
* to provide different mappings of the switcher code. All guest mappings are also
* present in this context.
*
* The switcher code is mapped at the same location as on the host, at an
* identity mapped location (physical equals virtual address), and at the
* hypervisor location. The identity mapped location is for when the world
* switches that involves disabling paging.
*
* PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
* simplifies switching guest CPU mode and consistency at the cost of more
* code to do the work. All memory use for those page tables is located below
* 4GB (this includes page tables for guest context mappings).
*
* Note! The intermediate memory context is also used for 64-bit guest
* execution on 32-bit hosts. Because we need to load 64-bit registers
* prior to switching to guest context, we need to be in 64-bit mode
* first. So, HM has some 64-bit worker routines in VMMRC.rc that get
* invoked via the special world switcher code in LegacyToAMD64.asm.
*
*
* @subsection subsec_pgm_int_gc Guest Context Mappings
*
* During assignment and relocation of a guest context mapping the intermediate
* memory context is used to verify the new location.
*
* Guest context mappings are currently restricted to below 4GB, for reasons
* of simplicity. This may change when we implement AMD64 support.
*
*
*
*
* @section sec_pgm_misc Misc
*
*
* @subsection sec_pgm_misc_A20 The A20 Gate
*
* PGM implements the A20 gate masking when translating a virtual guest address
* into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
* the code reading the guest page table entries during shadowing. The masking
* is done consistenly for all CPU modes, paged ones included. Large pages are
* also masked correctly. (On current CPUs, experiments indicates that AMD does
* not apply A20M in paged modes and intel only does it for the 2nd MB of
* memory.)
*
* The A20 gate implementation is per CPU core. It can be configured on a per
* core basis via the keyboard device and PC architecture device. This is
* probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
* guest OSes try pushing things anyway, so who cares. (On current real systems
* the A20M signal is probably only sent to the boot CPU and it affects all
* thread and probably all cores in that package.)
*
* The keyboard device and the PC architecture device doesn't OR their A20
* config bits together, rather they are currently implemented such that they
* mirror the CPU state. So, flipping the bit in either of them will change the
* A20 state. (On real hardware the bits of the two devices should probably be
* ORed together to indicate enabled, i.e. both needs to be cleared to disable
* A20 masking.)
*
* The A20 state will change immediately, transmeta fashion. There is no delays
* due to buses, wiring or other physical stuff. (On real hardware there are
* normally delays, the delays differs between the two devices and probably also
* between chipsets and CPU generations. Note that it's said that transmeta CPUs
* does the change immediately like us, they apparently intercept/handles the
* port accesses in microcode. Neat.)
*
* @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
*
*
* @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
*
* The differences between legacy PAE and long mode PAE are:
* -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
* all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
* usual meanings while 6 is ignored (AMD). This means that upon switching to
* legacy PAE mode we'll have to clear these bits and when going to long mode
* they must be set. This applies to both intermediate and shadow contexts,
* however we don't need to do it for the intermediate one since we're
* executing with CR0.WP at that time.
* -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
* a page aligned one is required.
*
*
* @section sec_pgm_handlers Access Handlers
*
* Placeholder.
*
*
* @subsection sec_pgm_handlers_phys Physical Access Handlers
*
* Placeholder.
*
*
* @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete)
*
* We currently implement three types of virtual access handlers: ALL, WRITE
* and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
*
* The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
* to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
* a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
* rest of this section is going to be about these handlers.
*
* We'll go thru the life cycle of a handler and try make sense of it all, don't know
* how successful this is gonna be...
*
* 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
* PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
* and create a new node that is inserted into the AVL tree (range key). Then
* a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
*
* 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
*
* 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
* via the current guest CR3 and update the physical page -> virtual handler
* translation. Needless to say, this doesn't exactly scale very well. If any changes
* are detected, it will flag a virtual bit update just like we did on registration.
* PGMPHYS pages with changes will have their virtual handler state reset to NONE.
*
* 2b. The virtual bit update process will iterate all the pages covered by all the
* virtual handlers and update the PGMPAGE virtual handler state to the max of all
* virtual handlers on that page.
*
* 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
* we don't miss any alias mappings of the monitored pages.
*
* 2d. SyncCR3 will then proceed with syncing the CR3 table.
*
* 3. \#PF(np,read) on a page in the range. This will cause it to be synced
* read-only and resumed if it's a WRITE handler. If it's an ALL handler we
* will call the handlers like in the next step. If the physical mapping has
* changed we will - some time in the future - perform a handler callback
* (optional) and update the physical -> virtual handler cache.
*
* 4. \#PF(,write) on a page in the range. This will cause the handler to
* be invoked.
*
* 5. The guest invalidates the page and changes the physical backing or
* unmaps it. This should cause the invalidation callback to be invoked
* (it might not yet be 100% perfect). Exactly what happens next... is
* this where we mess up and end up out of sync for a while?
*
* 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
* We will then set all PGMPAGEs in the physical -> virtual handler cache for
* this handler to NONE and trigger a full PGM resync (basically the same
* as int step 1). Which means 2 is executed again.
*
*
* @subsubsection sub_sec_pgm_handler_virt_todo TODOs
*
* There is a bunch of things that needs to be done to make the virtual handlers
* work 100% correctly and work more efficiently.
*
* The first bit hasn't been implemented yet because it's going to slow the
* whole mess down even more, and besides it seems to be working reliably for
* our current uses. OTOH, some of the optimizations might end up more or less
* implementing the missing bits, so we'll see.
*
* On the optimization side, the first thing to do is to try avoid unnecessary
* cache flushing. Then try team up with the shadowing code to track changes
* in mappings by means of access to them (shadow in), updates to shadows pages,
* invlpg, and shadow PT discarding (perhaps).
*
* Some idea that have popped up for optimization for current and new features:
* - bitmap indicating where there are virtual handlers installed.
* (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
* - Further optimize this by min/max (needs min/max avl getters).
* - Shadow page table entry bit (if any left)?
*
*/
/** @page pg_pgm_phys PGM Physical Guest Memory Management
*
*
* Objectives:
* - Guest RAM over-commitment using memory ballooning,
* zero pages and general page sharing.
* - Moving or mirroring a VM onto a different physical machine.
*
*
* @section sec_pgmPhys_Definitions Definitions
*
* Allocation chunk - A RTR0MemObjAllocPhysNC or RTR0MemObjAllocPhys allocate
* memory object and the tracking machinery associated with it.
*
*
*
*
* @section sec_pgmPhys_AllocPage Allocating a page.
*
* Initially we map *all* guest memory to the (per VM) zero page, which
* means that none of the read functions will cause pages to be allocated.
*
* Exception, access bit in page tables that have been shared. This must
* be handled, but we must also make sure PGMGst*Modify doesn't make
* unnecessary modifications.
*
* Allocation points:
* - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
* - Replacing a zero page mapping at \#PF.
* - Replacing a shared page mapping at \#PF.
* - ROM registration (currently MMR3RomRegister).
* - VM restore (pgmR3Load).
*
* For the first three it would make sense to keep a few pages handy
* until we've reached the max memory commitment for the VM.
*
* For the ROM registration, we know exactly how many pages we need
* and will request these from ring-0. For restore, we will save
* the number of non-zero pages in the saved state and allocate
* them up front. This would allow the ring-0 component to refuse
* the request if the isn't sufficient memory available for VM use.
*
* Btw. for both ROM and restore allocations we won't be requiring
* zeroed pages as they are going to be filled instantly.
*
*
* @section sec_pgmPhys_FreePage Freeing a page
*
* There are a few points where a page can be freed:
* - After being replaced by the zero page.
* - After being replaced by a shared page.
* - After being ballooned by the guest additions.
* - At reset.
* - At restore.
*
* When freeing one or more pages they will be returned to the ring-0
* component and replaced by the zero page.
*
* The reasoning for clearing out all the pages on reset is that it will
* return us to the exact same state as on power on, and may thereby help
* us reduce the memory load on the system. Further it might have a
* (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
*
* On restore, as mention under the allocation topic, pages should be
* freed / allocated depending on how many is actually required by the
* new VM state. The simplest approach is to do like on reset, and free
* all non-ROM pages and then allocate what we need.
*
* A measure to prevent some fragmentation, would be to let each allocation
* chunk have some affinity towards the VM having allocated the most pages
* from it. Also, try make sure to allocate from allocation chunks that
* are almost full. Admittedly, both these measures might work counter to
* our intentions and its probably not worth putting a lot of effort,
* cpu time or memory into this.
*
*
* @section sec_pgmPhys_SharePage Sharing a page
*
* The basic idea is that there there will be a idle priority kernel
* thread walking the non-shared VM pages hashing them and looking for
* pages with the same checksum. If such pages are found, it will compare
* them byte-by-byte to see if they actually are identical. If found to be
* identical it will allocate a shared page, copy the content, check that
* the page didn't change while doing this, and finally request both the
* VMs to use the shared page instead. If the page is all zeros (special
* checksum and byte-by-byte check) it will request the VM that owns it
* to replace it with the zero page.
*
* To make this efficient, we will have to make sure not to try share a page
* that will change its contents soon. This part requires the most work.
* A simple idea would be to request the VM to write monitor the page for
* a while to make sure it isn't modified any time soon. Also, it may
* make sense to skip pages that are being write monitored since this
* information is readily available to the thread if it works on the
* per-VM guest memory structures (presently called PGMRAMRANGE).
*
*
* @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
*
* The pages are organized in allocation chunks in ring-0, this is a necessity
* if we wish to have an OS agnostic approach to this whole thing. (On Linux we
* could easily work on a page-by-page basis if we liked. Whether this is possible
* or efficient on NT I don't quite know.) Fragmentation within these chunks may
* become a problem as part of the idea here is that we wish to return memory to
* the host system.
*
* For instance, starting two VMs at the same time, they will both allocate the
* guest memory on-demand and if permitted their page allocations will be
* intermixed. Shut down one of the two VMs and it will be difficult to return
* any memory to the host system because the page allocation for the two VMs are
* mixed up in the same allocation chunks.
*
* To further complicate matters, when pages are freed because they have been
* ballooned or become shared/zero the whole idea is that the page is supposed
* to be reused by another VM or returned to the host system. This will cause
* allocation chunks to contain pages belonging to different VMs and prevent
* returning memory to the host when one of those VM shuts down.
*
* The only way to really deal with this problem is to move pages. This can
* either be done at VM shutdown and or by the idle priority worker thread
* that will be responsible for finding sharable/zero pages. The mechanisms
* involved for coercing a VM to move a page (or to do it for it) will be
* the same as when telling it to share/zero a page.
*
*
* @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
*
* There's a difficult balance between keeping the per-page tracking structures
* (global and guest page) easy to use and keeping them from eating too much
* memory. We have limited virtual memory resources available when operating in
* 32-bit kernel space (on 64-bit there'll it's quite a different story). The
* tracking structures will be attempted designed such that we can deal with up
* to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
*
*
* @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
*
* @see pg_GMM
*
* @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
*
* Fixed info is the physical address of the page (HCPhys) and the page id
* (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
* Today we've restricting ourselves to 40(-12) bits because this is the current
* restrictions of all AMD64 implementations (I think Barcelona will up this
* to 48(-12) bits, not that it really matters) and I needed the bits for
* tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
* decent range for the page id: 2^(28+12) = 1024TB.
*
* In additions to these, we'll have to keep maintaining the page flags as we
* currently do. Although it wouldn't harm to optimize these quite a bit, like
* for instance the ROM shouldn't depend on having a write handler installed
* in order for it to become read-only. A RO/RW bit should be considered so
* that the page syncing code doesn't have to mess about checking multiple
* flag combinations (ROM || RW handler || write monitored) in order to
* figure out how to setup a shadow PTE. But this of course, is second
* priority at present. Current this requires 12 bits, but could probably
* be optimized to ~8.
*
* Then there's the 24 bits used to track which shadow page tables are
* currently mapping a page for the purpose of speeding up physical
* access handlers, and thereby the page pool cache. More bit for this
* purpose wouldn't hurt IIRC.
*
* Then there is a new bit in which we need to record what kind of page
* this is, shared, zero, normal or write-monitored-normal. This'll
* require 2 bits. One bit might be needed for indicating whether a
* write monitored page has been written to. And yet another one or
* two for tracking migration status. 3-4 bits total then.
*
* Whatever is left will can be used to record the sharabilitiy of a
* page. The page checksum will not be stored in the per-VM table as
* the idle thread will not be permitted to do modifications to it.
* It will instead have to keep its own working set of potentially
* shareable pages and their check sums and stuff.
*
* For the present we'll keep the current packing of the
* PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
* we'll have to change it to a struct with a total of 128-bits at
* our disposal.
*
* The initial layout will be like this:
* @verbatim
RTHCPHYS HCPhys; The current stuff.
63:40 Current shadow PT tracking stuff.
39:12 The physical page frame number.
11:0 The current flags.
uint32_t u28PageId : 28; The page id.
uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
uint32_t u1Reserved : 1; Reserved for later.
uint32_t u32Reserved; Reserved for later, mostly sharing stats.
@endverbatim
*
* The final layout will be something like this:
* @verbatim
RTHCPHYS HCPhys; The current stuff.
63:48 High page id (12+).
47:12 The physical page frame number.
11:0 Low page id.
uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
@endverbatim
*
* Cost wise, this means we'll double the cost for guest memory. There isn't anyway
* around that I'm afraid. It means that the cost of dealing out 32GB of memory
* to one or more VMs is: (32GB >> GUEST_PAGE_SHIFT) * 16 bytes, or 128MBs. Or
* another example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
*
* A couple of cost examples for the total cost per-VM + kernel.
* 32-bit Windows and 32-bit linux:
* 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
* 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
* 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
* 64-bit Windows and 64-bit linux:
* 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
* 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
* 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
*
* UPDATE - 2007-09-27:
* Will need a ballooned flag/state too because we cannot
* trust the guest 100% and reporting the same page as ballooned more
* than once will put the GMM off balance.
*
*
* @section sec_pgmPhys_Serializing Serializing Access
*
* Initially, we'll try a simple scheme:
*
* - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
* by the EMT thread of that VM while in the pgm critsect.
* - Other threads in the VM process that needs to make reliable use of
* the per-VM RAM tracking structures will enter the critsect.
* - No process external thread or kernel thread will ever try enter
* the pgm critical section, as that just won't work.
* - The idle thread (and similar threads) doesn't not need 100% reliable
* data when performing it tasks as the EMT thread will be the one to
* do the actual changes later anyway. So, as long as it only accesses
* the main ram range, it can do so by somehow preventing the VM from
* being destroyed while it works on it...
*
* - The over-commitment management, including the allocating/freeing
* chunks, is serialized by a ring-0 mutex lock (a fast one since the
* more mundane mutex implementation is broken on Linux).
* - A separate mutex is protecting the set of allocation chunks so
* that pages can be shared or/and freed up while some other VM is
* allocating more chunks. This mutex can be take from under the other
* one, but not the other way around.
*
*
* @section sec_pgmPhys_Request VM Request interface
*
* When in ring-0 it will become necessary to send requests to a VM so it can
* for instance move a page while defragmenting during VM destroy. The idle
* thread will make use of this interface to request VMs to setup shared
* pages and to perform write monitoring of pages.
*
* I would propose an interface similar to the current VMReq interface, similar
* in that it doesn't require locking and that the one sending the request may
* wait for completion if it wishes to. This shouldn't be very difficult to
* realize.
*
* The requests themselves are also pretty simple. They are basically:
* -# Check that some precondition is still true.
* -# Do the update.
* -# Update all shadow page tables involved with the page.
*
* The 3rd step is identical to what we're already doing when updating a
* physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
*
*
*
* @section sec_pgmPhys_MappingCaches Mapping Caches
*
* In order to be able to map in and out memory and to be able to support
* guest with more RAM than we've got virtual address space, we'll employing
* a mapping cache. Normally ring-0 and ring-3 can share the same cache,
* however on 32-bit darwin the ring-0 code is running in a different memory
* context and therefore needs a separate cache. In raw-mode context we also
* need a separate cache. The 32-bit darwin mapping cache and the one for
* raw-mode context share a lot of code, see PGMRZDYNMAP.
*
*
* @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
*
* We've considered implementing the ring-3 mapping cache page based but found
* that this was bother some when one had to take into account TLBs+SMP and
* portability (missing the necessary APIs on several platforms). There were
* also some performance concerns with this approach which hadn't quite been
* worked out.
*
* Instead, we'll be mapping allocation chunks into the VM process. This simplifies
* matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
* only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
* compared to the previous idea is that mapping or unmapping a 1MB chunk is more
* costly than a single page, although how much more costly is uncertain. We'll
* try address this by using a very big cache, preferably bigger than the actual
* VM RAM size if possible. The current VM RAM sizes should give some idea for
* 32-bit boxes, while on 64-bit we can probably get away with employing an
* unlimited cache.
*
* The cache have to parts, as already indicated, the ring-3 side and the
* ring-0 side.
*
* The ring-0 will be tied to the page allocator since it will operate on the
* memory objects it contains. It will therefore require the first ring-0 mutex
* discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
* to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
* track of mapping relations
*
* The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
* require anyone that desires to do changes to the mapping cache to do that
* from within this critsect. Alternatively, we could employ a separate critsect
* for serializing changes to the mapping cache as this would reduce potential
* contention with other threads accessing mappings unrelated to the changes
* that are in process. We can see about this later, contention will show
* up in the statistics anyway, so it'll be simple to tell.
*
* The organization of the ring-3 part will be very much like how the allocation
* chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
* having to walk the tree all the time, we'll have a couple of lookaside entries
* like in we do for I/O ports and MMIO in IOM.
*
* The simplified flow of a PGMPhysRead/Write function:
* -# Enter the PGM critsect.
* -# Lookup GCPhys in the ram ranges and get the Page ID.
* -# Calc the Allocation Chunk ID from the Page ID.
* -# Check the lookaside entries and then the AVL tree for the Chunk ID.
* If not found in cache:
* -# Call ring-0 and request it to be mapped and supply
* a chunk to be unmapped if the cache is maxed out already.
* -# Insert the new mapping into the AVL tree (id + R3 address).
* -# Update the relevant lookaside entry and return the mapping address.
* -# Do the read/write according to monitoring flags and everything.
* -# Leave the critsect.
*
*
* @section sec_pgmPhys_Changes Changes
*
* Breakdown of the changes involved?
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_PGM
#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
#include <VBox/vmm/dbgf.h>
#include <VBox/vmm/pgm.h>
#include <VBox/vmm/cpum.h>
#include <VBox/vmm/iom.h>
#include <VBox/sup.h>
#include <VBox/vmm/mm.h>
#include <VBox/vmm/em.h>
#include <VBox/vmm/stam.h>
#include <VBox/vmm/selm.h>
#include <VBox/vmm/ssm.h>
#include <VBox/vmm/hm.h>
#include "PGMInternal.h"
#include <VBox/vmm/vmcc.h>
#include <VBox/vmm/uvm.h>
#include "PGMInline.h"
#include <VBox/dbg.h>
#include <VBox/param.h>
#include <VBox/err.h>
#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/env.h>
#include <iprt/file.h>
#include <iprt/mem.h>
#include <iprt/rand.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#ifdef RT_OS_LINUX
# include <iprt/linux/sysfs.h>
#endif
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
* pgmR3RelocateHyperVirtHandler.
*/
typedef struct PGMRELOCHANDLERARGS
{
RTGCINTPTR offDelta;
PVM pVM;
} PGMRELOCHANDLERARGS;
/** Pointer to a page access handlere relocation argument package. */
typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static int pgmR3InitPaging(PVM pVM);
static int pgmR3InitStats(PVM pVM);
static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
#ifdef VBOX_STRICT
static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
#endif
#ifdef VBOX_WITH_DEBUGGER
static FNDBGCCMD pgmR3CmdError;
static FNDBGCCMD pgmR3CmdSync;
static FNDBGCCMD pgmR3CmdSyncAlways;
# ifdef VBOX_STRICT
static FNDBGCCMD pgmR3CmdAssertCR3;
# endif
static FNDBGCCMD pgmR3CmdPhysToFile;
#endif
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
#ifdef VBOX_WITH_DEBUGGER
/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
static const DBGCVARDESC g_aPgmErrorArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
};
static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
{ 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
};
# ifdef DEBUG_sandervl
static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
{
/* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
{ 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
{ 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
};
# endif
/** Command descriptors. */
static const DBGCCMD g_aCmds[] =
{
/* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
{ "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
{ "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
{ "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
# ifdef VBOX_STRICT
{ "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
# ifdef VBOX_WITH_PAGE_SHARING
{ "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
{ "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
# endif
# endif
{ "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
{ "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
};
#endif
#ifdef VBOX_WITH_PGM_NEM_MODE
/**
* Interface that NEM uses to switch PGM into simplified memory managment mode.
*
* This call occurs before PGMR3Init.
*
* @param pVM The cross context VM structure.
*/
VMMR3_INT_DECL(void) PGMR3EnableNemMode(PVM pVM)
{
AssertFatal(!PDMCritSectIsInitialized(&pVM->pgm.s.CritSectX));
pVM->pgm.s.fNemMode = true;
}
/**
* Checks whether the simplificed memory management mode for NEM is enabled.
*
* @returns true if enabled, false if not.
* @param pVM The cross context VM structure.
*/
VMMR3_INT_DECL(bool) PGMR3IsNemModeEnabled(PVM pVM)
{
return pVM->pgm.s.fNemMode;
}
#endif /* VBOX_WITH_PGM_NEM_MODE */
/**
* Initiates the paging of VM.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3DECL(int) PGMR3Init(PVM pVM)
{
LogFlow(("PGMR3Init:\n"));
PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
int rc;
/*
* Assert alignment and sizes.
*/
AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding));
AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
/*
* If we're in driveless mode we have to use the simplified memory mode.
*/
bool const fDriverless = SUPR3IsDriverless();
if (fDriverless)
{
#ifdef VBOX_WITH_PGM_NEM_MODE
if (!pVM->pgm.s.fNemMode)
pVM->pgm.s.fNemMode = true;
#else
return VMR3SetError(pVM->pUVM, VERR_SUP_DRIVERLESS, RT_SRC_POS,
"Driverless requires that VBox is built with VBOX_WITH_PGM_NEM_MODE defined");
#endif
}
/*
* Init the structure.
*/
/*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
{
pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
pVM->pgm.s.aHandyPages[i].fZeroed = false;
pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
}
for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
{
pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_GMMPAGEDESC_PHYS;
pVM->pgm.s.aLargeHandyPage[i].fZeroed = false;
pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
}
AssertReleaseReturn(pVM->pgm.s.cPhysHandlerTypes == 0, VERR_WRONG_ORDER);
for (size_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aPhysHandlerTypes); i++)
{
if (fDriverless)
pVM->pgm.s.aPhysHandlerTypes[i].hType = i | (RTRandU64() & ~(uint64_t)PGMPHYSHANDLERTYPE_IDX_MASK);
pVM->pgm.s.aPhysHandlerTypes[i].enmKind = PGMPHYSHANDLERKIND_INVALID;
pVM->pgm.s.aPhysHandlerTypes[i].pfnHandler = pgmR3HandlerPhysicalHandlerInvalid;
}
/* Init the per-CPU part. */
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
PPGMCPU pPGM = &pVCpu->pgm.s;
pPGM->enmShadowMode = PGMMODE_INVALID;
pPGM->enmGuestMode = PGMMODE_INVALID;
pPGM->enmGuestSlatMode = PGMSLAT_INVALID;
pPGM->idxGuestModeData = UINT8_MAX;
pPGM->idxShadowModeData = UINT8_MAX;
pPGM->idxBothModeData = UINT8_MAX;
pPGM->GCPhysCR3 = NIL_RTGCPHYS;
pPGM->GCPhysNstGstCR3 = NIL_RTGCPHYS;
pPGM->GCPhysPaeCR3 = NIL_RTGCPHYS;
pPGM->pGst32BitPdR3 = NULL;
pPGM->pGstPaePdptR3 = NULL;
pPGM->pGstAmd64Pml4R3 = NULL;
pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
pPGM->pGstEptPml4R3 = NULL;
pPGM->pGstEptPml4R0 = NIL_RTR0PTR;
pPGM->uEptPtr = 0;
#endif
for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
{
pPGM->apGstPaePDsR3[i] = NULL;
pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
}
pPGM->fA20Enabled = true;
pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
}
pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
true
#else
false
#endif
);
AssertLogRelRCReturn(rc, rc);
#if HC_ARCH_BITS == 32
# ifdef RT_OS_DARWIN
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
# else
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
# endif
#else
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
#endif
AssertLogRelRCReturn(rc, rc);
for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
/*
* Get the configured RAM size - to estimate saved state size.
*/
uint64_t cbRam;
rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
cbRam = 0;
else if (RT_SUCCESS(rc))
{
if (cbRam < GUEST_PAGE_SIZE)
cbRam = 0;
cbRam = RT_ALIGN_64(cbRam, GUEST_PAGE_SIZE);
}
else
{
AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
return rc;
}
/*
* Check for PCI pass-through and other configurables.
*/
rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
AssertLogRelRCReturn(rc, rc);
/** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
* Whether to clear RAM pages on (hard) reset. */
rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
AssertLogRelRCReturn(rc, rc);
/*
* Register callbacks, string formatters and the saved state data unit.
*/
#ifdef VBOX_STRICT
VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
#endif
PGMRegisterStringFormatTypes();
rc = pgmR3InitSavedState(pVM, cbRam);
if (RT_FAILURE(rc))
return rc;
/*
* Initialize the PGM critical section and flush the phys TLBs
*/
rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
AssertRCReturn(rc, rc);
PGMR3PhysChunkInvalidateTLB(pVM);
pgmPhysInvalidatePageMapTLB(pVM);
/*
* For the time being we sport a full set of handy pages in addition to the base
* memory to simplify things.
*/
rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
AssertRCReturn(rc, rc);
/*
* Setup the zero page (HCPHysZeroPg is set by ring-0).
*/
RT_ZERO(pVM->pgm.s.abZeroPg); /* paranoia */
if (fDriverless)
pVM->pgm.s.HCPhysZeroPg = _4G - GUEST_PAGE_SIZE * 2 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
AssertRelease(pVM->pgm.s.HCPhysZeroPg != 0);
/*
* Setup the invalid MMIO page (HCPhysMmioPg is set by ring-0).
* (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
*/
ASMMemFill32(pVM->pgm.s.abMmioPg, sizeof(pVM->pgm.s.abMmioPg), 0xfeedface);
if (fDriverless)
pVM->pgm.s.HCPhysMmioPg = _4G - GUEST_PAGE_SIZE * 3 /* fake to avoid PGM_PAGE_INIT_ZERO assertion */;
AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
AssertRelease(pVM->pgm.s.HCPhysMmioPg != 0);
pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
/*
* Initialize physical access handlers.
*/
/** @cfgm{/PGM/MaxPhysicalAccessHandlers, uint32_t, 32, 65536, 6144}
* Number of physical access handlers allowed (subject to rounding). This is
* managed as one time allocation during initializations. The default is
* lower for a driverless setup. */
/** @todo can lower it for nested paging too, at least when there is no
* nested guest involved. */
uint32_t cAccessHandlers = 0;
rc = CFGMR3QueryU32Def(pCfgPGM, "MaxPhysicalAccessHandlers", &cAccessHandlers, !fDriverless ? 6144 : 640);
AssertLogRelRCReturn(rc, rc);
AssertLogRelMsgStmt(cAccessHandlers >= 32, ("cAccessHandlers=%#x, min 32\n", cAccessHandlers), cAccessHandlers = 32);
AssertLogRelMsgStmt(cAccessHandlers <= _64K, ("cAccessHandlers=%#x, max 65536\n", cAccessHandlers), cAccessHandlers = _64K);
if (!fDriverless)
{
rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_HANDLER_INIT, cAccessHandlers, NULL);
AssertRCReturn(rc, rc);
AssertPtr(pVM->pgm.s.pPhysHandlerTree);
AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_paNodes);
AssertPtr(pVM->pgm.s.PhysHandlerAllocator.m_pbmAlloc);
}
else
{
uint32_t cbTreeAndBitmap = 0;
uint32_t const cbTotalAligned = pgmHandlerPhysicalCalcTableSizes(&cAccessHandlers, &cbTreeAndBitmap);
uint8_t *pb = NULL;
rc = SUPR3PageAlloc(cbTotalAligned >> HOST_PAGE_SHIFT, 0, (void **)&pb);
AssertLogRelRCReturn(rc, rc);
pVM->pgm.s.PhysHandlerAllocator.initSlabAllocator(cAccessHandlers, (PPGMPHYSHANDLER)&pb[cbTreeAndBitmap],
(uint64_t *)&pb[sizeof(PGMPHYSHANDLERTREE)]);
pVM->pgm.s.pPhysHandlerTree = (PPGMPHYSHANDLERTREE)pb;
pVM->pgm.s.pPhysHandlerTree->initWithAllocator(&pVM->pgm.s.PhysHandlerAllocator);
}
/*
* Register the physical access handler protecting ROMs.
*/
if (RT_SUCCESS(rc))
/** @todo why isn't pgmPhysRomWriteHandler registered for ring-0? */
rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, 0 /*fFlags*/, pgmPhysRomWriteHandler,
"ROM write protection", &pVM->pgm.s.hRomPhysHandlerType);
/*
* Register the physical access handler doing dirty MMIO2 tracing.
*/
if (RT_SUCCESS(rc))
rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK,
pgmPhysMmio2WriteHandler, "MMIO2 dirty page tracing",
&pVM->pgm.s.hMmio2DirtyPhysHandlerType);
/*
* Init the paging.
*/
if (RT_SUCCESS(rc))
rc = pgmR3InitPaging(pVM);
/*
* Init the page pool.
*/
if (RT_SUCCESS(rc))
rc = pgmR3PoolInit(pVM);
if (RT_SUCCESS(rc))
{
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
if (RT_FAILURE(rc))
break;
}
}
if (RT_SUCCESS(rc))
{
/*
* Info & statistics
*/
DBGFR3InfoRegisterInternalEx(pVM, "mode",
"Shows the current paging mode. "
"Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
pgmR3InfoMode,
DBGFINFO_FLAGS_ALL_EMTS);
DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
"Dumps all the entries in the top level paging table. No arguments.",
pgmR3InfoCr3);
DBGFR3InfoRegisterInternal(pVM, "phys",
"Dumps all the physical address ranges. Pass 'verbose' to get more details.",
pgmR3PhysInfo);
DBGFR3InfoRegisterInternal(pVM, "handlers",
"Dumps physical, virtual and hyper virtual handlers. "
"Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
"Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
pgmR3InfoHandlers);
pgmR3InitStats(pVM);
#ifdef VBOX_WITH_DEBUGGER
/*
* Debugger commands.
*/
static bool s_fRegisteredCmds = false;
if (!s_fRegisteredCmds)
{
int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
if (RT_SUCCESS(rc2))
s_fRegisteredCmds = true;
}
#endif
#ifdef RT_OS_LINUX
/*
* Log the /proc/sys/vm/max_map_count value on linux as that is
* frequently giving us grief when too low.
*/
int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/;
int64_t cMaxMapCount = 0;
int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count");
LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded));
if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded)
LogRel(("PGM: WARNING!!\n"
"PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n"
"PGM: WARNING!!\n", cMaxMapCount));
#endif
return VINF_SUCCESS;
}
/* Almost no cleanup necessary, MM frees all memory. */
PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
return rc;
}
/**
* Init paging.
*
* Since we need to check what mode the host is operating in before we can choose
* the right paging functions for the host we have to delay this until R0 has
* been initialized.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
static int pgmR3InitPaging(PVM pVM)
{
/*
* Force a recalculation of modes and switcher so everyone gets notified.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
pVCpu->pgm.s.enmGuestSlatMode = PGMSLAT_INVALID;
pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
}
pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
/*
* Initialize paging workers and mode from current host mode
* and the guest running in real mode.
*/
pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT:
case SUPPAGINGMODE_32_BIT_GLOBAL:
case SUPPAGINGMODE_PAE:
case SUPPAGINGMODE_PAE_GLOBAL:
case SUPPAGINGMODE_PAE_NX:
case SUPPAGINGMODE_PAE_GLOBAL_NX:
case SUPPAGINGMODE_AMD64:
case SUPPAGINGMODE_AMD64_GLOBAL:
case SUPPAGINGMODE_AMD64_NX:
case SUPPAGINGMODE_AMD64_GLOBAL_NX:
if (ARCH_BITS != 64)
{
AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
}
break;
#if !defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86)
case SUPPAGINGMODE_INVALID:
pVM->pgm.s.enmHostMode = SUPPAGINGMODE_AMD64_GLOBAL_NX;
break;
#endif
default:
AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
}
LogFlow(("pgmR3InitPaging: returns successfully\n"));
#if HC_ARCH_BITS == 64 && 0
LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
#endif
/*
* Log the host paging mode. It may come in handy.
*/
const char *pszHostMode;
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
default: pszHostMode = "???"; break;
}
LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
return VINF_SUCCESS;
}
/**
* Init statistics
* @returns VBox status code.
*/
static int pgmR3InitStats(PVM pVM)
{
PPGM pPGM = &pVM->pgm.s;
int rc;
/*
* Release statistics.
*/
/* Common - misc variables */
STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
STAM_REL_REG(pVM, &pPGM->StatMmio2QueryAndResetDirtyBitmap, STAMTYPE_PROFILE, "/PGM/Mmio2QueryAndResetDirtyBitmap", STAMUNIT_TICKS_PER_CALL, "Profiles calls to PGMR3PhysMmio2QueryAndResetDirtyBitmap (sans locking).");
/* Live save */
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
#define PGM_REG_COUNTER(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
AssertRC(rc);
#define PGM_REG_U64(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
AssertRC(rc);
#define PGM_REG_U64_RESET(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_U64_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
AssertRC(rc);
#define PGM_REG_U32(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
AssertRC(rc);
#define PGM_REG_COUNTER_BYTES(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
AssertRC(rc);
#define PGM_REG_PROFILE(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
AssertRC(rc);
#define PGM_REG_PROFILE_NS(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, c, b); \
AssertRC(rc);
#ifdef VBOX_WITH_STATISTICS
PGMSTATS *pStats = &pPGM->Stats;
#endif
PGM_REG_PROFILE_NS(&pPGM->StatLargePageAlloc, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation.");
PGM_REG_COUNTER(&pPGM->StatLargePageAllocFailed, "/PGM/LargePage/AllocFailed", "Number of allocation failures.");
PGM_REG_COUNTER(&pPGM->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
PGM_REG_COUNTER(&pPGM->StatLargePageTlbFlush, "/PGM/LargePage/TlbFlush", "The number of times a full VCPU TLB flush was required after a large allocation.");
PGM_REG_COUNTER(&pPGM->StatLargePageZeroEvict, "/PGM/LargePage/ZeroEvict", "The number of zero page mappings we had to evict when allocating a large page.");
#ifdef VBOX_WITH_STATISTICS
PGM_REG_PROFILE(&pStats->StatLargePageAlloc2, "/PGM/LargePage/Alloc2", "Time spent allocating large pages.");
PGM_REG_PROFILE(&pStats->StatLargePageSetup, "/PGM/LargePage/Setup", "Time spent setting up the newly allocated large pages.");
PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3.");
PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ.");
PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
#endif /* VBOX_WITH_STATISTICS */
PPGMPHYSHANDLERTREE pPhysHndlTree = pVM->pgm.s.pPhysHandlerTree;
PGM_REG_U32(&pPhysHndlTree->m_cErrors, "/PGM/PhysHandlerTree/ErrorsTree", "Physical access handler tree errors.");
PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cErrors, "/PGM/PhysHandlerTree/ErrorsAllocatorR3", "Physical access handler tree allocator errors (ring-3 only).");
PGM_REG_U64_RESET(&pPhysHndlTree->m_cInserts, "/PGM/PhysHandlerTree/Inserts", "Physical access handler tree inserts.");
PGM_REG_U32(&pVM->pgm.s.PhysHandlerAllocator.m_cNodes, "/PGM/PhysHandlerTree/MaxHandlers", "Max physical access handlers.");
PGM_REG_U64_RESET(&pPhysHndlTree->m_cRemovals, "/PGM/PhysHandlerTree/Removals", "Physical access handler tree removals.");
PGM_REG_U64_RESET(&pPhysHndlTree->m_cRebalancingOperations, "/PGM/PhysHandlerTree/RebalancingOperations", "Physical access handler tree rebalancing transformations.");
#ifdef VBOX_WITH_STATISTICS
PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
/* GC only: */
PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
#endif
#undef PGM_REG_COUNTER
#undef PGM_REG_U64
#undef PGM_REG_U64_RESET
#undef PGM_REG_U32
#undef PGM_REG_PROFILE
#undef PGM_REG_PROFILE_NS
/*
* Note! The layout below matches the member layout exactly!
*/
/*
* Common - stats
*/
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s;
#define PGM_REG_COUNTER(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
AssertRC(rc);
#define PGM_REG_PROFILE(a, b, c) \
rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
AssertRC(rc);
PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
#ifdef VBOX_WITH_STATISTICS
PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats;
# if 0 /* rarely useful; leave for debugging. */
for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
# endif
/* R0 only: */
PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
/* RZ only: */
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
#if 0 /* rarely useful; leave for debugging. */
for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
"The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
#endif
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
//PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
/* HC only: */
/* RZ & R3: */
PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
#endif /* VBOX_WITH_STATISTICS */
#undef PGM_REG_PROFILE
#undef PGM_REG_COUNTER
}
return VINF_SUCCESS;
}
/**
* Ring-3 init finalizing.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
{
/*
* Determine the max physical address width (MAXPHYADDR) and apply it to
* all the mask members and stuff.
*/
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
uint32_t cMaxPhysAddrWidth;
uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
if ( uMaxExtLeaf >= 0x80000008
&& uMaxExtLeaf <= 0x80000fff)
{
cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
}
else
{
LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
cMaxPhysAddrWidth = 48;
pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
}
/* Disabled the below assertion -- triggers 24 vs 39 on my Intel Skylake box for a 32-bit (Guest-type Other/Unknown) VM. */
//AssertMsg(pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth == cMaxPhysAddrWidth,
// ("CPUM %u - PGM %u\n", pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth, cMaxPhysAddrWidth));
#else
uint32_t const cMaxPhysAddrWidth = pVM->cpum.ro.GuestFeatures.cMaxPhysAddrWidth;
LogRel(("PGM: The (guest) CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
#endif
/** @todo query from CPUM. */
pVM->pgm.s.GCPhysInvAddrMask = 0;
for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
/*
* Initialize the invalid paging entry masks, assuming NX is disabled.
*/
uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
uint64_t const fEptVpidCap = CPUMGetGuestIa32VmxEptVpidCap(pVM->apCpusR3[0]); /* should be identical for all VCPUs */
uint64_t const fGstEptMbzBigPdeMask = EPT_PDE2M_MBZ_MASK
| (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDE_2M) ^ 1) << EPT_E_BIT_LEAF;
uint64_t const fGstEptMbzBigPdpteMask = EPT_PDPTE1G_MBZ_MASK
| (RT_BF_GET(fEptVpidCap, VMX_BF_EPT_VPID_CAP_PDPTE_1G) ^ 1) << EPT_E_BIT_LEAF;
//uint64_t const GCPhysRsvdAddrMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000fffffffffffff); /* bits 63:52 ignored */
#endif
for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
{
PVMCPU pVCpu = pVM->apCpusR3[idCpu];
/** @todo The manuals are not entirely clear whether the physical
* address width is relevant. See table 5-9 in the intel
* manual vs the PDE4M descriptions. Write testcase (NP). */
pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
| X86_PDE4M_MBZ_MASK;
pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask
= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
pVCpu->pgm.s.uEptVpidCapMsr = fEptVpidCap;
pVCpu->pgm.s.fGstEptMbzPteMask = fMbzPageFrameMask | EPT_PTE_MBZ_MASK;
pVCpu->pgm.s.fGstEptMbzPdeMask = fMbzPageFrameMask | EPT_PDE_MBZ_MASK;
pVCpu->pgm.s.fGstEptMbzBigPdeMask = fMbzPageFrameMask | fGstEptMbzBigPdeMask;
pVCpu->pgm.s.fGstEptMbzPdpteMask = fMbzPageFrameMask | EPT_PDPTE_MBZ_MASK;
pVCpu->pgm.s.fGstEptMbzBigPdpteMask = fMbzPageFrameMask | fGstEptMbzBigPdpteMask;
pVCpu->pgm.s.fGstEptMbzPml4eMask = fMbzPageFrameMask | EPT_PML4E_MBZ_MASK;
/* If any of the features in the assert below are enabled, additional bits would need to be shadowed. */
Assert( !pVM->cpum.ro.GuestFeatures.fVmxModeBasedExecuteEpt
&& !pVM->cpum.ro.GuestFeatures.fVmxSppEpt
&& !pVM->cpum.ro.GuestFeatures.fVmxEptXcptVe
&& !(fEptVpidCap & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY));
/* We currently do -not- shadow reserved bits in guest page tables but instead trap them using non-present permissions,
see todo in (NestedSyncPT). */
pVCpu->pgm.s.fGstEptShadowedPteMask = EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK | EPT_E_IGNORE_PAT;
pVCpu->pgm.s.fGstEptShadowedPdeMask = EPT_PRESENT_MASK;
pVCpu->pgm.s.fGstEptShadowedBigPdeMask = EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK | EPT_E_IGNORE_PAT | EPT_E_LEAF;
pVCpu->pgm.s.fGstEptShadowedPdpteMask = EPT_PRESENT_MASK | EPT_E_MEMTYPE_MASK | EPT_E_IGNORE_PAT | EPT_E_LEAF;
pVCpu->pgm.s.fGstEptShadowedPml4eMask = EPT_PRESENT_MASK | EPT_PML4E_MBZ_MASK;
/* If mode-based execute control for EPT is enabled, we would need to include bit 10 in the present mask. */
pVCpu->pgm.s.fGstEptPresentMask = EPT_PRESENT_MASK;
#endif
}
/*
* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
* Intel only goes up to 36 bits, so we stick to 36 as well.
* Update: More recent intel manuals specifies 40 bits just like AMD.
*/
uint32_t u32Dummy, u32Features;
CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, -1 /*f64BitMode*/, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
else
pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
/*
* Allocate memory if we're supposed to do that.
*/
int rc = VINF_SUCCESS;
if (pVM->pgm.s.fRamPreAlloc)
rc = pgmR3PhysRamPreAllocate(pVM);
//pgmLogState(pVM);
LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc));
return rc;
}
/**
* Init phase completed callback.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
* @param enmWhat What has been completed.
* @thread EMT(0)
*/
VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
{
switch (enmWhat)
{
case VMINITCOMPLETED_HM:
#ifdef VBOX_WITH_PCI_PASSTHROUGH
if (pVM->pgm.s.fPciPassthrough)
{
AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
/*
* Report assignments to the IOMMU (hope that's good enough for now).
*/
if (pVM->pgm.s.fPciPassthrough)
{
int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
AssertRCReturn(rc, rc);
}
}
#else
AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
#endif
break;
default:
/* shut up gcc */
break;
}
return VINF_SUCCESS;
}
/**
* Applies relocations to data and code managed by this component.
*
* This function will be called at init and whenever the VMM need to relocate it
* self inside the GC.
*
* @param pVM The cross context VM structure.
* @param offDelta Relocation delta relative to old location.
*/
VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta));
/*
* Paging stuff.
*/
/* Shadow, guest and both mode switch & relocation for each VCPU. */
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
&& g_aPgmShadowModeData[idxShw].pfnRelocate)
g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
else
AssertFailed();
uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
&& g_aPgmGuestModeData[idxGst].pfnRelocate)
g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
else
AssertFailed();
}
/*
* Ram ranges.
*/
if (pVM->pgm.s.pRamRangesXR3)
pgmR3PhysRelinkRamRanges(pVM);
/*
* The page pool.
*/
pgmR3PoolRelocate(pVM);
}
/**
* Resets a virtual CPU when unplugged.
*
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure.
*/
VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
{
uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
&& g_aPgmGuestModeData[idxGst].pfnExit)
{
int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
AssertReleaseRC(rc);
}
pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
pVCpu->pgm.s.GCPhysPaeCR3 = NIL_RTGCPHYS;
int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
AssertReleaseRC(rc);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
/*
* Re-init other members.
*/
pVCpu->pgm.s.fA20Enabled = true;
pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
/*
* Clear the FFs PGM owns.
*/
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
}
/**
* The VM is being reset.
*
* For the PGM component this means that any PD write monitors
* needs to be removed.
*
* @param pVM The cross context VM structure.
*/
VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
{
LogFlow(("PGMR3Reset:\n"));
VM_ASSERT_EMT(pVM);
PGM_LOCK_VOID(pVM);
/*
* Exit the guest paging mode before the pgm pool gets reset.
* Important to clean up the amd64 case.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
&& g_aPgmGuestModeData[idxGst].pfnExit)
{
int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
AssertReleaseRC(rc);
}
pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
pVCpu->pgm.s.GCPhysNstGstCR3 = NIL_RTGCPHYS;
}
#ifdef DEBUG
DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
#endif
/*
* Switch mode back to real mode. (Before resetting the pgm pool!)
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
AssertReleaseRC(rc);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
}
/*
* Reset the shadow page pool.
*/
pgmR3PoolReset(pVM);
/*
* Re-init various other members and clear the FFs that PGM owns.
*/
for (VMCPUID i = 0; i < pVM->cCpus; i++)
{
PVMCPU pVCpu = pVM->apCpusR3[i];
pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
PGMNotifyNxeChanged(pVCpu, false);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
if (!pVCpu->pgm.s.fA20Enabled)
{
pVCpu->pgm.s.fA20Enabled = true;
pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
#ifdef PGM_WITH_A20
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
pgmR3RefreshShadowModeAfterA20Change(pVCpu);
HMFlushTlb(pVCpu);
#endif
}
}
//pgmLogState(pVM);
PGM_UNLOCK(pVM);
}
/**
* Memory setup after VM construction or reset.
*
* @param pVM The cross context VM structure.
* @param fAtReset Indicates the context, after reset if @c true or after
* construction if @c false.
*/
VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
{
if (fAtReset)
{
PGM_LOCK_VOID(pVM);
int rc = pgmR3PhysRamZeroAll(pVM);
AssertReleaseRC(rc);
rc = pgmR3PhysRomReset(pVM);
AssertReleaseRC(rc);
PGM_UNLOCK(pVM);
}
}
#ifdef VBOX_STRICT
/**
* VM state change callback for clearing fNoMorePhysWrites after
* a snapshot has been created.
*/
static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, PCVMMR3VTABLE pVMM, VMSTATE enmState,
VMSTATE enmOldState, void *pvUser)
{
if ( enmState == VMSTATE_RUNNING
|| enmState == VMSTATE_RESUMING)
pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
RT_NOREF(pVMM, enmOldState, pvUser);
}
#endif
/**
* Private API to reset fNoMorePhysWrites.
*/
VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
{
pVM->pgm.s.fNoMorePhysWrites = false;
}
/**
* Terminates the PGM.
*
* @returns VBox status code.
* @param pVM The cross context VM structure.
*/
VMMR3DECL(int) PGMR3Term(PVM pVM)
{
/* Must free shared pages here. */
PGM_LOCK_VOID(pVM);
pgmR3PhysRamTerm(pVM);
pgmR3PhysRomTerm(pVM);
PGM_UNLOCK(pVM);
PGMDeregisterStringFormatTypes();
return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX);
}
/**
* Show paging mode.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs "all" (default), "guest", "shadow" or "host".
*/
static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/* digest argument. */
bool fGuest, fShadow, fHost;
if (pszArgs)
pszArgs = RTStrStripL(pszArgs);
if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
fShadow = fHost = fGuest = true;
else
{
fShadow = fHost = fGuest = false;
if (strstr(pszArgs, "guest"))
fGuest = true;
if (strstr(pszArgs, "shadow"))
fShadow = true;
if (strstr(pszArgs, "host"))
fHost = true;
}
PVMCPU pVCpu = VMMGetCpu(pVM);
if (!pVCpu)
pVCpu = pVM->apCpusR3[0];
/* print info. */
if (fGuest)
{
pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
if (pVCpu->pgm.s.enmGuestSlatMode != PGMSLAT_INVALID)
pHlp->pfnPrintf(pHlp, "Guest SLAT mode (VCPU #%u): %s\n", pVCpu->idCpu,
PGMGetSlatModeName(pVCpu->pgm.s.enmGuestSlatMode));
#endif
}
if (fShadow)
pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
if (fHost)
{
const char *psz;
switch (pVM->pgm.s.enmHostMode)
{
case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
case SUPPAGINGMODE_PAE: psz = "PAE"; break;
case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
default: psz = "unknown"; break;
}
pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
}
}
/**
* Dump registered MMIO ranges to the log.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
pHlp->pfnPrintf(pHlp,
"RAM ranges (pVM=%p)\n"
"%.*s %.*s\n",
pVM,
sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
sizeof(RTHCPTR) * 2, "pvHC ");
for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
{
pHlp->pfnPrintf(pHlp,
"%RGp-%RGp %RHv %s\n",
pCur->GCPhys,
pCur->GCPhysLast,
pCur->pvR3,
pCur->pszDesc);
if (fVerbose)
{
RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
RTGCPHYS iPage = 0;
while (iPage < cPages)
{
RTGCPHYS const iFirstPage = iPage;
PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
do
iPage++;
while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
const char *pszType;
const char *pszMore = NULL;
switch (enmType)
{
case PGMPAGETYPE_RAM:
pszType = "RAM";
break;
case PGMPAGETYPE_MMIO2:
pszType = "MMIO2";
break;
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
pszType = "MMIO2-alias-MMIO";
break;
case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
pszType = "special-alias-MMIO";
break;
case PGMPAGETYPE_ROM_SHADOW:
case PGMPAGETYPE_ROM:
{
pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
pRom = pRom->pNextR3;
if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
pszMore = pRom->pszDesc;
break;
}
case PGMPAGETYPE_MMIO:
{
pszType = "MMIO";
PGM_LOCK_VOID(pVM);
PPGMPHYSHANDLER pHandler;
int rc = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE, &pHandler);
if (RT_SUCCESS(rc))
pszMore = pHandler->pszDesc;
PGM_UNLOCK(pVM);
break;
}
case PGMPAGETYPE_INVALID:
pszType = "invalid";
break;
default:
pszType = "bad";
break;
}
if (pszMore)
pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
pszType, pszMore);
else
pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
pCur->GCPhys + iPage * X86_PAGE_SIZE - 1,
pszType);
}
}
}
}
/**
* Dump the page directory to the log.
*
* @param pVM The cross context VM structure.
* @param pHlp The info helpers.
* @param pszArgs Arguments, ignored.
*/
static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
/** @todo SMP support!! */
PVMCPU pVCpu = pVM->apCpusR3[0];
/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
/* Big pages supported? */
const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
/* Global pages supported? */
const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
NOREF(pszArgs);
/*
* Get page directory addresses.
*/
PGM_LOCK_VOID(pVM);
PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
Assert(pPDSrc);
/*
* Iterate the page directory.
*/
for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
{
X86PDE PdeSrc = pPDSrc->a[iPD];
if (PdeSrc.u & X86_PDE_P)
{
if ((PdeSrc.u & X86_PDE_PS) && fPSE)
pHlp->pfnPrintf(pHlp,
"%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
iPD,
pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
!!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
else
pHlp->pfnPrintf(pHlp,
"%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
iPD,
(RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US),
!!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE);
}
}
PGM_UNLOCK(pVM);
}
/**
* Called by pgmPoolFlushAllInt prior to flushing the pool.
*
* @returns VBox status code, fully asserted.
* @param pVCpu The cross context virtual CPU structure.
*/
int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
{
/* Unmap the old CR3 value before flushing everything. */
int rc = VINF_SUCCESS;
uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
&& g_aPgmBothModeData[idxBth].pfnUnmapCR3)
{
rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
AssertRC(rc);
}
/* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
&& g_aPgmShadowModeData[idxShw].pfnExit)
{
rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
}
Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
return rc;
}
/**
* Called by pgmPoolFlushAllInt after flushing the pool.
*
* @returns VBox status code, fully asserted.
* @param pVM The cross context VM structure.
* @param pVCpu The cross context virtual CPU structure.
*/
int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
{
pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu), false /* fForce */);
Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
AssertRCReturn(rc, rc);
AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
|| CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
return rc;
}
/**
* Called by PGMR3PhysSetA20 after changing the A20 state.
*
* @param pVCpu The cross context virtual CPU structure.
*/
void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
{
/** @todo Probably doing a bit too much here. */
int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
AssertReleaseRC(rc);
rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
AssertReleaseRC(rc);
}
#ifdef VBOX_WITH_DEBUGGER
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
*/
static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVM pVM = pUVM->pVM;
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
if (!cArgs)
{
/*
* Print the list of error injection locations with status.
*/
DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
}
else
{
/*
* String switch on where to inject the error.
*/
bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
const char *pszWhere = paArgs[0].u.pszString;
if (!strcmp(pszWhere, "handy"))
ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
else
return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
DBGCCmdHlpPrintf(pCmdHlp, "done\n");
}
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
*/
static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
if (!pVCpu)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
/*
* Force page directory sync.
*/
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
if (RT_FAILURE(rc))
return rc;
return VINF_SUCCESS;
}
#ifdef VBOX_STRICT
/**
* EMT callback for pgmR3CmdAssertCR3.
*
* @returns VBox status code.
* @param pUVM The user mode VM handle.
* @param pcErrors Where to return the error count.
*/
static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
{
PVM pVM = pUVM->pVM;
VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
PVMCPU pVCpu = VMMGetCpu(pVM);
*pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
return VINF_SUCCESS;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
*/
static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
if (RT_FAILURE(rc))
return rc;
unsigned cErrors = 0;
rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
if (RT_FAILURE(rc))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
if (cErrors > 0)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
}
#endif /* VBOX_STRICT */
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
*/
static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
if (!pVCpu)
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
/*
* Force page directory sync.
*/
int rc;
if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
{
ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
}
else
{
ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
}
return rc;
}
/**
* @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
*/
static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
{
/*
* Validate input.
*/
NOREF(pCmd);
DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
PVM pVM = pUVM->pVM;
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
if (cArgs == 2)
{
DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
if (strcmp(paArgs[1].u.pszString, "nozero"))
return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
}
bool fIncZeroPgs = cArgs < 2;
/*
* Open the output file and get the ram parameters.
*/
RTFILE hFile;
int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
if (RT_FAILURE(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
uint32_t cbRamHole = 0;
CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
uint64_t cbRam = 0;
CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
/*
* Dump the physical memory, page by page.
*/
RTGCPHYS GCPhys = 0;
char abZeroPg[GUEST_PAGE_SIZE];
RT_ZERO(abZeroPg);
PGM_LOCK_VOID(pVM);
for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
pRam = pRam->pNextR3)
{
/* fill the gap */
if (pRam->GCPhys > GCPhys && fIncZeroPgs)
{
while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
GCPhys += GUEST_PAGE_SIZE;
}
}
PCPGMPAGE pPage = &pRam->aPages[0];
while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
{
if ( PGM_PAGE_IS_ZERO(pPage)
|| PGM_PAGE_IS_BALLOONED(pPage))
{
if (fIncZeroPgs)
{
rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
}
else
{
switch (PGM_PAGE_GET_TYPE(pPage))
{
case PGMPAGETYPE_RAM:
case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
case PGMPAGETYPE_ROM:
case PGMPAGETYPE_MMIO2:
{
void const *pvPage;
PGMPAGEMAPLOCK Lock;
rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
if (RT_SUCCESS(rc))
{
rc = RTFileWrite(hFile, pvPage, GUEST_PAGE_SIZE, NULL);
PGMPhysReleasePageMappingLock(pVM, &Lock);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
else
DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
break;
}
default:
AssertFailed();
RT_FALL_THRU();
case PGMPAGETYPE_MMIO:
case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
if (fIncZeroPgs)
{
rc = RTFileWrite(hFile, abZeroPg, GUEST_PAGE_SIZE, NULL);
if (RT_FAILURE(rc))
DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
}
break;
}
}
/* advance */
GCPhys += GUEST_PAGE_SIZE;
pPage++;
}
}
PGM_UNLOCK(pVM);
RTFileClose(hFile);
if (RT_SUCCESS(rc))
return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
return VINF_SUCCESS;
}
#endif /* VBOX_WITH_DEBUGGER */
/**
* pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
*/
typedef struct PGMCHECKINTARGS
{
bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
uint32_t cErrors;
PPGMPHYSHANDLER pPrevPhys;
PVM pVM;
} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
/**
* Validate a node in the physical handler tree.
*
* @returns 0 on if ok, other wise 1.
* @param pNode The handler node.
* @param pvUser pVM.
*/
static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PPGMPHYSHANDLER pNode, void *pvUser)
{
PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
AssertLogRelMsgReturnStmt(!((uintptr_t)pNode & 7), ("pNode=%p\n", pNode), pArgs->cErrors++, VERR_INVALID_POINTER);
AssertLogRelMsgStmt(pNode->Key <= pNode->KeyLast,
("pNode=%p %RGp-%RGp %s\n", pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
pArgs->cErrors++);
AssertLogRelMsgStmt( !pArgs->pPrevPhys
|| ( pArgs->fLeftToRight
? pArgs->pPrevPhys->KeyLast < pNode->Key
: pArgs->pPrevPhys->KeyLast > pNode->Key),
("pPrevPhys=%p %RGp-%RGp %s\n"
" pNode=%p %RGp-%RGp %s\n",
pArgs->pPrevPhys, pArgs->pPrevPhys->Key, pArgs->pPrevPhys->KeyLast, pArgs->pPrevPhys->pszDesc,
pNode, pNode->Key, pNode->KeyLast, pNode->pszDesc),
pArgs->cErrors++);
pArgs->pPrevPhys = pNode;
return 0;
}
/**
* Perform an integrity check on the PGM component.
*
* @returns VINF_SUCCESS if everything is fine.
* @returns VBox error status after asserting on integrity breach.
* @param pVM The cross context VM structure.
*/
VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
{
/*
* Check the trees.
*/
PGMCHECKINTARGS Args = { true, 0, NULL, pVM };
int rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromLeft(&pVM->pgm.s.PhysHandlerAllocator,
pgmR3CheckIntegrityPhysHandlerNode, &Args);
AssertLogRelRCReturn(rc, rc);
Args.fLeftToRight = false;
Args.pPrevPhys = NULL;
rc = pVM->pgm.s.pPhysHandlerTree->doWithAllFromRight(&pVM->pgm.s.PhysHandlerAllocator,
pgmR3CheckIntegrityPhysHandlerNode, &Args);
AssertLogRelMsgReturn(pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0,
("m_cErrors=%#x\n", pVM->pgm.s.pPhysHandlerTree->m_cErrors == 0),
VERR_INTERNAL_ERROR);
return Args.cErrors == 0 ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
}
|